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1. Introduction

In the last few decades, the theory of stochastic systems has been used and studied in the fields of
mathematics and engineering. It has also been extensively employed to analyze and design stochastic
problems with uncertain parameters. Since the efficiency of a control system is influenced and troubled
by uncertainties, such as parameter variables, environmental noise and measurement accuracy [1],
undesired and disordered behaviors can lead to the failure of the stability, and even the collapse
of the system. Consequently, a control is designed and taking out the disturbance behaviors are
developed to obtain the robustness analysis of the nonlinear stochastic system [2]. In previous research
works, new sufficient conditions [3] for exponential stability and stabilization via parameter- dependent
state feedback controllers were mentioned based on a time-varying version of the Lyapunov stability
theorem. In 2006, Moulay and Perruquetti [4] studied the particular property of the finite stability,
which is (settling time) required to reach the equilibrium that became efficient in many situations
and that need an accelerated convergence of the trajectories to the target reference. Moreover, Bhat
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and Bernstein [3] provides a necessary condition involving the continuity of the settling-time function
at the origin. Therefore, the main approach introduced in [4] was applied to prove the asymptotic
stability by means of a Lyapunov function and an integral property condition equivalent to the finite
time convergence was proposed. Some properties of finite-time stable stochastic nonlinear systems
was derived in [5]. A recent paper given by [6] provide a backstepping technique and reduced-order
observer in order to obtain the preassigned finite-time control scheme. In [7], the authors studied
the stabilization via a finite-time optimal feedback control in order to obtain finite-time convergence.
Hence, they provided an optimal feedback control for finite-time stability and finite-time stabilization.

Despite their importance, all the above-mentioned results are limited to the deterministic systems.
The study of feedback stabilization of nonlinear deterministic systems has been intensively examined
by the research community [3, 8, 9]. Afterwards, the obtained results were extended to a wide class of
stochastic systems where equations were driven by the Wiener process.

Meanwhile, the homogeneous stochastic systems have also received considerable attention [10,11].
The theory of homogeneous dynamical systems has been explored for ordinary differential equations
in recent years. In fact, the feature of homogeneous systems is the equivalence of the local and
global properties. It was introduced by [12] and further developed by many authors [4, 13]. In [10],
the researchers noticed the existence of a homogeneous stabilizing feedback for a homogeneous
control stochastic nonlinear system using the standard dilation. One of the important results given
by Rosier [14] is the existence of a homogeneous Lyapunov function for any asymptotically stable
homogeneous system. After determining the homogeneity of the stochastic systems as seen in the
literature on homogeneous deterministic systems, the different stability properties of the nonlinear
stochastic systems can be described in the same manner as deterministic systems. Indeed, in several
works, the homogeneous systems were extended to stochastic systems. These ideas have been pursued
by [15]. In [16], the authors considered the stability of the homogeneous stochastic systems and
presented their stabilization method. They proved that a stable homogeneous system can be almost
finite-time stable or surely ρ-exponentially stable in probability depending on the homogeneity degree.
Moreover, in [17], it was shown that a stochastic nonlinear system is finite-time stable if its drift
coefficient has a negative degree of homogeneity. The study presented in [15] discussed three kinds of
stabilization of the stochastic homogeneous systems (rational, exponential or finite time convergence),
depending on the sign’s degree of homogeneity.

Besides, a control Lyapunov function (CLF) was proposed in [18–20] to stabilize an affine nonlinear
system with uncertain parameters. In [9], the stabilization of affine nonlinear systems with bounded
parameters was expressed as an extension of Sontag’s control. However, this control failed to maintain
the closed loop system’s homogeneity. Motivated by the aforementioned discussions, this present study
gives an extension to some results given in [9] on the deterministic systems to the stochastic systems
driven by a Wiener process.

The authors in [15] investigated the stabilization of a control system

dx = F(x(t))dt +

m∑
i=1

Gi(x(t))uidt + σ(x(t))dw

and provided a homogeneous feedback law inspired by [10]. Although this system guarantees the
convergence of the system, this control unfortunately has no advantage if some perturbation affects the
deterministic part of the system. In [2], the finite time stability of homogeneous stochastic systems was
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studied, while the stabilization issue of the stochastic system was neglected. Lyapunov-like techniques
for stochastic stability was introduced in [21]. A preassigned-time controller with a novel performance
function was developed in [22, 23].

The applicability of the stabilization with varying parameters has been explored in many directions,
and numerous extensions have been developed to tackle a wide range of problems. For instance,
Baklouti et al. [24] developed an optimal preventive maintenance policy for a solar photovoltaic
system, emphasizing the importance of efficient maintenance strategies in sustainable energy systems.
Furthermore, the decision-making process for selling or leasing used vehicles was investigated in [25],
considering factors such as their energetic type, potential leasing demand, and expected maintenance
costs. Additionally, the authors in [26–28] explored quadratic Hom-Lie triple systems, contributing to
the field of geometry and physics.

The objectives of this study are to design a feedback law that preserves the homogeneity of the
system and maintain the robustness of the stability even if some perturbation affect the deterministic
part of the system. Moreover, the finite time stability is attained by employing the proposed control.

This article is organized as follows: After presenting certain preliminaries in Section 2, a modified
Sontag’s control coherent to the homogeneous stochastic nonlinear systems is developed. Then, in
Section 4, some results related to the stabilization of the finite time stochastic stability depending on a
bounded parameter, are given.

2. Preliminaries

Consider a stochastic nonlinear system:

dx = F(x(t), α)dt +

m∑
i=1

Gi(x(t))uidt + σ(x(t))dw (2.1)

where t > 0, x ∈ Rn , u ∈ Rm are the system state, single control input, G(x) = (G1(x), . . . ,Gm(x))T ,
σ(x) = (σ1(x), . . . , σm(x))T , w denotes m-dimensional Wiener process (Brownian motion) and α ∈ Rd

represents the unknown time invariant parameter vector. We assume that the parameter α varies in a
compact Ω ⊂ Rd.

The functions F : IRn × Ω→ IRn and G : IRn → IRn×m and σ : IRn → IRn×m are smooth vector fields
with F(0, α) = 0, G(0) = 0 and σ(0) = 0 for all α ∈ Ω which implies that the system (2.1) has a trivial
zero solution.

2.1. Homogeneity

In this subsection, the definitions of homogeneity cited in [12] are adopted.

Definition 2.1. Let x ∈ IRn, λ > 0 and {r1, ..., rn} are n-tuple positive real numbers. The mapping
δr
λ : IRn → IRn where δr

λx = (λr1 x1, . . . , λ
rπ xn) is called weighted dilation.

Definition 2.2. i) A function h : Rn ×Ω→ R, is homogeneous function of degree τ if

h
(
δr
λx, α

)
= λτh(x, α), ∀(x, α) ∈ IRn ×Ω

AIMS Mathematics Volume 8, Issue 8, 17687–17701.



17690

ii) A vector field f : Rn ×Ω→ Rn is homogeneous of degree τ if each
fi, where j = 1, . . . , n, is a homogeneous function of degree τ + r j, i.e.,

f j(δr
λx, α) = λτ+r j f j(x, α), ∀(x, α) ∈ IRn ×Ω

Definition 2.3. ( [14]) Let V : IRn → IR, suppose that V is a smooth homogeneous function of degree
k, then:

∂V
∂x j

(δr
λx) = λk−r j

∂V
∂x j

(x)

∂2V
∂x j∂xi

(δr
λx) = λk−r j−ri

∂2V
∂x j∂xi

(x)

Definition 2.4. The system (2.1) is said to be a homogeneous Itô stochastic system of degree (k0, k1) if
the vector fields F, G and σ are homogeneous functions of degree k0, k1 and k0/2, respectively.

We omit the modifier (with respect to a dilation δr
λ) if no confusion arises.

3. Construction of a stabilizing feedback

In this section, a homogeneous feedback control is constructed using homogeneous control
Lyapunov functions that stabilize the control system (2.1).

Definition 3.1. The control system (2.1) is said to be stabilizable (respectively continuously
stabilizable) if there exist a nonempty neighborhood of the origin V in Rn and a feedback control
law u ∈ C0 (V\{0},Rm) (respectively u ∈ C0 (V,Rm)

)
such that:

1) u(0) = 0,
2) the origin of the closed loop-system (2.1) is asymptotically stable in probability for all α ∈ Ω.

Notations 1. Let Ω be a compact subset of Rd,V a neighborhood of the origin and V : V → R+ a
continuously differentiable function. Let (x, α) ∈ V ×Ω. L denotes the infinitesimal generator.

LV(x) =
∂V
∂x
.F +

1
2

trace[σT .
∂2V
∂x2 .σ] +

m∑
i=1

ui(x)
∂V
∂x
.Gi(x)

= LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ] +

m∑
i=1

ui(x)LGiV(x)

= L0V(x) +

m∑
i=1

ui(x)LGiV(x)

Where ∂V
∂x = ( ∂V

∂x1
, ..., ∂V

∂xn
) and ∂2V

∂x2 = ( ∂2V
∂xi∂x j

)n×n we define:

A(x, α) = LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ]

Ā(x) = max
α∈Ω
A(x, α)

B(x) = ‖B(x)‖2

Bi(x) = LGiV(x)
B =

(
LG1V, . . . , LGmV

)
(3.1)
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With a minor change in hypothesis (Sontag’s small control property), the concept of CLF is presented
as follows:

Definition 3.2. 1) A C2 positive definite function V : V → R+ where V corresponds to a
neighborhood of 0 in IRn is said to be a CLF for the stochastic system (2.1) if the following
condition is satisfied: ∀x ∈ V\{0} and ∀α ∈ Ω one has

inf
u∈Rm

(A(x, α) + 〈B(x), u〉) < 0

2) A CLF V for the stochastic system (2.1) is said to satisfy the small control property, if for all
ε > 0, there exists δ > 0 such that if ‖x‖ < δ, there exists a control u ( ‖u‖ < ε), verifying
A(x, α) + 〈B(x), u〉 < 0 for all α ∈ Ω.

The other version of the last definition is presented as follows:

Definition 3.3. [15] A function V : IRn → IR is a stochastic homogeneous control Lyapunov function
of the homogeneous control system (2.1) if the function V(x) is twice continuously differentiable on
IRn, positive definite, radially unbounded and homogeneous with respect to the dilation δ, and that is
for any x ∈ IRn \ {0}

LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ] < 0 holds if LGiV(x) = 0 ∀i = 1, ...,m (3.2)

Remark 1. If m = 1, the last condition is equivalent to

lim
‖x‖→0

A(x, α)
|B(x)|

≤ 0

Lemma 3.1. Let H : Rn × Ω → Rn . H̄(x) := max
α∈Ω

H(x, α) is continuous on Rn if H is continuous on

Rn ×Ω, where Ω is a compact set of Rd.

3.1. Homogeneous feedback stabilization depending on a parameter

In the present section, we provide a result of stabilization of the homogeneous stochastic control
system (2.1), when m = 1.

Consider the single input system described by

dx = F(x, α)dt + G(x)udt + σ(x)dw (3.3)

Lemma 3.2. Let V : Rn → R of class C1, be homogeneous of degree k. Let y ∈ Rn\{0} and λ > 0; by
setting x = δλ(y), one has for all α ∈ Ω

LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ] = λk+k0

(
LFV(y) +

1
2

trace[σT .
∂2V
∂y2 .σ]

)
and

LGV(x) = λk+k1 LGV(y).
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Proof. For y ∈ Rn\{0} and λ > 0; let x = δλ(y), so

∇V(x) = ∇V (δλ(y))

=

(
λk−r1

∂V
∂x1

(y), . . . , λk−rn
∂V
∂xn

(y)
)

= λkM−1
λ ∇V(y),

where

M−1
λ =


λ−r1 0 . . 0

0 λ−r2 0 . 0
. . .

. . .

0 . . 0 λ−rn


So for α ∈ Ω, one has

LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ] = LFV (δλ(y)) +

1
2

trace[σT (δλy)
∂2V (δλ(y))

∂x2 σ(δλy)]

= λkM−1
λ λ

k0 MλLFV(y) +
1
2

trace[Mλλ
k0/2σT (y)λkM−2

λ

∂2V
∂y2 Mλλ

k0/2σ(y)]

= λk+k0

(
LFV(y) +

1
2

trace[σT .
∂2V
∂y2 .σ]

)
.

A similar computation gives
LGV(x) = LGV (δλ(y))

= λkM−1
λ λ

k1 MλLGV(y)
= λk+k1 LGV(y).

�

Theorem 3.1. If there exists a CLF V : Rn → R+ which is continuously differentiable for the
homogeneous system (3.3) of degree k then

u(x) =


0 for B(x) = 0

−
Ā(x) +

(
|Ā(x)|p + B(x)2q

) 1
p

B(x)
for B(x) , 0

(3.4)

stabilizes the system (3.3) and it is homogeneous of degree k0 − k1, where p =
2q(k+k1)

k+k0
.

Additionally, if V satisfies the small control property, then the controller (3.4) stabilizes
continuously the system (3.3).

Proof. Let H = {(x, y) ∈ IR2 : x < 0, or y > 0}, and the function θ defined on H by

θ(x, y) =


0 for y = 0

x +
(
|x|p + |y|2q

) 1
p

y
for y , 0.
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Using [13], θ is continuous on E. We can verify that (Ā(x),B(x)) ∈ E. Therefore, the control

ui = −Bi(x)θ(Ā(x),B(x))

is continuous.
Let V : Rn → R be an homogeneous CLF for the system (3.3).

LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ] + u(x)LGV(x) < −

(
|Ā(x)|p + B(x)2q

) 1
p < 0

Then, the equilibrium point of the closed loop system (3.3) is stochastic asymptotically stable, and the
controller (3.4) continuously stabilizes the system (3.3).

Afterwards, we verify that the controller u is homogeneous of degree k0 − k1. We set x = δλ(y), by
lemma 3.2, ∀α ∈ Ω we get

A(x, α) = LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ]

= λk+k0A(y, α)

So
Ā(x) = max

α∈Ω
A(x, α)

= max
α∈Ω

λk+k0A(y, α)

= λk+k0Ā(y)

In addition, we have
B(x) = B (δλ(y))

= (LGV(x))2

= λ2(k+k1)(LGV(y))2

= λ2(k+k1)
B(y)

using p =
2q(k+k1)

k+k0
, then u given by (3.4) is homogeneous of degree k0 − k1. �

3.2. Stabilization of affine system depending on a parameter

Consider a stochastic nonlinear system:

dx = F(x(t), α)dt +

m∑
i=1

Gi(x(t))uidt + σ(x(t))dw

The following result is an extension of Theorem 3.1, where f (and σ) are homogeneous of degree k0

(and k0
2 resp) and all Gi are homogeneous of same degree k1, ∀i ∈ {1, ...,m}.

Theorem 3.2. Suppose that for a stochastic homogeneous control system (2.1) there exists a stochastic
homogeneous control Lyapunov function V : V → R+ , then it is stabilizable using the controller

ui(x) =


0 for B(x) = 0

−Bi(x)
Ā(x) +

(
|Ā(x)|p + B(x)2q

) 1
p

B(x)
, for B(x) , 0.

(3.5)
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for i ∈ {1, . . . ,m} where p > 1, and q > 1 are real positive numbers. Furthermore, the control (3.5) is
continuous at the origin if V satisfies the small control property.

Proof. Using the same assumptions presented in Theorem 3.1, the controller u is continuous and
homogeneous of degree k0 − k1.

On the other hand,

LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ] +

m∑
i=1

ui(x)LGiV(x) < −
(
|Ā(x)|p + B(x)2q

) 1
p < 0

Then, the equilibrium point of the closed loop system (2.1) is stochastic asymptotically stable. �

An illustrative example is given to show the effectiveness and applicability of the proposed
controller.

Example 1. Consider a stochastic control system given by dx1 =
(
x1 − 14(1 + sinα)x3

2

)
dt

dx2 = udt + 0.5x2dw
(3.6)

where

F(x, α) =

(
x1 − 14(1 + sinα)x3

2
0

)
and G(x) =

(
0
1

)
Taking into account the dilation δr

λ(x) = (λ3x1, λx2). The functions F and G are of degree 0 and −1.
The Lyapunov function is defined as follow

V (x1, x2) = 3x
4
3
1 − 2x1x2 + 4x4

2

V is homogeneous of degree 4. We have

A(x, α) = LFV(x) +
1
2

trace[σT .
∂2V
∂x2 .σ]

= 4x
4
3
1 − 56(1 + sinα)x

1
3
1 x3

2 − 2x1x2 + 28(1 + sinα)x4
2 + 6x4

2

≤ Ā(x) = 4x
4
3
1 − 2x1x2 + 62x4

2

and B(x) = −2x1 + 16x3
2. Let (p, q) = (2, 4

3 ), by Theorem 3.1, the feedback

u(x) =
(4x

4
3
1 − 2x1x2 + 62x4

2) + (|4x
4
3
1 − 2x1x2 + 62x4

2|
2 + (−2x1 + 16x3

2)
8
3 ))

2x1 − 16x3
2

, if x1 , 8x3
2

is homogeneous of degree 1 and stabilizes the system (3.6). Figures 1 and 2 insured the effectiveness
of the controller.
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Figure 1. Time responses of states of (3.6) with α = π
2 and initial condition (0.5, 1) in

Example 1.
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Figure 2. Time responses of states of (3.6) with α = π
4 and initial condition (0.5, 1) in

Example 1.

Remark 2. The authors in [15] dealt with the stabilization of homogeneous systems and provided
a controller u(x) = −K‖x‖ηLGV(x) (where η = k0 − k − 2k1) using the homogeneous norm. This
controller succeeded to preserve the homogeneity of the system but failed to achieve the stabilization if
some perturbation affected the deterministic part of the system. It can be seen (Figures 3 and 4) using
the controller injected in the Example 1 that the trajectory of the system (3.6) diverge.
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Figure 3. Time responses of states of (3.6) with α = π
2 and initial condition (0.5, 1) in

Example 1.
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Figure 4. Time responses of states of (3.6) with α = π
4 and initial condition (0.5, 1) in

Example 1.

4. Finite control Lyapunov function

We shall look into a few characteristics of a stochastic system with a finite-time stability.

Definition 4.1. [17] The trivial zero solution of (2.1) is said to be finite-time stochastically stable, if
the equation admits a unique solution for any initial value x0 ∈ IRn, denoted by x(t, x0) moreover, the
following properties hold:

a) Finite-time attractiveness in probability: for any initial value x0 ∈ IRn \ {0}, the first hitting time
τ(x0) = inf{t, x(t, x0) = 0}, called the stochastic settling time, is finite almost surely, that is
P{τ(x0) < ∞} = 1.

AIMS Mathematics Volume 8, Issue 8, 17687–17701.
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b) Stability in probability: for each pair of ε ∈ (0, 1) and r > 0 there exists a δ = δ(ε, r) such that

P{|x(t, x0)| < r for all t > 0} = 1

Definition 4.2. Let c > 0 and 0 < β < 1. A function V : Rn → R+ positive definite is a f-CLF for (2.1)
if it is proper and satisfies for x , 0

B(x) = 0⇒ A(x, α) ≤ −cVβ(x), ∀α ∈ Ω (4.1)

Theorem 4.1. Suppose that the system (2.1) has a f-CLF then the controller

ui(x) =


0 for B(x) = 0

−Bi(x)
Ā(x) + cVβ(x) +

(∣∣∣Ā(x) + cVβ(x)
∣∣∣2 + B(x)2

) 1
2

B(x)
| for B(x) , 0.

(4.2)

makes the solution finite time stable in probability.
Besides, the setting time verifies

E(τ(x0)) ≤
V (x0)1−β

c(1 − β)
(4.3)

Proof. Let x ∈ Rn\{0} i ∈ {1, ...,m}, there are two cases:

1) If LGiV(x) = 0, ∀i⇒ B(x) = 0, yields to

V̇(x) = L f V(x) +
1
2

trace[σT .
∂2V
∂x2 .σ] ≤ −cVβ(x).

2) If there exists 1 ≤ i ≤ m, such that LGiV(x) , 0, that means B(x) , 0, we get

V̇(x) ≤ −cVβ(x)

This implies that the system (2.1) is finite time stable in probability under the control (4.2).
We prove now that

E(τ(x0)) ≤
V (x0)1−β

c(1 − β)

Suppose that x0 verifies V(x0) >
1
k

.

Consider τk = inf{t\V(x(t, x0)) <
1
k
}. According to ( [16], p 89), P[τk < ∞] = 1.

Let Ṽ(x) = V(x)1−β,

So ∀x , 0 we have ˙̃V(x) =
1 − β
Vβ(x)

L0V(x) −
β(β − 1)
2Vβ+1(x)

trace[σT .
∂2V
∂x2 .σ]

Using (4.1), we obtain:
˙̃V(x) ≤

1 − β
Vβ(x)

L0V(x) ≤ −c(1 − β) (4.4)

According to Dynkin’s formula and (4.4),

E[V(x(t ∧ τk, x0))1−β] − V(x0)1−β ≤ −c(1 − β)E[τk] (4.5)
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As conformed by Fatou’s lemma, (4.5) yields to

E[Tx0] ≤
1

c(1 − β)
V(x0)1−α

�

It can be seen from the following illustrative example how the system’s state trajectories converge
to zero in finite time.

Example 2. Consider a stochastic control system given by

{
dx1 = (−sign(x1)α(t) − x1) dt − x2dw
dx2 = x3

2dt + x2u + x1dw
(4.6)

where

F(x, α) =

(
−sign(x1)α(t) − x1

x3
2

)
and G(x) =

(
0
x2

)

Let α(t) =
1
√

t + 2
+ 1 ∈ [1, 3

2 ] and define Lyapunov function as V(x) = 1
2 (x2

1 + x2
2).

We have

A(x, α) = −sign(x1)x1α(t) − x2
1 +

1
2

x2
1 +

1
2

x2
2 + x4

2

≤ Ā(x) = − | x1 | −
1
2

x2
1 +

1
2

x2
2 + x4

2

and B(x) = x2
2. Since B(x) = 0⇒ x2 = 0 then

a(x, α) = −sign(x1)x1α(t) −
1
2

x2
1

= −
1
2
| x1 | −

1
2

x2
1

< −
1
2

(x2
1)

1
2 = −

1
2

(V(x))
1
2

By Theorem 4.1, the feedback

u = −
− | x1 | −

1
2 x2

1 + 1
2 x2

2 + x4
2 + 1

2 ( 1
2 (x2

1 + x2
2))

1
2 + (|− | x1 | −

1
2 x2

1 + 1
2 x2

2 + x4
2 + 1

2 ( 1
2 (x2

1 + x2
1))

1
2 |2 + x4

1)
1
2

x2
2

, if x2 , 0

stabilizes the system in finite time in probability and Figure 5 ensured the effectiveness of the method.
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Figure 5. Time responses of states of (4.6) with initial condition (2,−1) in Example 2.

5. Conclusions

The efficiency of a control system is influenced and troubled by uncertainties, such as environmental
noise and measurement accuracy. In consequence, to maintain the stochastic stability of the system, a
homogeneous controller was proposed in this manuscript. Some works in the literature, such as [15],
developed a controller to stabilize a stochastic input for affine control systems. The authors dealt with
the stabilization of homogeneous systems and provided a controller ui(x) = −K‖x‖ηi LgiV(x) using the
homogeneous norm. This controller succeeded to preserve the homogeneity of the system but failed to
make it stable if some perturbation affects the deterministic part of the system. Therefore, the objective
of using the controller introduced in the present work is to maintain both homogeneity of the system as
well as robustness stochastic stability, even if some perturbations disturb the deterministic part of the
system. On the other hand, based on the finite time stability theory for stochastic systems, a controller
was developed.
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