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1. Introduction

Let Cn×n be the set of n order complex matrices and A = (ai j) ∈ Cn×n. For any i, j ∈ N =

{1, 2, · · · , n}, denote

Ri(A) =
∑

j∈N, j,i

|ai j|,Ci(A) =
∑

j∈N, j,i

|a ji|.

Let A = (ai j) ∈ Cn×n. If |aii| ≥ Ri(A)(i ∈ N), then A is called a diagonally dominant matrix, and
denoted by A ∈ D0. If |aii| > Ri(A)(i ∈ N), then A is called a strictly diagonally dominant matrix and
denoted by A ∈ D.

If there is a positive diagonal matrix X such that AX ∈ D, then A is called a generalized strictly
diagonally dominant matrix, denoted by A ∈ D∗, and also called a nonsingular H-matrix.

A matrix A is said to be an H-matrix if its comparison matrix is an M-matrix. Throughout this
paper, we are working with H-matrices such that their comparison matrices are nonsingular. These
matrices are called invertible class of H-matrices in [1].

As a result of that a nonsingularH-matrix has nonzero diagonal entries, we always assume that
aii , 0(i ∈ N).
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The nonsingular H-matrix is a kind of special matrix that is widely used in matrix theory. Many
practical problems can usually be attributed to the problems of solving one or a group of linear algebraic
equations for large sparse matrices. In the process of solving linear equations, it is often necessary to
assume that the coefficient matrix is a nonsingular H-matrix. At the same time, nonsingular H-matrix
has important practical value in many fields, such as economic mathematics, electric system theory,
control theory and computational mathematics [2, 3]. However, it is very difficult to determine the
nonsingular H-matrix in practice. So the determination of nonsingular H-matrix is a very meaningful
topic in the study of matrix theory. Many scholars have conducted in-depth research on its sufficient
conditions, and have further given many simple and practical results [4–16].

In this paper, we introduce two different classes of α-diagonally dominant matrices defined in [6,7].
In order to avoid confusion, they are called α1-diagonally dominant matrix and α2-diagonally dominant
matrix respectively.

Definition 1. [6] Let A = (ai j) ∈ Cn×n. If α ∈ [0, 1] exists, making

|aii| ≥ α[Ri(A)] + (1 − α)[Ci(A)], i ∈ N,

then A is called an α1-diagonally dominant matrix, and denoted by A ∈ Dα10 . If α ∈ [0, 1] exists,
making

|aii| > α[Ri(A)] + (1 − α)[Ci(A)], i ∈ N, (1.1)

then A is called a strictly α1-diagonally dominant matrix, and denoted by A ∈ Dα1 .

Definition 2. [7] Let A = (ai j) ∈ Cn×n. If α ∈ [0, 1] exists, making

|aii| ≥ [Ri(A)]α[Ci(A)]1−α, i ∈ N,

then A is called an α2-diagonally dominant matrix, and denoted by A ∈ Dα20 . If α ∈ [0, 1] exists,
making

|aii| > [Ri(A)]α[Ci(A)]1−α, i ∈ N, (1.2)

then A is called a strictly α2-diagonally dominant matrix, and denoted by A ∈ Dα2 .

At present, many scholars have studied the properties and determination methods of α1-(and α2-)
diagonally dominant matrices, see [5–11, 17]. α2-diagonally dominant matrix is called geometrically
α-diagonally dominant matrix in [8], α-chain diagonally dominant matrix in [9], and product α-
diagonally dominant matrix in [17].

In Definitions 1 and 2, if α = 1, we can know |aii| > Ri(A),∀i ∈ N, by (1.1) and (1.2), that is, A ∈ D.
If α = 0, we can know |aii| > Ci(A),∀i ∈ N, by (1.1) and (1.2), that is, AT ∈ D. Therefore, if α = 0
or 1, A is a nonsingular H-matrix, so only the case of α ∈ (0, 1) is considered in this paper.

If A is an α1-(or α2-) diagonally dominant matrix, then A ∈ D∗ [6, 7]. So α1-(or α2-) diagonally
dominant matrix is also a class of nonsingular H-matrix. These two classes are both subclasses of
nonsingular H-matrix, and they have their equivalent theorems in the field of eigenvalue localization.
It is easy to see that the class of α1-diagonally dominant matrix is contained in that of α2-diagonally
dominant matrix [18].

In this paper, by using the properties of α1-(or α2-) diagonally dominant matrix, we give some
criteria for determining nonsingular H-matrix. Finally, numerical examples are used to compare the
criteria obtained in this paper with the existing results.
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2. Preliminaries

Some relevant concepts and important conclusions are given in this section.

Definition 3. [9] Let A = (ai j) ∈ Cn×n. If there is a positive diagonal matrix X such that AX ∈ Dα1 ,
then A is called a generalized α1-diagonally dominant matrix, which is denoted by A ∈ D∗α1

.

Definition 4. [7] Let A = (ai j) ∈ Cn×n. If there is a positive diagonal matrix X such that AX ∈ Dα2 ,
then A is called a generalized α2-diagonally dominant matrix, which is denoted by A ∈ D∗α2

.

Definition 5. [10] Let A = (ai j) ∈ Cn×n be an irreducible matrix. If there exists α ∈ [0, 1] such that
|aii| ≥ α[Ri(A)] + (1− α)[Ci(A)],∀i ∈ N, and at least one strict inequality holds, then A is said to be an
irreducible α1-diagonally dominant matrix.

Here, similar to irreducible α1-diagonally dominant matrix, we give the definition of irreducible
α2-diagonally dominant matrix.

Definition 6. Let A = (ai j) ∈ Cn×n be an irreducible matrix. If there exists α ∈ [0, 1] such that
|aii| ≥ [Ri(A)]α[Ci(A)]1−α,∀i ∈ N, and at least one strict inequality holds, then A is said to be an
irreducible α2-diagonally dominant matrix.

Lemma 1. [9] Let A = (ai j) ∈ Cn×n. If A is a generalized α1-diagonally dominant matrix, then A is a
nonsingular H-matrix.

Lemma 2. [7] Let A = (ai j) ∈ Cn×n. Then A is a generalized strictly diagonally dominant matrix if
and only if A is a generalized α2-diagonally dominant matrix.

Lemma 3. [10] Let A ∈ Dα10 be an irreducible matrix, and there is at least one i ∈ N to make
|aii| > α[Ri(A)] + (1 − α)[Ci(A)] hold, then A ∈ D∗.

Lemma 4. [11] Let A ∈ Dα20 be an irreducible matrix, and there is at least one i ∈ N to make
|aii| > [Ri(A)]α[Ci(A)]1−α hold, then A ∈ D∗.

Lemma 5. [3] Suppose A = (ai j) ∈ Cn×n, if AX is a nonsingular H-matrix, with X = diag
(x1, x2, . . . , xn) (xi > 0, i = 1, 2, . . . , n), then A is a nonsingular H-matrix.

3. Criteria based on α1-diagonally dominant matrix

Denote

M1(α) = {i ∈ N ||aii| = Λi(A)},M2(α) = {i ∈ N |0 < |aii| < Λi(A)},M3(α) = {i ∈ N||aii| > Λi(A)}.

It is obvious that Mi(α) ∩ M j(α) = ∅(i , j) and M1(α) ∪ M2(α) ∪ M3(α) = N. We denote
∑
i∈∅
· = 0

and
Λi(A) = αRi(A) + (1 − α)Ci(A), α ∈ (0, 1),

r = max
i∈M3(α)


α(

∑
j∈M1(α)

|ai j| +
∑

j∈M2(α)
|ai j|)

|aii| − α
∑

j∈M3(α), j,i
|ai j| − (1 − α)Ci(A)

 , s = max
i∈M2(α)

{
Λi(A) − |aii|

Λi(A)
}, δ = max{r, s},
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Ti,r(A) = α(
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α)

|ai j| + r
∑

j∈M3(α), j,i

|ai j|) + (1 − α) rCi(A), i ∈ M3(α),

h = max
i∈M3(α)


δα(

∑
j∈M1(α)

|ai j| +
∑

j∈M2(α)
|ai j|)

Ti,r(A) − α
∑

j∈M3(α), j,i
|ai j|

T j,r(A)
|a j j |
− (1 − α) Ci(A)Ti,r(A)

|aii |

 .
Theorem 1. Let A = (ai j) ∈ Cn×n. If there is α ∈ (0, 1), such that for any i ∈ M2(α),

|aii|
Λi(A)−|aii |

Λi(A) > α(δ
∑

j∈M1(α)
|ai j| +

∑
j∈M2(α), j,i

|ai j|
Λ j(A)−|aii |

Λ j(A) + h
∑

j∈M3(α)
|ai j|

T j,r(A)
|a j j |

)

+(1 − α)Ci(A)Λi(A)−|aii |

Λi(A)

(3.1)

holds, then A is a nonsingular H-matrix.

Proof. We are going to proof the following inequality for all indices in each set M1(α),M2(α) and
M3(α).

|bii| > Λi(B) = αRi(B) + (1 − α)Ci(B), i ∈ M1(α) ∪ M2(α) ∪ M3(α) = N.

It can be seen from the previous denotions that 0 ≤ r < 1, 0 < δ < 1. From the definition of Ti,r(A),
we can get that for any i ∈ M3(α),

r|aii| ≥ α

 ∑
j∈M1(α)

|ai j| +
∑

j∈M2(α)

|ai j| + r
∑

j∈M3(α), j,i

|ai j|

 + (1 − α) rCi(A)

holds, that is, Ti,r(A) ≤ r|aii|, i ∈ M3(α). Therefore

0 ≤
Ti,r(A)
|aii|

≤ r ≤ δ < 1, i ∈ M3(α).

Furthermore, according to the definition of Ti,r(A), for any i ∈ M3(α),

α

 ∑
j∈M1(α)

|ai j| +
∑

j∈M2(α)

|ai j|

 = Ti,r(A) − r{α
∑

j∈M3(α), j,i

|ai j| + (1 − α)rCi(A)}.

So

δα(
∑

j∈M1(α)
|ai j| +

∑
j∈M2(α)

|ai j|)

Ti,r(A) − α
∑

j∈M3(α), j,i
|ai j|

T j,r(A)
|a j j |
− (1 − α)Ci(A)Ti,r(A)

|aii |

<

Ti,r(A) − r(α
∑

j∈M3(α), j,i
|ai j| + (1 − α)rCi(A))

Ti,r(A) − α
∑

j∈M3(α), j,i
|ai j|

T j,r(A)
|a j j |
− (1 − α)Ci(A)Ti,r(A)

|aii |

≤ 1.

According to the definition of h, we can get 0 ≤ h < 1, and for all i ∈ M3(α),

hTi,r(A) ≥ α
(
δ

∑
j∈M1(α)

|ai j| + δ
∑

j∈M2(α)
|ai j| + h

∑
j∈M3(α), j,i

|ai j|
T j,r(A)
|a j j |

+(1 − α)hCi(A)Ti,r(A)
|aii |

)
. (3.2)
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By (3.1), for all i ∈ M2(α), we can get

|aii|
Λi(A) − |aii|

Λi(A)
−

α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λi(A) − |aii|

Λi(A)
+ h

∑
j∈M3(α)

|ai j|
T j,r(A)
|a j j|

)

+ (1 − α) Ci(A)
Λi(A) − |aii|

Λi(A)

)
> 0.

Let

ki =|aii|
Λi(A) − |aii|

Λi(A)
−

α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λi(A) − |aii|

Λi(A)
+ h

∑
j∈M3(α)

|ai j|
T j,r(A)
|a j j|

)

+ (1 − α) Ci(A)
Λi(A) − |aii|

Λi(A)

)
and

wi =
ki

α
∑

j∈M3(α)
|ai j|

, i ∈ M2(α). (3.3)

In particular, if
∑

j∈M3(α)
|ai j| = 0, then denote wi = +∞, according to (3.3), wi > 0, i ∈ M2(α). Notice that

0 ≤
Ti,r(A)
|aii|

h <
Ti,r(A)
|aii|

≤ δ < 1, i ∈ M3(α).

Thus, take a sufficiently small positive number η to make it meet both

0 < η < min
i∈M2(α)

{wi} ≤ +∞

and
max

i∈M3(α)
{
Ti,r(A)
|aii|

h + η} < δ < 1.

Construct a positive diagonal matrix X = diag (x1, x2, . . . , xn), where

xi =


δ, i ∈ M1(α),

Λi(A)−|aii |

Λi(A) , i ∈ M2(α),
Ti,r(A)
|aii |

h + η, i ∈ M3(α).

And let B = AX = (bi, j).
For any i ∈ M1(α), it can be obtained from 0 < δ < 1, 0 < Λi(A)−|aii |

Λi(A) ≤ δ < 1(i ∈ M2(α)),
and 0 < Ti,r(A)

|aii |
h + η < δ < 1(i ∈ M3(α)) that

Λi(B) = α(δ
∑

j∈M1(α), j,i

|ai j| +
∑

j∈M2(α)

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α)

|ai j|(
T j,r(A)
|a j j|

h + η)) + (1 − α)δCi(A)

< α(δ
∑

j∈M1(α), j,i

|ai j| + δ
∑

j∈M2(α)

|ai j| + δ
∑

j∈M3(α)

|ai j|) + (1 − α)δCi(A)

= δ(αRi(A) + (1 − α)Ci(A)) = δΛi(A) = δ|aii| = |bii|.

AIMS Mathematics Volume 8, Issue 8, 17484–17502.



17489

For any i ∈ M2(α), if
∑

j∈M3(α)
|ai j| = 0, it can be deduced from (3.1) that

Λi(B) = α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α)

|ai j|(
T j,r(A)
|a j j|

h + η)) + (1 − α)Ci(A)
Λi(A) − |aii|

Λi(A)

= α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λ j(A) − |a j j|

Λ j(A)
) + (1 − α)Ci(A)

Λi(A) − |aii|

Λi(A)

< |aii|
Λi(A) − |aii|

Λi(A)
= |bii|.

If
∑

j∈M3(α)
|ai j| , 0, it can be obtained from (3.3) that

Λi(B) = α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α)

|ai j|(
T j,r(A)
|a j j|

h + η)) + (1 − α)Ci(A)
Λi(A) − |aii|

Λi(A)

= α(η
∑

j∈M3(α)

|ai j| + δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α)

|ai j|(
T j,r(A)
|a j j|

))

+ (1 − α)Ci(A)
Λi(A) − |aii|

Λi(A)

= ηα
∑

j∈M3(α)

|ai j| + α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α)

|ai j|(
T j,r(A)
|a j j|

))

+ (1 − α)Ci(A)
Λi(A) − |aii|

Λi(A)

< wiα
∑

j∈M3(α)

|ai j| + α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α)

|ai j|(
T j,r(A)
|a j j|

))

+ (1 − α)Ci(A)
Λi(A) − |aii|

Λi(A)

= |aii|
Λi(A) − |aii|

Λi(A)
= |bii|.

For any i ∈ M3(α), it can be deduced from 0 < Λi(A)−|aii |

Λi(A) ≤ δ < 1(i ∈ M2(α)) and (3.2) that

AIMS Mathematics Volume 8, Issue 8, 17484–17502.
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Λi(B) = α[δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α)

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α), j,i

|ai j|(
T j,r(A)
|a j j|

h + η)] + (1 − α)Ci(A)(
Ti,r(A)
|aii|

h + η)

= ηα
∑

j∈M3(α), j,i

|ai j| + α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α)

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α), j,i

|ai j|
T j,r(A)
|a j j|

h)

+ (1 − α)Ci(A)
Ti,r(A)
|aii|

h + η(1 − α)Ci(A)

= η[α
∑

j∈M3(α), j,i

|ai j| + (1 − α)Ci(A)] + α(δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α)

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+ h

∑
j∈M3(α), j,i

|ai j|
T j,r(A)
|a j j|

)

+ (1 − α)hCi(A)
Ti,r(A)
|aii|

≤ η[α
∑

j∈M3(α), j,i

|ai j| + (1 − α)Ci(A)] + α(δ
∑

j∈M1(α)

|ai j| + δ
∑

j∈M2(α)

|ai j| + h
∑

j∈M3(α), j,i

|ai j|
T j,r(A)
|a j j|

)

+ (1 − α)hCi(A)
Ti,r(A)
|aii|

≤ η[α
∑

j∈M3(α), j,i

|ai j| + (1 − α)Ci(A)] + hTi,r(A)

≤ η[αRi(A) + (1 − α)Ci(A)] + hTi,r(A)
< η|aii| + hTi,r(A)

= η|aii| + |aii|
Ti,r(A)
|aii|

h = |aii|(
Ti,r(A)
|aii|

h + η) = |bii|.

In conclusion, the following inequalities are always valid

|bii| > Λi(B) = αRi(B) + (1 − α)Ci(B), i ∈ M1(α) ∪ M2(α) ∪ M3(α) = N.

By Definition 1, matrix B is a strictly α1-diagonally dominant matrix, so matrix A is a generalized
α1-diagonally dominant matrix. According to Lemma 1, A is a nonsingular H-matrix. �

Remark 1. If α = 1, Theorem 1 is equivalent to Theorem 4 in [12]. At the same time, in Theorem 1, we
improve the conditions of the theorems in [13–15]. So Theorem 1 in this paper is a further supplement
to the determination methods of nonsingular H- matrices.

Theorem 2. Let A = (ai j) ∈ Cn×n be an irreducible matrix. If there is α ∈ (0, 1), such that for any
i ∈ M2(α),

|aii|
Λi(A)−|aii |

Λi(A) ≥ α[δ
∑

j∈M1(α)
|ai j| +

∑
j∈M2(α), j,i

|ai j|
Λ j(A)−|a j j |

Λ j(A) + h
∑

j∈M3(α)
|ai j|

T j,r(A)
|a j j |

]

+(1 − α)Ci(A)Λi(A)−|aii |

Λi(A) ,
(3.4)

and at least one strict inequality in (3.4) holds, then matrix A is a nonsingular H-matrix.

Proof. We are going to proof the following inequality for all indices in each set M1(α),M2(α) and
M3(α).

|bii| ≥ Λi(B) = αRi(B) + (1 − α)Ci(B), i ∈ M1(α) ∪ M2(α) ∪ M3(α) = N.

AIMS Mathematics Volume 8, Issue 8, 17484–17502.
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Construct a positive diagonal matrix X = diag (x1, x2, . . . , xn), where

xi =


δ, i ∈ M1(α),

Λi(A)−|aii |

Λi(A) , i ∈ M2(α),
Ti,r(A)
|aii |

h, i ∈ M3(α).

And denote B = AX = (bi j). Similar to the proof process of Theorem 1, for any i ∈ M1(α),

Λi(B) = α[δ
∑

j∈M1(α), j,i

|ai j| +
∑

j∈M2(α)

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+ h

∑
j∈M3(α)

|ai j|
T j,r(A)
|a j j|

] + (1 − α)δCi(A)

≤ δ[αRi(A) + (1 − α)Ci(A)] = δΛi(A) = δ|aii| = |bii|.

For any i ∈ M2(α), it can be obtained from (3.4) that

Λi(B) = α[δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α), j,i

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+ h

∑
j∈M3(α)

|ai j|
T j,r(A)
|a j j|

] + (1 − α)Ci(A)
Λi(A) − |aii|

Λi(A)

≤ |aii|
Λi(A) − |aii|

Λi(A)
= |bii|.

For any i ∈ M3(α), by (3.2) we can obtain

Λi(B) = α[δ
∑

j∈M1(α)

|ai j| +
∑

j∈M2(α)

|ai j|
Λ j(A) − |a j j|

Λ j(A)
+

∑
j∈M3(α), j,i

|ai j|
T j,r(A)
|a j j|

h] + (1 − α)Ci(A)
Ti,r(A)
|aii|

h

≤ α[δ
∑

j∈M1(α)

|ai j| + δ
∑

j∈M2(α)

|ai j| + h
∑

j∈M3(α), j,i

|ai j|
T j,r(A)
|a j j|

] + (1 − α)Ci(A)
Ti,r(A)
|aii|

h

< hTi,r(A) = |aii|
Ti,r(A)
|aii|

h = |bii|.

To sum up, we can always get the following inequalities

|bii| ≥ Λi(B) = αRi(B) + (1 − α)Ci(B), i ∈ M1(α) ∪ M2(α) ∪ M3(α) = N.

Notice that there is at least one i0 ∈ M3(α), such that |bi0,i0 | > Λi0(B), so B is an irreducible α1-
diagonally dominant matrix. According to Lemma 3, B is a nonsingular H-matrix. Therefore, A is also
a nonsingular H-matrix by Lemma 5. �

4. Criteria based on α2-diagonally dominant matrix

Let
Qi(A) = (Ri(A))α(Ci(A))1−α, α ∈ (0, 1).

N1(α) = {i ∈ N |0 < |aii| < Qi(A)},N2(α) = {i ∈ N ||aii| = Qi(A) > 0},

N3(α) = {i ∈ N||aii| > Qi(A)}.

It is obvious that Ni(α) ∩ N j(α) = ∅(i , j) and N1(α) ∪ N2(α) ∪ N3(α) = N.
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For any i ∈ N3(α), denote

Pi(A) = (
∑

j∈N1(α)

|ai j|
Q j(A) − |a j j|

Q j(A)
+

∑
j∈N2(α)

|ai j| +
∑

j∈N3(α), j,i

|ai j|
R j(A)(C j(A))

1−α
α

|a j j|
1
α

)(Ci(A))
1−α
α .

Obviously,

Pi(A)

|aii|
1
α

= (
Pi(A)α

|aii|
)

1
α

=


∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| + (

∑
j∈N3(α), j,i

|ai j|
R j(A)(C j(A))

1−α
α

|a j j |
1
α

)α(Ci(A))1−α

|aii|


1
α

<

(
(Ri(A))α(Ci(A))1−α

|aii|

) 1
α

< 1.

Theorem 3. Let A = (ai j) ∈ Cn×n. If there exists α ∈ (0, 1), such that

|aii|
Qi(A)−|aii |

Qi(A) > [
∑

j∈N1(α), j,i
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

]α · [Ci(A) Qi(A)−|aii |

Qi(A) ]1−α
(4.1)

holds for any i ∈ N1(α), then the matrix A is a nonsingular H-matrix.

Proof. We are going to proof the following inequality for all indices in each set N1(α),N2(α) and N3(α).

|bii| > (Ri(B))α(Ci(B))1−α, i ∈ N1(α) ∪ N2(α) ∪ N3(α) = N.

For any i ∈ N1(α), denote

gi(A) = (
∑

j∈N1(α), j,i

|ai j|
Q j(A) − |a j j|

Q j(A)
+

∑
j∈N2(α)

|ai j| +
∑

j∈N3(α)

|ai j|
P j(A)

|a j j|
1
α

)(Ci(A)
Qi(A) − |aii|

Qi(A)
)

1−α
α ,

Gi(A) =
(|aii|

Qi(A)−|aii |

Qi(A) )
1
α − gi(A)

(
∑

j∈N3(α)
|ai j|)[Ci(A) Qi(A)−|aii |

Qi(A) ]
1−α
α

.

It is known by (4.1) that Gi(A) > 0, i ∈ N1(α). In particular, if
∑

j∈N3(α)
|ai j| = 0(i ∈ N1(α)),Gi(A)=+∞

is denoted. Take a sufficiently small positive number ε to satisfy

0 < ε < min{G j(A) ( j ∈ N1(α)), 1 −
Pi(A)

|aii|
1
α

(i ∈ N3(α))}. (4.2)

Construct a positive diagonal matrix X = diag (d1, d2, . . . , dn), where

di =


Qi(A)−|aii |

Qi(A) , ∀i ∈ N1(α),
1, ∀i ∈ N2(α),

Pi(A)

|aii |
1
α

+ ε, ∀i ∈ N3(α).
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It is proved below that B = AX = (bi j) ∈ Dα2 . For any i ∈ N1(α), according to (4.1) and (4.2),

Ri(B)(Ci(B))
1−α
α

= [
∑

j∈N1(α), j,i
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|(
P j(A)

|a j j |
1
α

+ ε)][Ci(A) Qi(A)−|aii |

Qi(A) ]
1−α
α

= [
∑

j∈N1(α), j,i
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

][Ci(A) Qi(A)−|aii |

Qi(A) ]
1−α
α + ε(

∑
j∈N3(α)

|ai j|)[Ci(A) Qi(A)−|aii |

Qi(A) ]
1−α
α

< [
∑

j∈N1(α), j,i
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

][Ci(A) Qi(A)−|aii |

Qi(A) ]
1−α
α ] + Gi(A)(

∑
j∈N3(α)

|ai j|)[Ci(A) Qi(A)−|aii |

Qi(A) ]
1−α
α

= (|aii|
Qi(A)−|aii |

Qi(A) )
1
α = |bii|

1
α ,

that is, |bii| > Ri(B)α(Ci(B))1−α, i ∈ N1(α).
For any i ∈ N2(α), because Qi(A)−|aii |

Qi(A) < 1, i ∈ N1(α), and Pi(A)

|aii |
1
α

+ ε < 1, i ∈ N3(α), obtained by (4.2),
so,

(Ri(B))α(Ci(B))1−α = [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α), j,i
|ai j| +

∑
j∈N3(α)

|ai j|(
P j(A)

|a j j |
1
α

+ ε)]α[Ci(A)]1−α

< (
∑

j∈N1(α)
|ai j| +

∑
j∈N2(α), j,i

|ai j| +
∑

j∈N3(α)
|ai j|)α(Ci(A))1−α

= (Ri(A))α(Ci(A))1−α = |aii| = |bii|.

For any i ∈ N3(α), obviously

|aii|
1
α > Ri(A)(Ci(A))

1−α
α

= (
∑

j∈N1(α)
|ai j| +

∑
j∈N2(α)

|ai j| +
∑

j∈N3(α), j,i
|ai j|)(Ci(A))

1−α
α

> (
∑

j∈N3(α), j,i
|ai j|)(Ci(A))

1−α
α ,

hence

|aii|
1
α ( Pi(A)

|aii |
1
α

+ ε) = Pi(A) + ε|aii|
1
α

> (
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α), j,i

|ai j|
R j(A)(C j(A))

1−α
α

|a j j |
1
α

)(Ci(A))
1−α
α + ε(

∑
j∈N3(α), j,i

|ai j|)(Ci(A))
1−α
α

= [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α), j,i

|ai j|(
R j(A)(C j(A))

1−α
α

|a j j |
1
α

+ ε)][Ci(A)]
1−α
α

≥ [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α), j,i

|ai j|(
P j(A)

|a j j |
1
α

+ ε)][Ci(A)]
1−α
α .

Take the two sides of the inequality to the power of α respectively, we can get

|aii|(
Pi(A)

|aii |
1
α

+ ε)α > [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α), j,i

|ai j|(
P j(A)

|a j j |
1
α

+ ε)]α[Ci(A)]1−α.

Further multiply both sides of the inequality by ( Pi(A)

|aii |
1
α

+ ε)1−α, then

|bii| = |aii|(
Pi(A)

|aii |
1
α

+ ε)

> [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α), j,i

|ai j|(
P j(A)

|a j j |
1
α

+ ε)]α[Ci(A)( Pi(A)

|aii |
1
α

+ ε)]1−α

= (
∑
j,i

(bi j))α(
∑
j,i

(b ji))1−α,
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that is, |bii| > (Ri(B))α(Ci(B))1−α. To sum up, the following inequality is always true.

|bii| > (Ri(B))α(Ci(B))1−α, i ∈ N1(α) ∪ N2(α) ∪ N3(α) = N,

that is, B ∈ Dα2 . Therefore, we know that A ∈ D∗α2
, and according to Lemma 2, A is a nonsingular

H-matrix. �

Remark 2. According to (4.1) in Theorem 3, for any i ∈ N1(α), the following inequality is always true.

Qi(A)
Qi(A)−|aii |

[
∑

j∈N1(α), j,i
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

]α[Ci(A) Qi(A)−|aii |

Qi(A) ]1−α

≤
Qi(A)

Qi(A)−|aii |
[α(

∑
j∈N1(α), j,i

|ai j|
Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

) + (1 − α)Ci(A) Qi(A)−|aii |

Qi(A) ]

≤
Qi(A)

Qi(A)−|aii |
α[

∑
j∈N1(α), j,i

|ai j|
Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

] + (1 − α)Ci(A).

Therefore, for Theorem 3 in this paper, we improve Theorem 1 in [10] and Theorem 1 in [16].

Theorem 4. Let A = (ai j) ∈ Cn×n be an irreducible matrix. If there exists α ∈ (0, 1), such that

|aii|
Qi(A)−|aii |

Qi(A) ≥ [
∑

j∈N1(α), j,i
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

]α · [Ci(A) Qi(A)−|aii |

Qi(A) ]1−α
(4.3)

is true for any i ∈ N1(α), then the matrix A is a nonsingular H-matrix.

Proof. We are going to proof the following inequality for all indices in each set N1(α),N2(α) and N3(α).

|bii| ≥ (Ri(B))α(Ci(B))1−α, i ∈ N1(α) ∪ N2(α) ∪ N3(α) = N.

Construct a positive diagonal matrix X = diag (d1, d2, . . . , dn), where

di =


Qi(A)−|aii |

Qi(A) , ∀i ∈ N1(α),
1, ∀i ∈ N2(α),

Pi(A)

|aii |
1
α
, ∀i ∈ N3(α).

Let B = AX = (bi j). For any i ∈ N1(α), it can be obtained from (4.3) that

(Ri(B))α(Ci(B))1−α = [
∑

j∈N1(α), j,i
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

]α · [Ci(A) Qi(A)−|aii |

Qi(A) ]1−α

≤ |aii|
Qi(A)−|aii |

Qi(A) = |bii|,

that is, |bii| ≥ (Ri(B))α(Ci(B))1−α, i ∈ N1(α).
For any i ∈ N2(α), because Qi(A)−|aii |

Qi(A) < 1, i ∈ N1(α), and Pi(A)

|aii |
1
α
< 1, i ∈ N3(α), we can obtain that

(Ri(B))α(Ci(B))1−α = [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α), j,i
|ai j| +

∑
j∈N3(α)

|ai j|
P j(A)

|a j j |
1
α

]α[Ci(A)]1−α

≤ [
∑

j∈N1(α)
|ai j| +

∑
j∈N2(α), j,i

|ai j| +
∑

j∈N3(α)
|ai j|]α[Ci(A)]1−α

= (Ri(A))α(Ci(A))1−α = |aii| = |bii|,

that is, |bii| > (Ri(B))α(Ci(B))1−α, i ∈ N2(α).
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For any i ∈ N3(α),

|aii|
1
α ( Pi(A)

|aii |
1
α

) = Pi(A)

= [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α), j,i

|ai j|
R j(A)(C j(A))

1−α
α

|a j j |
1
α

](Ci(A))
1−α
α

> [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α), j,i

|ai j|
P j(A)

|a j j |
1
α

](Ci(A))
1−α
α .

Take the power α on both sides and multiply by ( P j(A)

|a j j |
1
α

)1−α at the same time, then

|bii| = |aii|(
Pi(A)

|aii |
1
α

)

> [
∑

j∈N1(α)
|ai j|

Q j(A)−|a j j |

Q j(A) +
∑

j∈N2(α)
|ai j| +

∑
j∈N3(α), j,i

|ai j|(
P j(A)

|a j j |
1
α

)]α[(Ci(A)) Pi(A)

|a
1
α
ii |

]1−α

= (Ri(B))α(Ci(B))1−α,

that is, |bii| > (Ri(B))α(Ci(B))1−α, i ∈ N3(α).
In conclusion, the following inequalities are always valid.

|bii| ≥ (Ri(B))α(Ci(B))1−α, i ∈ N1(α) ∪ N2(α) ∪ N3(α) = N.

Thus, B is an irreducible α2-diagonally dominant matrix. According to Lemma 4, B is a nonsingular
H-matrix. Therefore, A is also a nonsingular H-matrix by Lemma 5. �

5. Numerical examples

Example 1. Let

A =


1 18

19 0 1
19 0

412
475 4 58

19 1 17.08
13

475
20
19 7.76 8 0.92

1
19 0 18

19 10 0
1
19 0 0 18

19
23
9


.

Taking α = 19
20 , we will show that

(1) The matrix A satisfies the conditions of Theorem 1 in this paper, so we can determine that A is a
nonsingular H-matrix according to Theorem 1.
(2) A does not meet the criteria in [13–15], so it cannot be determined by applying the methods in
these papers.

In fact, for (1), it can be obtained through calculation that

R1(A) = C1(A) = |a11| = 1 = αR1(A) + (1 − α)C1(A) = Λ1(A),

R2(A) = 22,C2(A) = 2,

|a22| = 4 < αR2(A) + (1 − α)C2(A) = Λ2(A) =
19
20
× 22 +

1
20
× 2 = 21.

R3(A) = 10,C3(A) = 4,
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|a33| = 7.76 < αR3(A) + (1 − α)C3(A) = Λ3(A) = 19
20 × 10 + 1

20 × 4 = 9.7.

R4(A) = 1,C4(A) = 10,

|a44| = 10 > αR4(A) + (1 − α)C4(A) = Λ4(A) =
19
20
× 1 +

1
20
× 10 = 1.45.

R5(A) = 1,C5(A) = 18,

|a55| = 2.825 > αR5(A) + (1 − α)C5(A) = Λ5(A) =
19
20
× 1 +

1
20
× 18 = 1.85.

So, M1(α) = {1},M2(α) = {2, 3},M3(α) = {4, 5}. And then

r = max{
19
20 (|a41| + |a42| + |a43|)

|a44| −
19
20 |a45| +

1
20C4(A)

,
19
20 (|a51| + |a52| + |a53|)

|a55| −
19
20 |a54| −

1
20C5(A)

}

= max{
19
20 ( 1

19 + 0 + 18
19 )

10 − 19
20 × 0 + 1

20 × 10
,

19
20 ( 1

19 + 0 + 0)
23
9 −

19
20 ×

18
19 −

1
20 × 18

} = max{
1

10
,

9
136
} =

1
10
,

s = max{
Λ2(A) − |a22|

Λ2(A)
,
Λ3(A) − |a33|

Λ3(A)
} = max{

21 − 4
21

,
9.7 − 7.76

9.7
} =

17
21
,

δ = max{r, s} = max{
1

10
,
17
21
} =

17
21
.

T4,r(A) = α(|a41| + |a42| + |a43| + r|a45|) + (1 − α)rC4(A)

=
19
20

(
1

19
+ 0 +

18
19

+
1

10
× 0) +

1
20
×

1
10
× 10 =

19
20

+
1

20
= 1,

T5,r(A) = α(|a51| + |a52| + |a53| + r|a54|) + (1 − α)rC5(A)

=
19
20

(
1

19
+ 0 + 0 +

1
10
×

18
19

) +
1

20
×

1
10
× 18 =

23
100

= 0.23.

δα(|a41| + |a42| + |a43|)

T4,r(A) − α|a45|
T5,r(A)
|a55 |
− (1 − α)C4(A)T4,r(A)

|a44 |

=

17
21 ×

19
20 ( 1

19 + 0 + 18
19 )

1 − 19
20 × 0 × 0.23

23/9 −
1

20 × 10 × 1
10

=
17
21
,

δα(|a51| + |a52| + |a53|)

T5,r(A) − α|a54|
T4,r(A)
|a44 |
− (1 − α)C5(A)T5,r(A)

|a55 |

=

17
21 ×

19
20 ( 1

19 + 0 + 0)

0.23 − 19
20 ×

18
19 ×

1
10 −

1
20 × 18 × 0.23

23/9

=
850

1239
.

Therefore, h = max{ 17
21 ,

850
1239 } = 17

21 . And notice that

|a22|
Λ2(A) − |a22|

Λ2(A)
= 4 ×

21 − 4
21

=
68
21

= 3.2381,

α[δ|a21| + |a23|
Λ3(A) − |a33|

Λ3(A)
+ h(|a24|

T4,r(A)
|a44|

+ |a25|
T5,r(A)
|a55|

)] + (1 − α)C2(A)
Λ2(A) − |a22|

Λ2(A)

=
19
20
× [

17
21
×

412
475

+
58
19
×

1
5

+
17
21
× (1 ×

1
10

+ 17.08 ×
0.23
23/9

)] +
1

20
× 2 ×

17
21

= 2.5871,

|a22|
Λ2(A) − |a22|

Λ2(A)
> α[δ|a21| + |a23|

Λ3(A) − |a33|

Λ3(A)
+ h(|a24|

T4,r(A)
|a44|

+ |a25|
T5,r(A)
|a55|

)] + (1 − α)C2(A)
Λ2(A) − |a22|

Λ2(A)
.
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|a33|
Λ3(A) − |a33|

Λ3(A)
= 7.76 ×

1
5

= 1.5520,

α[δ|a31| + |a32|
Λ2(A) − |a22|

Λ2(A)
+ h(|a34|

T4,r(A)
|a44|

+ |a35|
T5,r(A)
|a55|

)] + (1 − α)C3(A)
Λ3(A) − |a33|

Λ3(A)

=
19
20
× [

17
21
×

13
475

+
20
19
×

17
21

+
17
21
× (8 ×

1
10

+ 0.92 ×
0.23
23/9

)] +
1

20
× 4 ×

1
5

= 1.5495,

|a33|
Λ3(A) − |a33|

Λ3(A)
> α[δ|a31| + |a32|

Λ2(A) − |a22|

Λ2(A)
+ h(|a34|

T4,r(A)
|a44|

+ |a35|
T5,r(A)
|a55|

)] + (1 − α)C3(A)
Λ3(A) − |a33|

Λ3(A)
.

To sum up, the conditions of Theorem 1 in this paper are satisfied. So we can determine that A is a
nonsingular H-matrix.

For (2), it is calculated that
|a22| = 4,

R2(A)
|a22|

(|a21|
a11

R1(A)
+ |a23|

a33

R3(A)
+

R4(A)
|a44|

+
R5(A)
|a55|

) =
22
4

(
412
475
×

1
1

+
58
19
×

7.76
10

+
1

10
+

1
23/9

) = 20.2622,

|a22| <
R2(A)
|a22|

(|a21|
a11

R1(A)
+ |a23|

a33

R3(A)
+

R4(A)
|a44|

+
R5(A)
|a55|

).

Then the conditions of the decision theorem in [13] are not satisfied.

R2(A)
R2(A) − |a22|

(|a21| + |a23|
R3(A) − |a33|

R3(A)
+ |a24|

R4(A)
|a44|

+ |a25|
R5(A)
|a55|

)

=
22

22 − 4
(
412
475

+
58
19
×

10 − 7.76
10

+ 1 ×
1

10
+ 17.08 ×

1
23/9

) = 9.2791,

|a22| <
R2(A)

R2(A) − |a22|
(|a21| + |a23|

R3(A) − |a33|

R3(A)
+ |a24|

R4(A)
|a44|

+ |a25|
R5(A)
|a55|

).

So the conditions of the decision theorem in [14] are also not satisfied.
Further calculation shows that

r = max{
|a41| + |a42| + |a43|

|a44| − |a45|
,
|a51| + |a52| + |a53|

|a55| − a54|
} = max{

1
19 + 0 + 18

19

10 − 0
,

1
19 + 0 + 0

23
9 −

18
19

} =
1

10
,

P4(A) = |a41| + |a42| + |a43| + r × |a45| =
1

19
+ 0 +

18
19

+
1

10
× 0 = 1,

P5(A) = |a51| + |a52| + |a53| + r × |a54| =
1

19
+ 0 + 0 +

1
10
×

18
19

=
14
95
.

|a33| = 7.76,

R3(A)
R3(A) − |a33|

(|a31| + |a32|
R2(A) − |a22|

R2(A)
+ |a34|

P4(A)
|a44|

+ |a35|
P5(A)
|a55|

)

=
10

10 − 7.76
× (

13
475

+
20
19
×

22 − 4
22

+ 8 ×
1

10
+ 0.92 ×

14/95
23/9

) = 7.7753,
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|a33| <
R3(A)

R3(A) − |a33|
(|a31| + |a32|

R2(A) − |a22|

R2(A)
+ |a34|

P4(A)
|a44|

+ |a35|
P5(A)
|a55|

).

|a22| = 4,
R2(A)

R2(A) − |a22|
(|a21| + |a23|

R3(A) − |a33|

R3(A)
+ |a24|

P4(A)
|a44|

+ |a25|
P5(A)
|a55|

)

=
22

22 − 4
× (

412
475

+
58
19
×

10 − 7.76
10

+ 1 ×
1
10

+ 17.08 ×
14/95
23/9

) = 3.0881,

|a22| >
R2(A)

R2(A) − |a22|
(|a21| + |a23|

R3(A) − |a33|

R3(A)
+ |a24|

P4(A)
|a44|

+ |a25|
P5(A)
|a55|

).

The conditions of the decision theorem in [15] are not satisfied.
Therefore, we know that the matrix A does not meet the criteria in [13–15], so it cannot be

determined by these existing methods.

Example 2. Let

A =



1 0.1 −0.1 −0.1 0.1 0
0.1 0.6 0 0 −0.2 0.3
0.1 0 0.4 −0.1 0 −0.3
−0.1 0 −0.1 0.3 0 0.2
0.1 0.1 −0.1 −0.1 0.5 0.1
0 −0.4 0.1 0 −0.2 2


.

Taking α = 1
4 , we will show that

(1) The matrix A satisfies the conditions of Theorem 3 in this paper, so we can get that A is a
nonsingular H-matrix.
(2) A does not meet the criteria in [10, 16], so it cannot be determined by applying the methods
in [10, 16].

In fact, for (1), it is calculated that

R1(A) = 0.4,C1(A) = 0.4, |a11| = 1 > Q1(A) = 0.4
1
4 × 0.4

3
4 = 0.4,

R2(A) = 0.6,C2(A) = 0.6, |a22| = 0.6 = Q2(A) = 0.6
1
4 × 0.6

3
4 = 0.6,

R3(A) = 0.5,C3(A) = 0.4, |a33| = 0.4 < Q3(A) = 0.5
1
4 × 0.4

3
4 = 0.4229,

R4(A) = 0.4,C4(A) = 0.3, |a44| = 0.3 < Q4(A) = 0.4
1
4 × 0.3

3
4 = 0.3224,

R5(A) = 0.5,C5(A) = 0.5, |a55| = 0.5 = 0.5
1
4 × 0.5

3
4 = 0.5,

R6(A) = 0.7,C6(A) = 0.9, |a66| = 2 > 0.7
1
4 × 0.9

3
4 = 0.8452.

So N1(α) = {3, 4}, N2(α) = {2, 5}, N3(α) = {1, 6}, and then calculate

P1(A) = [|a13|
Q3(A)−|a33 |

Q3(A) + |a14|
Q4(A)−|a44 |

Q4(A) + |a12| + |a15| + |a16|
R6(A)(C6(A))3

|a66 |4
](C1(A))3

= [0.1 × 0.2295
0.4229 + 0.1 × 0.0224

0.3224 + 0.1 + 0.1 + 0 × 0.7×(0.9)3

24 ] × 0.43 = 0.0136,

P6(A) = [|a63|
Q3(A)−|a33 |

Q3(A) + |a64|
Q4(A)−|a44 |

Q4(A) + |a62| + |a65| + |a61|
R1(A)(C1(A))3

|a11 |4
](C6(A))3

= [0.1 × 0.2295
0.4229 + 0.1 × 0.0224

0.3224 + 0.4 + 0.2 + 0 × 0.4×(0.4)3

14 ] × 0.93 = 0.4414.
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|a33|
Q3(A)−|a33 |

Q3(A) = 0.4 × 0.2295
0.4229 = 0.0217

> [|a34|
Q4(A)−|a44 |

Q4(A) + |a32| + |a35| + |a31|
P1(A)
|a11 |4

+ |a36|
P6(A)
|a66 |4

]
1
4 [C3(A) Q3(A)−|a33 |

Q3(A) ]
3
4

= [0.1 × 0.0224
0.3224 + 0 + 0 + 0.1 × 0.0136

14 + 0.3 × 0.4414
24 ]

1
4 × [0.4 × 0.0229

0.4229 ]
3
4

= (0.0166)
1
4 × (0.2173)

3
4 = 0.0203,

|a44|
Q4(A)−|a44 |

Q4(A) = 0.3 × 0.0224
0.3224 = 0.0208

> [|a43|
Q3(A)−|a33 |

Q3(A) + |a42| + |a45| + |a41|
P1(A)
|a11 |4

+ |a46|
P6(A)
|a66 |4

]
1
4 [C4(A) Q4(A)−|a44 |

Q4(A) ]
3
4

= [0.1 × 0.2295
0.4229 + 0 + 0 + 0.1 × 0.0136

14 + 0.2 × 0.4414
24 ]

1
4 × [0.3 × 0.0224

0.3224 ]
3
4

= (0.0123)
1
4 × (0.0208)

3
4 = 0.0183.

So the conditions of Theorem 3 in this paper are satisfied, thus we can determine that A is a
nonsingular H-matrix.

For (2), using Theorem 3 in [16], we can get

E1(A) =
1
4

R1(A) +
3
4

C1(A) =
1
4
× 0.4 +

3
4
× 0.4 = 0.4 < |a11| = 1,

E2(A) =
1
4

R2(A) +
3
4

C2(A) =
1
4
× 0.6 +

3
4
× 0.6 = 0.6 = |a22|,

E3(A) =
1
4

R3(A) +
3
4

C3A) =
1
4
× 0.5 +

3
4
× 0.4 = 0.425 > |a33| = 0.4,

E4(A) =
1
4

R4(A) +
3
4

C4(A) =
1
4
× 0.4 +

3
4
× 0.3 = 0.325 > |a44| = 0.3,

E5(A) =
1
4

R5(A) +
3
4

C5(A) =
1
4
× 0.5 +

3
4
× 0.5 = 0.5 = |a55|,

E6(A) =
1
4

R6(A) +
3
4

C6(A) =
1
4
× 0.7 +

3
4
× 0.9 = 0.85 < |a66| = 2.

It can be obtained through calculation that

P1(A) = 1
4 (|a13|

E3(A)−|a33 |

E3(A) + |a14|
E4(A)−|a44 |

E4(A) + |a12| + |a15| + |a16|
E1(A)
|a66 |

) + 3
4C1(A) E1(A)

|a11 |

= 1
4 × (0.1 × 0.425−0.4

0.425 + 0.1 × 0.325−0.3
0.325 + 0.1 + 0.1 + 0 × 0.85

2 ) + 3
4 × 0.4 × 0.4

1
= 0.0534 + 0.12 = 0.1734,

P6(A) = 1
4 (|a63|

E3(A)−|a33 |

E3(A) + |a64|
E4(A)−|a44 |

E4(A) + |a62| + |a65| + |a61|
E1(A)
|a11 |

) + 3
4C6(A) E6(A)

|a66 |

= 1
4 × (0.1 × 0.425−0.4

0.425 + 0.1 × 0.325−0.3
0.325 + 0.4 + 0.2 + 0 × 0.4

1 ) + 3
4 × 0.9 × 0.85

2
= 0.1515 + 0.2869 = 0.4383.

|a33|
E3(A)−|a33 |

E3(A) = 0.4 × 0.425−0.4
0.425 = 0.0235

< 1
4 (|a34|

E4(A)−|a44 |

E4(A) + |a32| + |a35| + |a31|
P1(A)
|a11 |

+ |a36|
P6(A)
|a66 |

) + 3
4C3(A) E3(A)−|a33 |

E3(A)
= 1

4 (0.1 × 0.325−0.3
0.325 + 0 + 0 + 0.1 × 0.1734

1 + 0.3 × 0.4383
2 ) + 3

4 × 0.4 × 0.425−0.4
0.425

= 0.0227 + 0.0176 = 0.0403,
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|a44|
E4(A)−|a44 |

E4(A) = 0.3 × 0.325−0.3
0.325 = 0.0231

< 1
4 (|a43|

E3(A)−|a33 |

E3(A) + |a42| + |a45| + |a41|
P1(A)
|a11 |

+ |a46|
P6(A)
|a66 |

) + 3
4C4(A) E4(A)−|a44 |

E4(A)
= 1

4 (0.1 × 0.425−0.4
0.425 + 0 + 0 + 0.1 × 0.1734

1 + 0.2 × 0.4383
2 ) + 3

4 × 0.3 × 0.325−0.4
0.325

= 0.0168 + 0.0173 = 0.0341.

So the matrix A does not satisfy the conditions of the theorem in [16], thus it cannot be judged using
the method in [16].

Using Theorem 3 in [10], we can obtain

x1 =

1
4R1(A) + 3

4C1(A)
|a11|

=

1
4 × 0.4 + 3

4 × 0.4
1

= 0.4,

x2 =

1
4R2(A) + 3

4C2(A)
|a22|

=

1
4 × 0.6 + 3

4 × 0.6
0.6

= 1,

x3 =

1
4R3(A) + 3

4C3(A)
|a33|

=

1
4 × 0.5 + 3

4 × 0.4
0.5

=
0.425
0.4

= 1.0625,

x4 =

1
4R4(A) + 3

4C4(A)
|a44|

=

1
4 × 0.4 + 3

4 × 0.3
0.3

= 1.0833,

x5 =

1
4R5(A) + 3

4C5(A)
|a55|

=

1
4 × 0.5 + 3

4 × 0.5
0.5

= 1,

x6 =

1
4R6(A) + 3

4C6(A)
|a66|

=

1
4 × 0.7 + 3

4 × 0.9
21

=
0.85

2
= 0.425.

It is known by calculation that

|a33| = 0.4
< x3

x3−1
1
4 [|a32| + |a35| + (1 − 1

x4
)|a34| + x1|a31| + x6|a36|] + 3

4C3(A)
< 1.0625

1.0625−1 ×
1
4 × [0 + 0 + (1 − 0.3

0.325 ) × 0.1 + 0.4 × 0.1 + 0.425 × 0.3]
= 0.7446 + 0.3 = 1.0446.

|a44| = 0.3
< x4

x4−1
1
4 [|a42| + |a45| + (1 − 1

x3
)|a43| + x1|a41| + x6|a46|] + 3

4C4(A)

<
0.325
0.3

0.325
0.3 −1

× 1
4 × [0 + 0 + (1 − 0.4

0.425 ) × 0.1 + 0.4 × 0.1 + 0.425 × 0.2] + 3
4 × 0.4

= 0.4254 + 0.225 = 0.6504.

Through calculation, we know that the matrix A also does not meet the criteria in [10], so it also
cannot be determined by applying the method in [10].

6. Conclusions

In this paper, based on the relevant properties of two classes of α-diagonally dominant matrices, we
obtain several sufficient conditions to determine nonsingular H-matrix, which improves the existing
results and also extends the determination theory of nonsingular H-matrix.
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