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Abstract: Let A be a Banach algebra and n > 1, a fixed integer. The main objective of this paper
is to talk about the commutativity of Banach algebras via its projections. Precisely, we prove that
if A is a prime Banach algebra admitting a continuous projection P with image in Z(A) such that
P(an) = an for all a ∈ G, the nonvoid open subset of A, then A is commutative and P is the identity
mapping on A. Apart from proving some other results, as an application we prove that, a normed
algebra is commutative iff the interior of its center is non-empty. Furthermore, we provide some
examples to show that the assumed restrictions cannot be relaxed. Finally, we conclude our paper with
a direction for further research.
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1. Introduction

This research has been motivated by the work’s of Ali-Khan [2] and Khan [9]. All over this paper
unless otherwise stated, A denotes a Banach algebra with the center Z(A), M be a closed linear
subspace ofA and Int(Z(A)), the interior ofZ(A). For any a, b ∈ A, the symbol [a,b] will denote the
commutator, ab−ba and a◦b represents the anticommutator, ab+ba. An algebraA is said to be prime
if for any a, b ∈ A, aAb = (0) implies a = 0 or b = 0 andA is semiprime if for any a ∈ A, aAa = (0)
implies a = 0. A linear mapping D : A −→ A is called a derivation ifD(ab) = D(a)b + aD(b) holds
for all a, b ∈ A. In particular, D defined by D(a) = [λ, a] for all a ∈ A is a derivation, called an inner
derivation induced by an element λ ∈ A. Let R be an associative ring and an additive subgroup U of
R is known to be a Lie ideal of R if [u, a] ∈ U, for all u ∈ U and a ∈ R. LetM be a subspace of A,
the linear operator P : A −→ A is said to be a projection of A onM if P(a) ∈ M for all a ∈ A and
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P(a) = a for all a ∈ M. LetM and N be two subspaces of the Banach algebra A such thatM⊕al N

is an algebraic direct sum of A, we provide the two subspaces M and N with the induced topology
of A andM × N by the product topology. We say thatM ⊕t N is a topological direct sum of A, if
the mapping ψ : M×N −→ A, defined by ψ(a, b) = a + b is a homeomorphism, and we say thatM
is complemented inA and N is its topological complement. In this case, there is a unique continuous
projection P from A to M. Moreover, Sobezyk [12], established that if A is separable and M is a
subspace of A isomorphic to C0 (the subspace of sequences in C which converge to 0), then M is
complemented in A. In view of [11], every infinite-dimensional Banach space that is not isomorphic
to a Hilbert space contains a closed uncomplemented subspace (see also [6] for details).

Many results in literature concerning commutativity of a prime and semiprime Banach algebra are
proved, for example, in the year 1990, Yood [15] showed that if G is a nonvoid open subset of a
Banach algebra A, for each a, b ∈ G, if positive integers m = m(a, b) and n = n(a, b) exist such that
[am, bn] = 0. Then there is a positive integer r so that ar ∈ Z(A) for all a ∈ A. In addition ifA has no
nonzero nilpotent ideal, it is sufficient to have [am, bn] ∈ Z(A) and a, b ∈ G, with m, n as above. Then
A is commutative. Yood [13] also proved that ifA is a Banach algebra and G1, G2 are two non-empty
open subsets of A such that for each a ∈ G1 and b ∈ G2, there is an integer n = n(a, b) > 1 where
either (ab)n = anbn or (ab)n = bnan, then A is commutative (see [4, 7, 8] for recent works). Motivated
by Yood’s work, Ali and Khan [2] established the commutativity of Banach algebra via derivations.
Moreover, they proved that if A is a unital prime Banach algebra and has a nonzero continuous linear
derivation d : A → A such that either d((ab)n) − anbn or d((ab)n) − bnan is in the center of A for an
integer n = n(a, b) > 1, thenA is commutative (see, also [1, 3, 9, 10] for recent works).

In this paper, we will continue the study of the problems on Banach algebras involving projections
instead of derivations. The key aim of this work is to discuss the commutativity of prime Banach
algebras via its projections. Precisely, we prove that if a prime Banach algebra A admits a nonzero
continuous projection P from A to Z(A) such that P(an) = an for all a ∈ G, the non-empty open
subset of A and n ∈ N, then A is commutative and P is the identity map on A. Furthermore, apart
from proving some other interesting results, we discuss some applications of our study.

2. Results

We recall some well known results which will be helpful in order to prove our results. We begin
with the following:

Lemma 2.1. [5] LetA be a real or complex Banach algebra and p(t) =
∑n

k=0 bktk a polynomial in the
real variable t with coefficients in A. If for an infinite set of real values of t, p(t) ∈ M, whereM is a
closed linear subspace ofA, then every bk lies inM.

Lemma 2.2. [14, Theorem 2] Suppose that there are non-empty open subsets G1,G2 of A (where A
denotes a Banach algebra over the complex field with centerZ) such that for each x ∈ G1 and y ∈ G2

there are positive integers n = n(x, y), m = m(x, y) depending on x and y, n > 1,m > 1, such that either
[xn, ym] ∈ Z or xn · ym ∈ Z. ThenA is commutative ifA is semiprime.

These lemmas will come handy while proving our results. We shall be proving the following results:

Theorem 2.3. Let n > 1 be a fixed integer. Next, letA be a real or complex semiprime Banach algebra
and G be a nonvoid open subset of A. If A admits a continuous projection P whose image lies in
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Z(A) such that
P(an) = an for all a ∈ G,

then P is the identity mapping onA andA is commutative.

Theorem 2.4. Let n > 1 be a fixed integer. Next, let A be a real or complex prime Banach algebra
and G1, G2 be two nonvoid open subsets ofA admitting a continuous projection P whose image lies in
Z(A). If for all a ∈ G1, there exists b ∈ G2 such that

P(an) = bn,

then P is the identity mapping onA andA is commutative.

In [2, 14], it was observed that the authors used simple multiplication and Lie product. Motivated
by this, in our next result we will be using the two symbols “T ” and “∗” representing either the Lie
product “[.,.]”, or the Jordan product “◦”, or the simple multiplication “·” of the algebras.

Theorem 2.5. Let n,m > 1 be fixed integers. Next, let A be a real or complex prime Banach algebra
and G1, G2 be two nonvoid open subsets ofA. IfA admits a continuous projection P whose image lies
inZ(A) such that

P(anT bm) = an ∗ bm for all (a, b) ∈ G1 × G2,

then P is the identity mapping onA andA is commutative.

The next theorem provides the necessary and sufficient condition for the commutativity of a real or
complex normed algebras.

Theorem 2.6. The normed algebra A over C or R is commutative if and only if the interior of its
center is non-empty.

In order to prove the above mentioned theorems, we need the following auxiliary result. This result
will help to bridge the gap between a complemented subspace and that of a projection map.

Proposition 2.7. Let A be a Banach space and M be a closed subspace of A. M is complemented
if there is a continuous projection P of A on M, and its complement is (I − P)(A), where I is the
identity mapping onA.

Proof. For any a ∈ A, we can write a = P(a) + (a−P(a)), since P(a) ∈ M and a−P(a) ∈ (I−P)(A),
we observe that A = M + (I − P)(A). Now, we will show that M ∩ (I − P)(A) = {0}. Let
a ∈ M∩(I−P)(A). Then a ∈ (I−P)(A), and hence there is a x ∈ A such that a = (I−P)(x) = x−P(x).
Since a ∈ M and P(x) ∈ M, we conclude that x ∈ M and P(x) = x, so we obtain a = 0. Therefore,
M ⊕al (I − P)(A) is an algebraic direct sum of the Banach space A. It remains for us to show that
(I − P)(A) is closed in A. For this, consider a sequence (bn)n∈N ⊂ (I − P)(A) that converges to
b ∈ A as n → ∞. SinceM⊕al (I − P)(A) is an algebraic direct sum of A , then there is c1 ∈ M and
c2 ∈ (I − P)(A) such that b = c1 + c2. Thus, we obtain

P(b) = c1. (2.1)

On the other hand, we have P(bn) = 0 for all n ∈ N, as P is a continuous linear operator then
P(lim bn) = 0. This implies

c1 = P(b) = 0. (2.2)
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In view of (2.1) and (2.2), we obtain b = c2 ∈ (I−P)(A), and hence we conclude that (I−P)(A) is a
closed subspace. Consequently,M⊕t (I − P)(A) is a topological direct sum of the Banach space A.
This proves the proposition. �

3. Proofs of the theorems

Proof of Theorem 2.3. Let A be a semiprime Banach algebra and P be a continuous projection
satisfying

P(an) = an for all a ∈ G, (3.1)

for a fixed n ∈ N. Then, clearly P is not zero. Thus, Z(A) forms a closed subspace of A and P is
a continuous projection onto Z(A), and hence in view of Proposition 2.7, we conclude that Z(A) is
complemented inA and a topological direct sum ofA, that is,

A = Z(A) ⊕t (I − P)(A). (3.2)

Now, let a0 ∈ G and a ∈ A, then a0 + ka ∈ G for any sufficiently small real k, so P((a0 + ka)n) − (a0 +

ka)n = 0. We can write
(a0 + ka)n = A0 + A1k + A2k2 + · · · + Ankn.

We take p(k) = P((a0 + ka)n) − (a0 + ka)n, since P is a linear operator, we can write

p(k) = (P(A0) − A0) + (P(A1) − A1)k + (P(A2) − A2)k2 + · · · + (P(An) − An)kn.

The coefficient of kn in the above polynomial isP(An)−An. Since An = an, then this coefficient becomes
P(an) − an. Using the Lemma 2.1, we obtain P(an) − an = 0 and thus P(an) = an for all a ∈ A. Since
P(a) ∈ Z(A) for all a ∈ A, we conclude that an ∈ Z(A) for all a ∈ A. This implies anbn ∈ Z(A)
for all (a, b) ∈ A ×A. Hence the required result follows from the Lemma 2.2, i.e.,A is commutative.
From Eq (3.2), we obtain (I − P)(A) = 0 and hence P = I, which completes the proof of theorem.
As an immediate consequence of Theorem 2.3, we have the following results.

Corollary 3.1. Let n > 1 be a fixed integer. Next, letA be a real or complex prime Banach algebra and
G be a nonvoid open subset of A. If A admits a continuous projection P whose image lies in Z(A)
such that

P(an) = an for all a ∈ G,

then P is the identity mapping onA andA is commutative.

Corollary 3.2. Let J be a part dense in a prime Banach algebra A. If A admits a continuous
projection P whose image lies inZ(A) and there is an n ∈ N such that

P(an) = an for all a ∈ J ,

thenA is commutative and P = I, the identity mapping onA.

Proof. Let a ∈ A, there exists a sequence (ak)k∈N in J converging to a. Since (ak)k∈N ⊂ J , so for each
k ∈ N

P((ak)n) − (ak)n = 0.
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By the continuity of P, we conclude that P(an) − an = 0. Consequently, there exists n ∈ N such that

P(an) − an = 0 for all a ∈ A.

Application of Theorem 2.3, yields the required result. �

Proof of Theorem 2.4. Let us consider two sets,

Gn = {(a, b) ∈ A ×A | P(an) , bn} and Hn = {(a, b) ∈ A ×A | P(an) = bn},

for some n ∈ N. Observe that (∩Gn) ∩ (G1 × G2) = ∅. Indeed, if there exists a ∈ G1 and b ∈ G2 such
that (a, b) ∈ Gn for all n ∈ N, then P(an) , bn for all n ∈ N, which is absurd by the hypothesis of the
theorem.
Now we claim that each Gn is open in A × A. We show that Hn, the complement of Gn, is closed.
Consider a sequence (a j, b j) j∈N ⊂ Hn converging to (a, b) ∈ A ×A. Since (a j, b j) j∈N ⊂ Hn, so

P((a j)n) = (b j)n for all j ∈ N.

As P is continuous, we deduce that P(an) = bn. Therefore, (a, b) ∈ Hn, making Hn closed and Gn open.
By Baire category theorem, we imply that the intersection of all Gn’s is dense if each Gn is dense,
contradicting the fact that (∩Gn) ∩ (G1 × G2) = ∅. Hence there exists p ∈ N such that Gp is not dense
inA and a nonvoid open subset G ×G′ in Hp, such that

P(ap) = bp for all (a, b) ∈ G ×G′.

Now, let (a0, b0) ∈ G ×G′ and (a, b) ∈ A ×A. Then a0 + ka ∈ G and b0 + kb ∈ G′ for any sufficiently
small real k, making P((a0 + ka)p) − (b0 + kb)p = 0. We have,

(a0 + ka)p = Ap,0(a0, a) + Ap−1,1(a0, a)k + Ap−2,2(a0, a)k2 + · · · + A0,p(a0, a)kp,

and
(b0 + kb)p = Bp,0(b0, b) + Bp−1,1(b0, b)k + Bp−2,2(b0, b)k2 + · · · + B0,p(b0, b)kp.

We put p(k) = P((a0 + ka)p) − (b0 + kb)p, since P is a projection, we can write
p(k) = P(Ap,0(a0, a))−Bp,0(b0, b) +P(Ap−1,1(a0, a))−Bp−1,1(b0, b)k +P(Ap−2,2(a0, a))−Bp−2,2(b0, b)k2 +

· · · + P(A0,p(a0, a)) − B0,p(b0, b)kp. The coefficient of kp in the above polynomial is just P(ap) − bp,
according to the Lemma 2.1, we obtain P(ap) − bp = 0 and hence, P(ap) = bp for all (a, b) ∈ A × A.
In particular, for a = b we have P(ap) = ap for all a ∈ A. In view of Theorem 2.3, we conclude A is
commutative and P is the identity mapping ofA.

Proof of Theorem 2.5. We know thatZ(A) forms a closed subspace ofA and P is a given continuous
projection ontoZ(A), by Proposition 2.7,Z(A) is complemented inA. That is,

A = Z(A) ⊕t (I − P)(A), (3.3)

a topological direct sum ofZ(A) and its complement. For any pair n,m ∈ N, we define two sets:

Gn,m = {(a, b) ∈ A ×A | P(anT bm) , an ∗ bm}
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and
Hn,m = {(a, b) ∈ A ×A | P(anT bm) = an ∗ bm}.

We observe that (∩Gn,m)∩(G1×G2) = ∅. If not, there exists some (a, b) ∈ G1×G2 such that (a, b) ∈ Gn,m

for all n,m ∈ N, then P(anT bm) , an ∗ bm for all n,m ∈ N which contradicts the hypothesis of the
theorem.
Now we claim that each Gn,m is open inA×A. We show that Hn,m, the complement of Gn,m, is closed.
For this, consider a sequence ((a j, b j)) j∈N ⊂ Hn,m converging to (a, b) ∈ A × A. Since ((a j, b j)) j∈N ⊂

Hn,m, we have
P((a j)nT (b j)m) = (a j)n ∗ (b j)m for all j ∈ N.

We conclude that P(anT bm) = an ∗ bm, as P is continuous. Therefore, (a, b) ∈ Hn,m and Hn,m is closed
(i.e., Gn,m is open). If every Gn,m is dense, we know that their intersection is also dense (by Baire
category theorem), which contradicts with (∩Gn,m) ∩ (G1 × G2) = ∅. Hence there exists p, q ∈ N such
that Gp,q is not dense and a nonvoid open subset G ×G′ in Hp,q, such that

P(apT bq) = ap ∗ bq for all (a, b) ∈ G ×G′.

Since P(a) ∈ Z(A) for all a ∈ A, we conclude that ap ∗ bq ∈ Z(A) for all (a, b) ∈ G ×G′, hence the
result follows from the Lemma 2.2.
The following are the immediate consequences of Theorem 2.5.

Remark 3.3. Let n,m > 1 be fixed integers. Next, let A be a real or complex prime Banach algebra
and G1, G2 be two nonvoid open subsets of A. If A admits a continuous projection P whose image
lies inZ(A) such that

P([an, bm]) = [an, bm] for all (a, b) ∈ G1 × G2,

then P is the identity mapping onA andA is commutative.

Remark 3.4. Let n,m > 1 be fixed integers. Next, let A be a real or complex prime Banach algebra
and G1, G2 be two nonvoid open subsets of A. If A admits a continuous projection P whose image
lies inZ(A) such that

P(an · bm) = [an, bm] for all (a, b) ∈ G1 × G2,

then P is the identity mapping onA andA is commutative.

Remark 3.5. Let n,m > 1 be fixed integers. Next, let A be a real or complex prime Banach algebra
and G1, G2 be two nonvoid open subsets of A. If A admits a continuous projection P whose image
lies inZ(A) such that

P([an, bm]) = an ◦ bm for all (a, b) ∈ G1 × G2,

then P is the identity mapping onA andA is commutative.

Proof of Theorem 2.6. Suppose A is commutative, then A = Z(A) and hence the interior of Z(A)
is the interior ofA itself,A being open implies Int(Z((A)) = Int(A) = A , 0.
Now, we prove the other way round. If Int(Z(A)) , ∅, then there exists 0 , a ∈ Int(Z(A)). Let
c ∈ A, we have a + kc ∈ Int(Z(A)) for any sufficiently small nonzero real k, therefore, we have

[a + kc, b] = 0 for all b ∈ A,
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that is,
[a, b] + k[c, b] = 0 for all b ∈ A.

Since,
[a, b] = 0 for all b ∈ A,

we obtain
k[c, b] = 0 for all b ∈ A.

This implies that
[c, b] = 0 for all b ∈ A.

Hence,A is commutative. This completes the proof.

Corollary 3.6. IfZ(A) contains an isolated point ofA, thenA is commutative.

Proof. Let x be an isolated point ofA contained inZ(A). We have {x} ⊂ Z(A). This gives Int({x}) ⊂
Int(Z(A)). Since x is an isolated point of A, the singleton set {x} is open in A, that is, Int({x}) = {x}.
That is, Int(Z(A)) , ∅. Hence,A is commutative by Theorem 2.6. �

In particular, we get the following result.

Corollary 3.7. Let A be a normed algebra over R or C. If 0 is an isolated point in A, then A is
commutative.

Example 3.8. Let R be the field of real numbers. Next, let us consider

A =

{(a11 a12

a21 a22

)
| ai j ∈ R, 1 ≤ i, j ≤ 2

}
.

Clearly, A is a real prime Banach algebra under the norm defined by ||A||1 = max j
(∑2

i=1 |ai j|
)

for all
A = (ai j)1≤i, j≤2 ∈ A.

Consider the sets, S1 =

{(s 0
0 s

)
| s > 0

}
and S2 =

{(s 0
0 s

)
| s ∈ R∗

}
. Clealy, S1 and S1 are not open

in A. Take E1 =

(1 0
0 1

)
, E2 =

(0 0
1 0

)
, E3 =

(0 1
0 0

)
and E4 =

(0 0
0 1

)
, we observe that the family O =

{E1,E2,E3,E4} is a basis ofA andZ(A) = span(E1), so we can writeA = Z(A) ⊕t span(E2,E3,E4).
The mapping P defined from A to Z(A) by P(M) = a1E1 for all M =

∑4
i=0 aiEi ∈ A is a continuous

projection of A on Z(A). For all A =

(a 0
0 a

)
∈ S1, B =

(b 0
0 b

)
∈ S2 and for all n,m ∈ N, it is easy to

see that

An =

(an 0
0 an

)
and Bm =

(bm 0
0 bm

)
.

Moreover, we compute

AnBm =

(anbm 0
0 anbm

)
, An ◦ Bm =

(2anbm 0
0 2anbm

)
and [An, Bm] =

(0 0
0 0

)
.

This implies that
AnBm = anbmE1; An ◦ Bm = 2anbmE1; [An, Bm] = 0E1.

Thus, we have

AIMS Mathematics Volume 8, Issue 8, 17503–17513.
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(1) P(An ◦ Bm) = An ◦ Bm

(2) P(AnBm) = AnBm

(3) P([An, Bm]) = [An, Bm]

(4) P(An) = An.

One might think that the projection map P = I, but this is not true as P(E3) = 0A , E3. So the
conditions of G1 and G2 to be open in Theorem 2.5 is indispensable.

Our next example shows that we cannot replace R or C in Theorem 2.5 by the finite field F3 = Z/3Z �
Z3.

Example 3.9. LetA =

{(a11 a12

a21 a22

)
| ai j ∈ Z3

}
. It is easy to check thatA forms a prime Banach algebra

under the norm, ||A||∞ = maxi
(∑2

j=1 |ai j|
)

for all A = (ai j)1≤i, j≤2 ∈ A, where |.| on Z3 is defined as,

|0̄| = 0, |1̄| = 1 and |2̄| = 2.

Next, let G =

{(s 0
0 s

)
| s ∈ Z3

}
be an open set in A. Consider A ∈ G, the open ball B(A, 1) = {Y ∈

A such that ||A − Y ||∞ < 1} = {A} ⊂ G, so G is a nonvoid open subset of A. Take, E1 =

(1 0
0 1

)
,

E2 =

(0 0
1 0

)
, E3 =

(0 1
0 0

)
and E4 =

(0 0
0 1

)
, observe that the family O = {E1,E2,E3,E4} forms a basis

of A and Z(A) = span(E1), so we can write A = Z(A) ⊕t span(E2,E3,E4). The mapping P defined
from A to Z(A) by P(M) = a1E1 for all M =

∑4
i=0 aiEi ∈ A is a nonzero continuous projection of A

onZ(A). For all A =

(a 0
0 a

)
, B =

(b 0
0 b

)
∈ G and for all n,m ∈ N, we have

An =

(an 0
0 an

)
and Bm =

(bm 0
0 bm

)
.

Thus, we obtain

AnBm =

(anbm 0
0 anbm

)
, An ◦ Bm =

(2anbm 0
0 2anbm

)
and [An, Bm] =

(0 0
0 0

)
.

So we can write,
AnBm = anbmE1; An ◦ Bm = 2anbmE1; [An, Bm] = 0E1.

Thus, it is easy to see that

(1) P(An ◦ Bm) = An ◦ Bm

(2) P(AnBm) = AnBm

(3) P([An, Bm]) = [An, Bm]

(4) P(An) = An.

Observe that P , I as P(E2) = 0A , E2. Hence we conclude that R or C cannot be replaced by the
field F3 in case of Theorem 2.5.
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4. Applications

In this section, we will discuss an application of Theorem 2.5.

Let C be the field of complex numbers. Next, let us consider

A =

{(a11 a12

a21 a22

)
| ai j ∈ C, 1 ≤ i, j ≤ 2

}
.

Clearly, A is prime algebra over C under the norm defined by ||A||1 = max j
(∑2

i=1 |ai j|
)

for all A =

(ai j)1≤i, j≤2 ∈ A. Consider the sets, G1 =

{(eit 0
0 e−it

)
| t ∈ R

}
and G2 =

{(e−it 0
0 eit

)
| t ∈ R

}
. Clearly,

G1 and G2 are open in A. Take E1 =

(1 0
0 1

)
, E2 =

(0 0
1 0

)
, E3 =

(0 1
0 0

)
and E4 =

(0 0
0 1

)
, we

observe that the family O = {E1,E2,E3,E4} is a basis of A and Z(A) = span(E1), so we can write
A = Z(A) ⊕t span(E2,E3,E4). The mapping P defined from A to Z(A) by P(M) = a1E1 for all

M =
∑4

i=0 aiEi ∈ A is a continuous projection of A on Z(A). For all A =

(eia 0
0 e−ia

)
∈ G1, B =(e−ib 0

0 eib

)
∈ G2 and for all n,m ∈ N, it is easy to see that

An =

(eina 0
0 e−ina

)
and Bm =

(e−imb 0
0 eimb

)
.

Moreover, we compute

[An, Bm] =

(0 0
0 0

)
.

This implies that
[An, Bm] = 0E1.

Thus, we have P([An, Bm]) = [An, Bm]. Observe that P(E3) = 0A , E3. Hence, it follows from
Theorem 2.5, thatA is not a Banach algebra under the defined norm.

5. A direction for further research

Several papers in the literature evidence how the behaviour of some linear mappings is closely
connected to the structure of the Banach algebras (cf. [1–3] and [9, 10]). In our main results
(Theorems 2.3 and 2.5), we investigate the structure of prime Banach algebras equipped with a
continuous projections. Nevertheless, there are various interesting open problems related to our work.
In this final section, we will propose a direction for future further research. In view of [2] and
Theorems 2.3 and 2.4, the following problems remain unanswered.

Problem 5.1. Let A be a real or complex prime Banach algebra and P : A −→ Z(A) be a nonzero
continuous projection. Suppose that there is an open subset G of A such that P(an) − an ∈ Z(A) for
each a ∈ G and an integer n > 1. Then, what we can say about the structure ofA and P ?
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Problem 5.2. Let A be a real or complex prime Banach algebra and P : A −→ Z(A) be a nonzero
continuous projection. Suppose that there are open subsets G1,G2 of A such that P(an) − bn ∈ Z(A)
for each (a, b) ∈ G and an integer n = n(a, b) > 1. Then, what we can say about the structure of A
and P ?

Problem 5.3. Let A be a real or complex prime Banach algebra and P : A −→ Z(A) be a nonzero
continuous projection. Suppose that there are open subsets G1, G2 of A such that P((ab)n) − anbn ∈

Z(A) for each a ∈ G1 and b ∈ G2 and an integer n = n(x, y) > 1. Then, what we can say about the
structure ofA and P ?

Problem 5.4. Let A be a commutative Banach algebra such that it admits a continuous projection P
fromA toZ(A) satisfying P(a)n = an for all a ∈ G, where G is a non-empty open subset ofA. Then,
what we can say about the structure ofA and P ?

6. Conclusions and discussions

In this paper, we discussed new criteria to study the commutativity of Banach algebras. Particularly,
we described the commutativity of prime Banach algebras over the field of real and complex via its
projections. In this direction, Yood [13, 14] established the commutativity of Banach algebras using
the polynomial identities. Similarly, taking this idea forward [2, 3, 10] were able to accomplished
the commutativity of Banach algebras via derivations. It would be interesting to discuss the
commutativity of Banach algebras involving more general functional identities via projections (see
Open Problems 5.1–5.4).
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