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Abstract: In this work, a Leslie-Gower model with a weak Allee effect on the prey and a fear effect on
the predator is proposed. By using qualitative analyses, the local stability of the coexisting equilibrium
and the existence of Turing instable are discussed. By analyzing the distribution of eigenvalues, the
existence of a Hopf bifurcation is studied by using the gestation time delay as a bifurcation parameter.
By utilizing the normal form method and the center manifold theorem, we calculate the direction of
the Hopf bifurcation and the stability of bifurcating periodic solutions. We indicate that both the weak
Allee effect on the prey and fear effect on the predator have an important impact on the dynamical
behaviour of the new Leslie-Gower model. We also verify the obtained results by some numerical
examples.
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1. Introduction

One of the most important factors in ecology is the predator-prey interaction, which is usually
complex and diverse. Scholars have long been committed to using mathematical methods to explain
and predict it [1–7]. The population dynamics of predator and prey could easily be affected in
nature [8–10]. In this work, we investigate a self-diffusive Leslie-Gower model with a time delay, fear
effect on the predator, weak Allee effect, and nonlocal competition on the prey.

Many researchers only pay attention to the direct killing of prey by predators. However, with the
development of society and the advancement of biomathematics, researchers [11–16] have a deeper
understanding of the interactions between predator and prey, which are complex and multiple in nature.
The existence of predators not only directly affects the density and growth rate of prey populations by
eating prey, but also indirectly affects prey populations by influencing their dynamical behavior. Some
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experiments have shown that prey will make various anti-predation responses to protect itself when it
faces a predator, such as physiological changes, vigilance, foraging behavior. The phenomenon that
the prey is always alert to possible attacks, is called fear effect. It is a physiological change related to
the behavior and stress of a prey population in the presence of a predator.

Until now, most literatures have studied the fear effect on prey but few literatures have studied it on
predator. Some scientists [17–19] have conducted experiments to study the fear effect on predators.
They have found that the fear effect caused by a large predator could lead to a similar predation effect
on medium-sized predators, leading the medium-sized predators to produce the anti-predation
responses. This anti-predation behavior produced by the medium-sized predator will directly affect its
consumption of prey. We can maintain the balance of the ecosystem by controlling the number of
large predators to avoid excessive consumption of prey at the bottom of the food chain by the
medium-sized predator.

When the density of the species population is low, the change law of the species population will
be greatly affected by the internal mating of the population. W. Allee proposed the famous Allee
effect for the first time [20]. Additionally, many scholars were concerned about the Allee effect in
the predator-prey model [21–29]. Since the Allee effect usually occurs when the population density
is either small or sparse. Thus, the Allee effects are strongly related to the extinction vulnerability of
populations. The Allee effect is generally divided into either the strong or weak Allee effect. Whether
the Allee effect is weak or strong depends on the opposing strengths of positive and negative density
dependence. A strong Allee effect involves an Allee threshold. The Allee threshold is either a critical
population size or a density below which the per capita population growth rate becomes negative. As
mentioned in [23], the term (u − m) is added to the logistic growth function ru

(
1 − u

K

)
to investigate

the influence of Allee threshold on prey. In [24], Courchamp revealed that studies of the strong Allee
effect help support the relationship between the species populations at low densities and the population
growth rate. Authors in [29] studied the following model:

du
dt

= ru
(
1 −

u
K

)
(u − m) −

cuv
u + kv

,

dv
dt

=
ev

1 + kv

(
1 −

v
nu

)
.

(1.1)

Here u and v represent the prey and predator density, respectively. K, m, c, r, and e denote the
environmental capacity, Allee threshold, maximal per capita consumption rate, and the intrinsic
growth rates of the prey and predator, respectively. n is a measure of food quality that the prey
provides for the conversion into predator birth. k measures the fear effect on the predator.

Unlike the strong Allee effect, there is no threshold for the weak Allee effect. Many literatures [30–
32] have investigated the ecological model with the weak Allee effect. Authors in [21] have mentioned
the following model: 

du
dt

= ru
(
1 −

u
K

) u
β + u

−
cuv

u + kv
,

dv
dt

=
ev

1 + kv

(
1 −

v
nu

)
,

(1.2)

where β is the weak Allee constant. Let (u, v, t) = (Kū, Knv̄, t̄
r ) and ignore the bar. Then, Eq (1.2)
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becomes 
du
dt

= u
(
(1 − u)u

b + u
−

qv
1 + pv

)
,

dv
dt

=
sv

1 + pv

(
1 −

v
u

)
,

(1.3)

where b =
β

K , q = Knc
r , p = Knk, s = e

r .
In nature, due to the particularity of species breeding conditions and the necessity of gestational

length, the species population density and birth rate of the species population at this stage are affected
by the past period. Additionally, the energy conversion between predator and prey is not
instantaneous. The influence of past history on the per capita growth rate of predators cannot be
ignored [33–36]; therefore, we consider a time delay parameter τ for the predator-prey model. In
addition, we assume that the distribution of population is uniform in model (1.3), which is generally
not the situation in nature. In nature, due to the widespread self-diffusion phenomenon, few species
populations have homogeneous spatial distribution [37–39]. Since the existence of diffusion
phenomenon, the population model often shows some more abundant dynamic phenomena.

Another very important point is that the limited resources in nature makes the unlimited growth
of species impossible, which will inevitably lead to competition among the prey population. Since
the spatial distributions for the predator and prey population are inhomogeneous and disperse, this
competition is usually nonlocal. Many scholars have studied the influence of it on the dynamic behavior
of species [40–46]. In [47, 48], the authors modified the u

K as 1
K

∫
Ω

G(x, y)u(y, t)dy with some kernel
function G(x, y) to describe this competition. Due to the above factors, we added time delay and self-
diffusion terms into Eq (1.3), and considered the nonlocal competition:

∂u(x, t)
∂t

= d1∆u + u

 (1 −
∫

Ω
G(x, y)u(y, t)dy)u

b + u
−

qv
1 + pv

 ,
∂v(x, t)
∂t

= d2∆v +
sv

1 + pv

(
1 −

v(t − τ)
u(t − τ)

)
, u ∈ Ω, t > 0,

∂u(x, t)
∂ν̄

=
∂v(x, t)
∂ν̄

= 0, x ∈ ∂Ω, t > 0,

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(1.4)

Here ∂u(x,t)
∂t and ∂v(x,t)

∂t represent the density gradients of the prey populations and predator populations,
respectively. d1, d2 > 0 denote the diffusion coefficients of prey and predator, respectively. The
notation ∆ denotes the Laplace operator, and the notation Ω denotes a bounded domain with a smooth
boundary ∂Ω. τ describes either a gestation period or reaction time. The integral term∫

Ω
G(x, y)u(y, t)dy in the first equation of (1.4) accounts for the nonlocal competition among the prey

individuals. The kernel function is of the following form:

G(x, y) =
1
|Ω|

=
1
lπ
, x, y ∈ Ω,

which can be regarded as a measurement of the competition pressure at location x from the individuals
at another location y. In this case, the competition strength among all prey individuals is the same
across the habitat.
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This paper mainly studies the significant effects of the weak Allee effect on prey and the fear effect
on predators in the predator-prey system. We shall separately study the influence of the weak Allee
effect and the fear effect on the spatial bifurcating periodic solutions.

This paper is organized as follows. In Section 2, we investigate the existence and stability of a
coexisting equilibrium. In Section 3, we analyze the existence of a Hopf bifurcation. In Section 4,
we consider the property of the Hopf bifurcation. In Section 5, we conduct a series of numerical
simulations to illustrate the theoretical results. In Section 6, we elaborate a short conclusion.

2. Equilibria and stability

2.1. The existence of the equilibria

A discussion of the equilibria has been given in [21], but for the completeness of the paper, we still
give the following lemma.

Lemma 2.1. The equilibria of system (1.4) admit the following statements:

(i) The system (1.4) always has a distinct boundary equilibria given by E0(1, 0) for all positive
parameters.

(ii) When bq > 1 and

(iia) if p − q − 1 > 0 and 0 < b < b∗, then system (1.4) has two positive equilibria E1(u−, v−)
and E2(u+, v+),

(iib) if p − q − 1 > 0 and b = b∗, then system (1.4) has a unique positive equilibrium E3(u3, v3),

(iic) if p − q − 1 > 0, b > b∗ or p − q − 1 ≤ 0, then system (1.4) has no positive equilibrium.

(iii) When bq = 1 and

(iiia) if p − q − 1 > 0, then system (1.4) has a unique positive equilibrium E2(u+, v+),

(iiic) if p − q − 1 ≤ 0, then system (1.4) has no positive equilibrium.
(iv) When 0 < bq < 1, then system (1.4) has a unique positive equilibrium E2(u+, v+).

In the above, b∗ =
(1+p+q)2−4pq

4pq , u± = v± =
(p−1−q)±

√
(1−p+q)2−4p(bq−1)

2p , and u3 = v3 =
(p−1−q)

2p .
Considering the biological significance of the system equilibrium, the rest of our discussion is focused
on positive equilibrium.

Furthermore, we focus on the dynamics of system (1.3) in a neighbordhood of each equilibrium.
Figure 1 shows the phase portraits of system (1.3) b = 0.3, q = 0.9, p = 0.8, and s = 0.29. The
“green dot” represents the boundary point E0, the “blue dot” represents the equilibrium E1, and the
“red dot” represents the unique positive equilibrium E2. By calculating, we obtain the real parts of
eigenvalues of equilibrium E2 of −0.195771 and −0.195771. Therefore, the equilibrium E2 is a stable
node. We selected the equilibrium point E2 for numerical simulations under the confirmed biological
significance.
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Figure 1. The phase portraits of system (1.3) with τ = 0, b = 0.3, q = 0.9, p = 0.8, s = 0.29,
d1 = 0.18 and d2 = 0.13.

2.2. The stability analysis of the equilibria

Assume that Ω = (0, lπ) and G(x, y) = 1
lπ . Let N denote the positive integer set, and N0 denote

the nonnegative integer set. Without loss of generality, let us say that the positive equilibrium point is
E∗(u∗, v∗). Then, linearize system (1.4) at E∗(u∗, v∗).

∂

∂t

(
u(x, t)
u(x, t)

)
= D

(
∆u(x, t)
∆v(x, t)

)
+ J1

(
u(x, t)
v(x, t)

)
+ J2

(
u(x, t − τ)
v(x, t − τ)

)
+ J3

(
û(x, t)
v̂(x, t)

)
, (2.1)

where

D =

(
d1 0
0 d2

)
, J1 =

(
a11 a12

0 a22

)
, J2 =

(
0 0

b21 b22

)
, J3 =

(
â 0
0 0

)
,

a11 = −
(1 + 2b)u∗2

(b + u∗)2 −
u∗3

(b + u∗)2 +
2u∗

b + u∗
−

qv∗

1 + pv∗
, a12 = −

qu∗

(1 + pv∗)2 < 0, a22 =
s(u∗ − v∗)

u∗(1 + pv∗)2 ,

b21 =
sv∗2

u∗2(1 + pv∗)
> 0, b22 = −

sv∗

u∗(1 + pv∗)
< 0, â = −

u∗2

b + u∗
< 0,

and û = 1
lπ

∫ lπ

0
u(y, t)dy.

Naturally, the characteristic equation is as follows:

λ2 + Anλ + Bn + (Cn − b22λ)e−λτ = 0, n ∈ N0, (2.2)

where

A0 = −(a11 + a22 + â), B0 = a22(â + a11), C0 = a11b22 + âb22 − a12b21,

An = (d1 + d2)
n2

l2 − (a11 + a22), Bn = d1d2
n4

l4 − (a22d1 + a11d2)
n2

l2 + a11a22,

Cn = −b22d1
n2

l2 + a11b22 − a12b21, n ∈ N.

(2.3)
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Then, we make the following hypothesis:

(H1) (a11 + â)(a22 + b22) > a12b21, a11 + a22 + â + b22 < 0, An − b22 > 0, Bn + Cn > 0,
for all n ∈ N,

(H2) (a11 + â)(a22 + b22) > a12b21, a11 + a22 + â + b22 < 0, Ak − b22 < 0 (or Bk + Ck < 0),
for some k ∈ N.

Furthermore, we come to the following situations.

Theorem 2.2. Assume τ = 0. Then, the following statements are true for system (2.1).
(i) If (H1) holds, then E∗(u∗, v∗) is locally asymptotically stable.
(ii) If (H2) holds, then E∗(u∗, v∗) is Turing instable.

Proof. Assume τ = 0, and then (2.2) becomes to

λ2 + (A0 − b22)λ + (B0 + C0) = 0 (2.4)

and
λ2 + (An − b22)λ + (Bn + Cn) = 0, n ∈ N. (2.5)

When (H1) holds, the roots of Eqs (2.4) and (2.5) are all with negative real parts. Therefore, the
equilibrium E∗(u∗, v∗) is locally asymptotically stable. When (H2) holds, the roots of Eq (2.4) are all
with negative real parts, but Eq (2.5) has at least one root with positive real part. Therefore, E∗(u∗, v∗)
is Turing unstable. �

Lemma 2.3. If (H1) holds, then Eq (2.5) has a pair of purely imaginary roots ±iωn at τ j
n, j ∈ N0, n ∈ F,

where

ωn =

√
1
2

[−(A2
n − 2Bn − b2

22) ±
√

(A2
n − 2Bn − b2

22)2 − 4(B2
n −C2

n)], (2.6)

and

τ j
n =

 1
ωn

arccos(V (n)
cos) + 2 jπ, V (n)

sin ≥ 0,
1
ωn

[
2π − arccos(V (n)

cos)
]

+ 2 jπ, V (n)
sin < 0.

V (n)
cos =

ω2(b22An + Cn) − BnCn

C2
n + b2

22ω
2

, V (n)
sin =

ω
(
AnCn + Bnb22 − b22ω

2
)

C2
n + b2

22ω
2

,

F = {n|n ∈ M1 or µn = h±} ∪ {n|n ∈ M2\M1, µn , h+, µn , h−}.

(2.7)

Proof. We suppose iω (ω > 0) is a solution of Eq (2.2), which leads to

−ω2 + iωAn + Bn + (Cn − b22iω)e−iωτ = 0, n ∈ N0.

Then, separating the real and imaginary parts, we have{
Anω = b22ωcosωτ + Cnsinωτ,
ω2 − Bn = Cncosωτ − b22ωsinωτ.
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Thus, we can obtain

cosωτ =
ω2(b22An + Cn) − BnCn

C2
n + b2

22ω
2

and

sinωτ =
ω

(
AnCn + Bnb22 − b22ω

2
)

C2
n + b2

22ω
2

.

Due to cos2ωτ + sin2ωτ = 1, we have

ω4 + ω2
(
A2

n − 2Bn − b2
22

)
+ B2

n −C2
n = 0, n ∈ N0. (2.8)

Let m = ω2, then Eq (2.8) becomes

m2 + m
(
A2

n − 2Bn − b2
22

)
+ B2

n −C2
n = 0, n ∈ N0. (2.9)

Let Pn = A2
n − 2Bn − b2

22 and Qn = B2
n − C2

n. The roots of Eq (2.9) are m± = 1
2 [−Pn ±

√
P2

n − 4Qn]. If
(H1) holds, then Bn + Cn > 0 (n ∈ N0).

Define 
h± =

a22d1−b22d1+a11d2±
√
−4(a11a22+a12b21−a11b22)d1d2+(−a22d1+b22d1−a11d2)2

2d1d2
,

a∗ =
a2

22d2
1−2a22b22d2

1+b2
22d2

1−2a11a22d1d2+2a11b22d1d2+a2
11d2

2
4b21d1d2

,

M1 = {n|h− < µn < h+, n ∈ N}, µn = n2

l2 ,

M2 = {n|Pn < 0, P2
n − 4Qn ≥ 0, n ∈ N}.

Then, we have 
Bn −Cn < 0, f or a12 < a∗, n ∈ M1,

Bn −Cn ≥ 0, f or a12 < a∗, n < M1,

Bn −Cn ≥ 0, f or a12 ≥ a∗, n ∈ N.

Based on the above analysis, we will discuss the existence of purely imaginary roots of Eq (2.5) in
the following three cases.

Case 1: a12 > a∗. For n ∈ M2, we can obtain that m± > 0 if P2
n − 4Qn > 0 and m+ = m− > 0 if

P2
n − 4Qn = 0. Then, Eq (2.5) has either one or two pairs of purely imaginary roots ±iωn at τ j

n, j ∈ N0,
where iω±n =

√
m±.

Case 2: a12 = a∗. For n ∈ M2\M1, we can obtain that m± > 0 if P2
n − 4Qn > 0 and m+ = m− > 0 if

P2
n − 4Qn = 0 under the condition µn , h+ and µn , h−. Then, Eq (2.5) has either one or two pairs of

purely imaginary roots ±iωn at τ j
n, j ∈ N0. For µn = h+ or µn = h−, the Eq (2.5) has a pair of purely

imaginary roots ±iωn at τ j
n, j ∈ N0 when Pn < 0 and P2

n − 4Qn ≥ 0.
Case 3: a12 < a∗. For n ∈ M2\M1, we can obtain that m± > 0 if P2

n − 4Qn > 0 and m+ = m− > 0
if P2

n − 4Qn = 0 under the condition µn , h+ and µn , h−. Then, Eq (2.5) has either one or two pairs
of purely imaginary roots ±iωn at τ j

n, j ∈ N0. For µn = h+ or µn = h−, Eq (2.5) has a pair of purely
imaginary roots ±iωn at τ j

n, j ∈ N0 when Pn < 0 and P2
n − 4Qn ≥ 0. For n ∈ M1, Eq (2.5) has a pair of

purely imaginary roots ±iωn at τ j
n, j ∈ N0 when P2

n − 4Qn ≥ 0.
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Define
F = {n|n ∈ M1 or µn = h±} ∪ {n|n ∈ M2\M1, µn , h+, µn , h−}.

F is a finite set obviously, since

lim
n→∞

(A2
n − 2Bn − b2

22)→ +∞,

lim
n→∞

(Bn −Cn)→ +∞.

�

Lemma 2.4. If (H1) is satisfied, then Re[ dλ
dτ |τ=τ j

n
] > 0 for n ∈ F, j ∈ N0 are true.

Proof. By Eq (2.2), we have (
dλ
dτ

)−1

=
2λ + An − b22e−λτ

(Cn − b22λ)λe−λτ
−
τ

λ
.

Then, Re
(
dλ
dτ

)−1
∣∣∣∣∣∣∣
τ=τ

j
n

= Re
(
2λ + An − b22e−λτ

(Cn − b22λ)λe−λτ
−
τ

λ

)∣∣∣∣∣∣
τ=τ

j
n

=

(
1

C2
n + b2

22ω
2
(2ω2 + A2

n − 2Bn − b2
22)

)∣∣∣∣∣∣
τ=τ

j
n

=

(
1

C2
n + b2

22ω
2

√
(A2

n − 2Bn − b2
22)2 − 4(B2

n −C2
n)
)∣∣∣∣∣∣
τ=τ

j
n

> 0.

�

Then, we have the following theorem.

Theorem 2.5. Assume (H1) are satisfied, the following statements are true for system (1.4).
(i) E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗), where τ∗ = min{τ0

n| n ∈ F}.
(ii) E∗(u∗, v∗) is unstable for τ ∈ [τ∗,+∞).
(iii) The Hopf bifurcation values of system (2.1) are τ = τ j or τ j

n (n ∈ F, j ∈ N0).

3. Property of Hopf bifurcation

In this section, we will give some conditions regarding the property of the Hopf bifurcation through
the methods “the normal form theory” and “the center manifold theorem” in [40, 41].

Denote τ̃ = τ
j
n for j ∈ N0 and n ∈ F. Let ū(x, t) = u(x, τt) − u∗ and v̄(x, t) = v(x, τt) − v∗. Then,

system (1.4) (ignore the bar) becomes
∂u
∂t

= τ

d1∆u + (u + u∗)


(
1 − 1

lπ

∫ lπ

0
(u(y, t) + u∗)dy

)
(u + u∗)

b + u + u∗
−

q(v + v∗)
1 + p(v + v∗)


 ,

∂v
∂t

= τ

(
d2∆v +

s(v + v∗)
1 + p(v + v∗)

(
1 −

v(t − 1) + v∗

u(t − 1) + u∗

))
.

(3.1)
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System (3.1) can be rewritten in the following form:

∂u
∂t

=τ[d1∆u + a11u + a12v + âû + α1u2 + α̂1uû + α2uv + α3v2 + α4u3 + α̂2u2û

+ α5uv2 + α6v3] + h.o.t.,
∂v
∂t

=τ[d2∆v + a22v + b21u(t − 1) + b22v(t − 1) + β1u(t − 1)v + β2v2 + β3u2(t − 1)

+ β4u(t − 1)v(t − 1) + β5vv(t − 1) + β6v3 + β7v2u(t − 1) + β8v2v(t − 1)
+ β9vu2(t − 1) + β10u3(t − 1) + β11u2(t − 1)v(t − 1)] + h.o.t.,

(3.2)

where

a11 = −
(1 + 2b)u∗2

(b + u∗)2 −
u∗3

(b + u∗)2 +
2u∗

b + u∗
−

qv∗

1 + pv∗
, a12 = −

qu∗

(1 + pv∗)2 , â = −
u∗2

b + u∗
,

α1 = −
2b2(u∗ − 1)

(b + u∗)3 , α̂1 = −
u∗(2b + u∗)
(b + u∗)2 , α2 = −

q
(1 + pv∗)2 , α3 =

2pqu∗

(1 + pv∗)3 ,

α4 =
6b2(u∗ − 1)
(b + u∗)4 , α̂2 = −

2b2

(b + u∗)3 , α5 =
2pq

(1 + pv∗)3 , α6 = −
6p2qu∗

(1 + pv∗)4 ,

a22 =
s(u∗ − v∗)

u∗(1 + pv∗)2 , b21 =
sv∗2

u∗2(1 + pv∗)
, b22 = −

sv∗

u∗ + pu∗v∗
, β1 =

sv∗

(u∗ + pu∗v∗)2 ,

β2 = −
2ps(u∗ − v∗)
u∗(1 + pv∗)3 , β3 = −

2sv∗2

u∗3(1 + pv∗)
, β4 =

sv∗

u∗2(1 + pv∗)
, β5 = −

s
u∗(1 + pv∗)2 ,

β6 =
6p2s(u∗ − v∗)
u∗(1 + pv∗)4 , β7 = −

2psv∗

u∗2(1 + pv∗)3
, β8 =

2ps
u∗(1 + pv∗)3 , β9 = −

2sv∗

u∗3(1 + pv∗)2
,

β10 =
6sv∗2

u∗4(1 + pv∗)
, β11 = −

2sv∗

u∗3(1 + pv∗)
.

Define a Hilbert space

X :=
{

(a, b)T : (a, b) ∈ H2(0, lπ) × H2(0, lπ), (
∂a
∂x
,
∂b
∂x

)|x=0,lπ = 0
}
.

The corresponding complexification XC has the form XC := X ⊕ iX = {a + ib| a, b ∈ X}. The complex-
valued L2 inner product is provided by 〈a, b〉 :=

∫ lπ

0
(a1b1 + a2b2)dx, for a = (a1, a2)T , b = (b1, b2)T ∈

XC. Define a notation C := C([−1, 0], XC), which means the phase space with the sup norm, and we
could write φt ∈ C , φt(ρ) = φ(t + ρ) for ρ ∈ [−1, 0]. Let χ(1)

n (a) = (γn(a), 0)T , χ(2)
n (a) = (0, γn(a))T and

χn = {χ(1)
n (a), χ(2)

n (a)}, where {χ(i)
n (a)} (i = 1, 2) is an orthonormal basis of X. Define the subspace of C ,

which is, Bn := span{〈φ(·), χ( j)
n 〉χ

( j)
n |φ ∈ C , j = 1, 2}, n ∈ N0. According to the Riesz representation

theorem, there exists a 2× 2 matrix function ηn(θ, τ̃) of the bounded variation for −1 ≤ θ ≤ 0, such that
−τ̃Dn2

l2 φ(0) + τ̃L(φ) =
∫ 0

−1
dηn(θ, τ̃)φ(θ) for φ ∈ C . Define the bilinear form on C ∗ × C , that is,

(ψ, φ) = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ζ=0
ψ(ζ − θ)dηn(θ, τ̃)φ(ζ)dζ, f or φ ∈ C , ψ ∈ C ∗. (3.3)

Define τ = τ̃+ µ. When µ = 0, system Eq (3.2) undergoes a Hopf bifurcation at equilibrium (0, 0), and
the eigenfunctions has a pair of purely imaginary roots ±iωn0 . A represents the infinitesimal generators
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of the semigroup with µ = 0 and n = n0. The formal adjoint of A is denoted by A ∗, which is under
the bilinear pairing Eq (3.3). Then, define the following Boolean function:

δ(n0) =

{
1 n0 = 0,
0 n0 ∈ N.

(3.4)

Choose ηn0(0, τ̃) = τ̃(−n2
0/l

2)D + τ̃J1 + τ̃J3δ(nn0), ηn0(−1, τ̃) = −τ̃J2, ηn0(θ, τ̃) = 0 for θ ∈ (−1, 0). Let
p(σ) = p(0)eiωn0 τ̃σ (σ ∈ [−1, 0]) and q(θ) = q(0)e−iωn0 τ̃θ (θ ∈ [0, 1]) be the eigenfunctions of A and
A ∗ corresponding to the eigenvalue iωn0 τ̃, respectively. By calculation, we choose p(0) = (1, p1)T

and q(0) = W(1, q2), where p1 = 1
a12

(
−a11 + d1

n2
0

l2 − âδ(n0) + iωn0

)
, q2 = − a12

a22+b22eiτωn0−d2
n2

0
l2
−iωn0

, and

W = (1 + p1q2 + τ̃(b21q2 + b22 p1q2)e−iωn0 τ̃)−1. Thus, system (3.1) becomes

dU(t)
dt

= (τ̃ + µ)D∆U(t) + (τ̃ + µ)[J1(U(t)) + J2U(t − 1) + J3Û(t)] + G(µ,Ut, Ût), (3.5)

where

G(φ, µ) = (τ̃ + µ)


α1φ

2
1(0) + α̂1φ1(0)φ̂1(0) + α2φ1(0)φ2(0) + α3φ

2
2(0) + α4φ

3
1(0) + α̂2φ

2
1(0)φ̂1(0)

+α5φ1(0)φ2
2(0) + α6φ

3
2(0)

β1φ1(−1)φ2(0) + β2φ
2
2(0) + β3φ

2
1(−1) + β4φ1(−1)φ2(−1) + β5φ2(0)φ2(−1) + β6φ

3
2(0)

+β7φ1(−1)φ2
2(0) + β8φ

2
2φ2(−1) + β9φ

2
1(−1)φ2(0) + β10φ

3
1(−1) + β11φ

2
1(−1)φ2(−1)

 (3.6)

for φ = (φ1, φ2)T ∈ C and φ̂1 = 1
lπ

∫ lπ

0
φ1dx. Then, we decompose the space C as C = P ⊕ Q,

where P = {apγn0(x) + āp̄γn0(x)|a ∈ C}, Q = {ψ ∈ C |(qγn0(x), ψ) = 0 and (q̄γn0(x), ψ) = 0}. Thus,
system (3.6) becomes Ut = f (t)p(·)γn0(x) + f̄ (t) p̄(·)γn0(x) + ω(t, ·) and Ût = 1

lπ

∫ lπ

0
Utdx, where

f (t) = (qγn0(x),Ut, ω(t, σ) = Ut(σ) − 2Re{ f (t)p(σ)γn0(x)}. (3.7)

Then, we get ḟ (t) = iωn0 τ̃ f (t) + q̄(0) < G(0,Ut), χn0 >. There exists a center manifold C0 and we could
write ω near (0, 0) as follows:

ω(t, σ) = ω( f (t), f̄ (t), σ) = ω20(σ)
f 2

2
+ ω11(σ) f f̄ + ω02(σ)

f̄ 2

2
+ · · · . (3.8)

Then, ḟ (t) = iωn0 τ̃ f (t)+$( f , f̄ ) is the system restricted to the center manifold C0. Denote$( f , f̄ ) =

$20
f 2

2 +$11 f f̄ +$02
f̄ 2

2 +$21
f 2 f̄
2 + · · · .

By direct computation, we have

$20 = 2τ̃W(ϑ1 + q2ϑ2)I3, $11 = τ̃W(%1 + q2%2)I3, $02 = $̄20,

$21 = 2τ̃W[(κ11 + q2κ21)I2 + (κ12 + q2κ22)I4],

where

I2 =

∫ lπ

0
γ2

n0
(x)dx,

I3 =

∫ lπ

0
γ3

n0
(x)dx,
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I4 =

∫ lπ

0
γ4

n0
(x)dx,

ϑ1 = α1 + α̂1δ(n0) + α2 p1 + α3 p2
1,

ϑ2 = β2 p2
1 + e−iτωn0 (β1 p1 + β5 p2

1) + e−2iτωn0 (β3 + β4 p1),

%1 =
1
2
α1 +

1
2
α̂1δ(n0) +

1
4
α2(p1 + p1) +

1
2
α3 p1 p1,

%2 =
1
2
β2 p1 p1 +

1
2
β3 +

1
4
β4(p1 + p1)

+
1
4

e−iτωn0 (β1 p1 + β5 p1 p1) +
1
4

eiτωn0 (β1 p1 + β5 p1 p1),

κ11 = 2ω(1)
11 (0)(2α1 + α̂1δ(n0) + α̂1 + α2 p1) + 2ω(2)

11 (0)(α2 + 2α3 p1)

+ ω(1)
20 (0)(2α1 + α̂1δ(n0) + α̂1 + α2 p1) + ω(2)

20 (0)(α2 + 2α3 p1) +
3
2
α̂2δ(n0),

κ12 =
3
2
α4 + α5 p1 p1 +

1
2
α5 p2

1 +
3
2
α6 p1 p2

1,

κ21 = 2ω(1)
11 (−1)[β1 p1 + (β4 p1 + 2β3)e−iτωn0 ] + 2ω(2)

11 (−1)(β4e−iτ̃ωn0

+ β5 p1) + ω(1)
20 (−1)[(2β3 + β4 p1)eiτ̃ωn0 + β1 p1] + ω(2)

20 (−1)(β4eiτ̃ωn0 + β5 p1)

+ 2ω(2)
11 (0)[(β1 + β5 p1)e−iτ̃ωn0 + 2β2 p1] + ω(2)

20 (0)[(β1 + β5 p1)eiτ̃ωn0 + 2β2 p1],

κ22 = β9 p1 +
3
2
β6 p1 p2

1 + e−iτ̃ωn0 (
3
2
β10 +

1
2
β11 p1 + β11 p1 + β7 p1 p1 + β8 p2

1 p1)

+ eiτ̃ωn0 (
1
2
β7 p2

1 +
1
2
β8 p1 p2

1) +
1
2
β9 p1e−2iτ̃ωn0 .

Then, we should compute ω20 and ω11. Due to Eq (3.7), we have

ω̇ = U̇t − ḟ pγn0(x) − ˙̄f p̄γn0(x) = A ω + H( f , f̄ , σ), (3.9)

where

H( f , f , σ) = H20(σ)
f 2

2
+ H11(σ) f f + H02(σ)

f
2

2
+ · · · . (3.10)

Comparing the coefficients of Eq (3.8) with Eq (3.9), we will get

(A − 2iωn0 τ̃I)ω20(σ) = −H20(σ), A ω11(σ) = −H11(σ). (3.11)

Then, we have

ω20(σ) =
−$20

iωn0 τ̃
p(0)Q01 −

$̄02

3iωn0 τ̃
p̄(0)Q02 + Q1e2iωn0 τ̃σ,

ω11(σ) =
$11

iωn0 τ̃
p(0)Q01 −

$̄11

iωn0 τ̃
p̄(0)Q02 + Q2.

(3.12)

Denote Q01 = eiωn0 τ̃σγn0(x), Q02 = e−iωn0 τ̃σγn0(x), Q1 =
∑∞

n=0 Q(n)
1 γn0(x) and Q2 =

∑∞
n=0 Q(n)

2 γn0(x), and
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Q1 and Q2 are described as follows:

Q(n)
1 =

(
2iωn0 τ̃I −

∫ 0

−1
e2iωn0 τ̃σdηn0(σ, τ̄)

)−1

< G̃20, χn >,

Q(n)
2 = −

(∫ 0

−1
dηn0(σ, τ̄)

)−1

< G̃11, χn >, n ∈ N0,

< G̃20, χn >=


1
lπĜ20, n0 , 0, n = 0,
1

2lπĜ20, n0 , 0, n = 2n0,
1
lπĜ20, n0 = 0, n = 0,
0, other,

< G̃11, χn >=


1
lπĜ11, n0 , 0, n = 0,
1

2lπĜ11, n0 , 0, n = 2n0,
1
lπĜ11, n0 = 0, n = 0,
0, other,

where

Ĝ20 = 2(ϑ1, ϑ2)T , Ĝ11 = 2(%1, %2)T .

Therefore, we have

c1(0) =
i

2ωnτ̃

(
$20$11 − 2|$11|

2 −
|$02|

2

3

)
+

1
2
$21, µ2 = −

Re(c1(0))
Re(λ′(τ̃))

,

T2 = −
Im(c1(0))
ωn0 τ̃

−
µ2Im(λ′(τ j

n))
ωn0 τ̃

, β2 = 2Re(c1(0)).
(3.13)

Theorem 3.1. For any critical value τ j or τ j
n (n ∈ F, j ∈ N0), the following statements are true for

system (1.4).
(i) If µ2 > 0 (resp. < 0), the Hopf bifurcation is forward (resp. backward).
(ii) If β2 < 0 (resp. > 0), the bifurcation periodic solutions on the center manifold C0 are orbitally

asymptotically stable (resp. unstable).
(iii) If T2 > 0 (resp. T2 < 0), the Hopf bifurcation period increases (resp. decreases).

4. Numerical simulations

4.1. The influence of the weak Allee effect

We analyze the effect of the parameter b, which is related to the weak Allee effect.
Fix parameters q = 0.9, p = 0.8, s = 0.29, d1 = 0.18, and d2 = 0.13. The bifurcation diagram of

system (1.4) is given in Figure 2. From this diagram, we can obtain the relationship between the curves
τ0 and τ1, and we can also obtain the intersecting point b∗ (b∗ ≈ 0.1727).
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
b

5.0

7.0

Τ value

Τ0HbL

Τ1HbL

Inhomogeneous oscillation

Homogeneous oscillation

Stable region

b
*

Figure 2. Bifurcation diagram of system (1.4) for b and τ with q = 0.9, p = 0.8, s = 0.29,
d1 = 0.18 and d2 = 0.13.

Referring to the results of Figure 2, we can also observe that the spatial homogeneous periodic
solution appears when b > b∗ and τ > τ0, which may be asymptotically stable. The spatial
inhomogeneous periodic solution appears when b ∈ (0, b∗) and τ > τ1, which may also be
asymptotically stable. The stable steady state (u∗, v∗) will be reached at the rest.

Then, we select different parameter values to calculate and obtain some detailed values for
properties of the Hopf bifurication (see Table 1). We found a phenomenon that a system with different
parameters has different behaviors. Thus, we take six different sets of numbers and compare their
different behaviors, which are summarized in Table 2. There will be three dynamic behaviors, namely
asymptotically stable coexistence equilibrium (ASCE), stable spatially homogeneous periodic
solutions (SSHPS), and stably spatially inhomogeneous periodic solutions (SSIPS).

Table 1. Some parameters for model (1.4) with different b.

b (u∗, v∗) τ∗ µ2 β2 T2

0.1 (0.581419, 0.581419) 4.62517 109.505 −6.37427 −1.64733
0.3 (0.489427, 0.489427) 4.51241 237.19 −15.7077 −0.427416

Table 2. Numerical simulations for model (1.4).

b τ Model (1.4) b τ Model (1.4)
0.1 3 ASCE (Figure 3) 0.3 3 ASCE (Figure 6)
0.1 4.8 SSIPS (Figure 4) 0.3 4.2 SSHPS (Figure 7)
0.1 5.2 SSIPS (Figure 5) 0.3 5.2 SSHPS (Figure 8)

Choose b = 0.1 and τ = 3 (τ < τ1 < τ0). The coexistence equilibrium (u∗, v∗) in system (1.4) is
asymptotically stable (see the Figure 3).
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(a) (b)

Figure 3. Numerical simulations for prey population with b = 0.1, τ = 3, q = 0.9, p = 0.8,
s = 0.29, d1 = 0.18 and d2 = 0.13. (a) 1000 iterations, (b) 100 iterations.

Choose b = 0.1 and τ = 4.8 (τ1 < τ < τ0). As we can see from Figure 4, the coexistence
equilibrium (u∗, v∗) is unstable, the spatial homogeneous periodic solution does not exist, and the
stable spatial inhomogeneous periodic solution appears first. Therefore, we classify this equilibrium as
a stable spatial inhomogeneous periodic solution.

(a) (b)

Figure 4. Numerical simulations for prey population with b = 0.1, τ = 4.8, q = 0.9, p = 0.8,
s = 0.29, d1 = 0.18 and d2 = 0.13. (a) 4500 iterations, (b) from 4000 iterations to 4080
iterations.

Choose b = 0.1 and τ = 5.2 (τ1 < τ0 < τ). As we can see from Figure 5, the coexistence equilibrium
(u∗, v∗) is unstable, and the spatial homogeneous periodic solution appears first, though is not stable.
Thus, system (1.4) has a stable spatial inhomogeneous periodic solution.
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(a) (b)

Figure 5. Numerical simulations for prey population with b = 0.1, τ = 5.2, q = 0.9, p = 0.8,
s = 0.29, d1 = 0.18 and d2 = 0.13. (a) 1500 iterations, (b) from 1400 iterations to 1480
iterations.

Choose b = 0.3 and τ = 3 (τ < τ0 < τ1). As we can see from Figure 6, the coexistence equilibrium
(u∗, v∗) is asymptotically stable. Comparing detail diagrams between Figures 3(b) and 6(b), we can
find that the coexistence equilibrium (u∗, v∗) with a lager weak Allee effect becomes stable faster and
has a smaller amplitude. Thus, we can conclude that the existence of the weak Allee effect term is
beneficial to the stability of the coexistence equilibrium.

(a) (b)

Figure 6. Numerical simulations for prey population with b = 0.3, τ = 3, q = 0.9, p = 0.8,
s = 0.29, d1 = 0.18 and d2 = 0.13. (a) 1000 iterations, (b) 100 iterations.

Choose b = 0.3 and τ = 4.2 (τ0 < τ < τ1). As we can see from Figure 7, the coexistence equilibrium
(u∗, v∗) is unstable, the spatial inhomogeneous periodic solution does not exist, and the stable spatial
homogeneous periodic solution appears first. Therefore, we classify this equilibrium as a stable spatial
homogeneous periodic solution.
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(a) (b)

Figure 7. Numerical simulations for prey population with b = 0.3, τ = 4.2, q = 0.9, p = 0.8,
s = 0.29, d1 = 0.18 and d2 = 0.13. (a) 1500 iterations, (b) from 1100 iterations to 1180
iterations.

Choose b = 0.3 and τ = 5.2 (τ0 < τ1 < τ). As we can see from Figure 8, the coexistence
equilibrium (u∗, v∗) is unstable, and the spatial inhomogeneous periodic solution appears first, though
is not stable. The system (1.4) has stable spatial homogeneous periodic solution. Comparing detail
diagrams between Figures 5(b) and 8(b), we can find that the weak Allee effect term has a slight effect
on the solution but does not affect its stability. The period of the coexistence equilibrium (u∗, v∗) with
a lager weak Allee effect has increased and has a smaller amplitude. It can be seen that the weak Allee
effect can affect the homogeneity of the periodic solution.

(a) (b)

Figure 8. Numerical simulations for prey population with b = 0.3, τ = 5.2, q = 0.9, p = 0.8,
s = 0.29, d1 = 0.18 and d2 = 0.13. (a) 1500 iterations, (b) from 1100 iterations to 1180
iterations.
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4.2. The influence of fear effect

We analyze the effect of parameter p, which is related to the fear effect.
Fix parameters q = 0.45, b = 0.1, s = 0.25, d1 = 0.13, and d2 = 0.2. The bifurcation diagram of

system (1.4) is given in Figure 9. In the diagram, the curves of τ0 and τ1 intersect at the points p∗,
where p∗ ≈ 0.3059.

0.1 0.2 0.3 0.4 0.5 0.6
p

4.

4.5

5.

5.5

6.

6.5

7.

7.5

Τ value

Τ0HpL

Τ1HpL
Homogeneous oscillation

Inhomogeneous oscillation

Stable region

p
*

Figure 9. Bifurcation diagram of system (1.4) for p and τ with q = 0.45, b = 0.1, s = 0.25,
d1 = 0.13 and d2 = 0.2.

Referring to the results of Figure 9, we can also observe that the spatial homogeneous periodic
solution appears when p > p∗ and τ > τ0, which may be asymptotically stable. The spatial
inhomogeneous periodic solution appears when p ∈ (0, p∗) and τ > τ1, which may also be
asymptotically stable. The stable steady state (u∗, v∗) will be reached at the rest.

Then, we select different parameter values to calculate and obtain some detailed values for the Hopf
bifurcation properties (see Table 3). We took six different sets of numbers and compared their behavior,
which are summarized into Table 4.

Table 3. Some parameters for model (1.4) with different p.

p (u∗, v∗) τ∗ µ2 β2 T2

0.05 (0.666288, 0.666288) 4.02552 44.1971 −3.56918 1.19861
0.56 (0.734021, 0.734021) 7.24064 8.91317 −0.222507 −1.38483

Table 4. Numerical simulations for model (1.4).

p τ Model (1.4) p τ Model (1.4)
0.05 3.9 ASCE (Figure 10) 0.56 6.5 ASCE (Figure 13)
0.05 4.15 SSIPS (Figure 11) 0.56 7.01 SSHPS (Figure 14)
0.05 4.2 SSIPS (Figure 12) 0.56 7.5 SSHPS (Figure 15)
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Choose p = 0.05 and τ = 3.9 (τ < τ1 < τ0). As we can see from Figure 10, the coexistence
equilibrium (u∗, v∗) is asymptotically stable.

(a) (b)

Figure 10. Numerical simulations for prey population with p = 0.05, τ = 3.9, q = 0.45,
b = 0.1, s = 0.25, d1 = 0.13 and d2 = 0.2. (a) 1200 iterations, (b) 600 iterations.

Choose p = 0.05 and τ = 4.15 (τ1 < τ < τ0). As we can see from Figure 11, the coexistence
equilibrium (u∗, v∗) is unstable, the spatial homogeneous periodic solution does not exist, and the
stable spatial inhomogeneous periodic solution appears first. Therefore, we classify this equilibrium as
a stable spatial inhomogeneous periodic solution.

(a) (b)

Figure 11. Numerical simulations for prey population with p = 0.05, τ = 4.15, q = 0.45,
b = 0.1, s = 0.25, d1 = 0.13 and d2 = 0.2. (a) 10375 iterations, (b) from 9900 iterations to
10000 iterations.

Choose p = 0.05 and τ = 4.2 (τ1 < τ0 < τ). As we can see from Figure 12, the coexistence
equilibrium (u∗, v∗) is unstable, and the spatial homogeneous periodic solution appears first, though is
not stable. Thus, system (1.4) has stable spatial inhomogeneous periodic solution.
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(a) (b)

Figure 12. Numerical simulations for prey population with p = 0.05, τ = 4.2, q = 0.45,
b = 0.1, s = 0.25, d1 = 0.13 and d2 = 0.2. (a) 4200 iterations, (b) from 4000 iterations to
4100 iterations.

Choose p = 0.56 and τ = 6.5 (τ < τ0 < τ1). As we can see from Figure 13, the coexistence
equilibrium (u∗, v∗) is asymptotically stable. Comparing detail diagrams between Figures 10(b) and
13(b), we can find that the coexistence equilibrium (u∗, v∗) with a lager fear effect becomes stable
slower and has a larger amplitude. Thus, we can conclude that the existence of the fear effect term is
not beneficial to the stability of the coexistence equilibrium.

(a) (b)

Figure 13. Numerical simulations for prey population with p = 0.56, τ = 6.5, q = 0.45,
b = 0.1, s = 0.25, d1 = 0.13 and d2 = 0.2. (a) 2000 iterations, (b) 600 iterations.

Choose p = 0.56 and τ = 4.15 (τ0 < τ < τ1). As can be seen in Figure 14, the coexistence
equilibrium (u∗, v∗) is unstable, the spatial inhomogeneous periodic solution does not exist, and the
stable spatial homogeneous periodic solution appears first. Therefore, we classify this equilibrium as
a stable spatial homogeneous periodic solution.
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(a) (b)

Figure 14. Numerical simulations for prey population with p = 0.56, τ = 7.01, q = 0.45,
b = 0.1, s = 0.25, d1 = 0.13 and d2 = 0.2. (a) 7010 iterations, (b) from 6900 iterations to
7000 iterations.

Choose p = 0.56 and τ = 4.2 (τ0 < τ1 < τ). As can be seen in Figure 15, the coexistence
equilibrium (u∗, v∗) is unstable, and the spatial inhomogeneous periodic solution appears first, though
is not stable. The system (1.4) has a stable spatial homogeneous periodic solution. We can find that
the fear effect term has a slight effect on the solution and does not affect its stability. Additionally, it
can affect the homogeneity of the periodic solution.

(a) (b)

Figure 15. Numerical simulations for prey population with p = 0.56, τ = 7.5, q = 0.45,
b = 0.1, s = 0.25, d1 = 0.13 and d2 = 0.2. (a) 2250 iterations, (b) from 2000 iterations to
2100 iterations.

5. Conclusions

In this work, we studied the Hopf bifurcation of a delayed diffusive predator-prey model with a weak
Allee effect on prey and a fear effect on predator. By the qualitative analytical theory, we have obtained
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the conditions of local stability of a coexisting equilibrium and the existence of a Hopf bifurcation and
Turing instable. By using the methods of the normal form theory and center manifold theorem, we
have studied the property of the bifurcating periodic solutions. We found that the weak Allee effect
and fear effect greatly affected the dynamical behaviour of the new Leslie-Gower model.

First, we discuss the influence of the weak Allee effect. On the whole, the weak Allee effect at a
larger value has a great influence on the ecological extinction, controlling stable coexisting
equilibrium, and periodic oscillation. Specifically, under the premise that the fear effect remains
unchanged, when the weak Allee effect is small, a small increase is not beneficial to the stability of
the coexisting equilibrium and will be easy to produce an inhomogeneous periodic solution, which is
not conducive to the survival of the population. Thus, when the weak Allee effect increases, either
improved defending or hiding of the prey species form the predator may be difficult, and the prey
population is generally at a low density. After increasing to a certain extent, the effect will be the
completely opposite, and the homogeneity of periodic solutions usually changes from inhomogeneous
to homogeneous. The homogeneity is either an invariance or regularity under a particular
transformation. Ecologically, the periodic solutions are homogeneous means that the members or
parts of prey specie have the same dynamic behavior at all times. Thus, increasing the weak Allee
effect to a certain extent undermines this invariance or regularity of the prey species, which is
beneficial to the survival of the population. When the weak Allee effect is large, increasing the weak
Allee effect will be beneficial to the stability of the coexisting equilibrium and will easily produce a
homogeneous periodic solution, which will make the prey population increase their likelihood of
extinction.

Finally, we will discuss the influence of the fear effect on population dynamics. Specifically
speaking, under the premise that the weak Allee effect remains unchanged, an increase of the fear
effect is not beneficial to the stability of the coexisting equilibrium. The homogeneity of periodic
solutions usually changes from inhomogeneous to homogeneous, which is conducive to the survival
of the population, since the fear effect on predators can protect prey and predators from being
eliminated.
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