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1. Introduction

In complex geometry, B.-Y Chen [5, 6] generalized the concept of totally real and holomorphic
submanifolds by defining the slant submanifolds; while in contact geometry, A. Lotta [14] extended the
notion to almost contact metric manifolds. In addition, Cabreizo et al. established in [3] the existence
and uniqueness theorems for slant immersions in Sasakian space forms and obtained similar results of
Chen and L. Vrancken [8,9]. In contact geometry, this subject was studied in many structures, such as
cosymplectic space forms [12] and Kenmotsu space forms [15].

The pointwise slant submanifolds were introduced by F. Etayo [11] under the name of quasi-slant
submanifolds. Later, Chen and Garay [7] studied pointwise slant submanifolds of almost Hermitian
manifolds. After that Park [16] studied this idea in almost contact metric manifolds. In particular,
the study of pointwise slant immersions of Sasakian manfolds were presented in [13]. Recently, the
pointwise slant submanifolds were studied in different structures on a Riemannian manifold [17,18,20].

As continuation of [1], in this paper we extend the study for existence and uniqueness theorems in
contact geometry, especially in Sasakian space forms. First, we review basic formulas and properties
for the pointwise slant submanifolds of an almost contact metric manifold which we shall use later.
Then, we present the existence and uniqueness theorems. Furthermore, at the end of this paper, we
provide some non-trivial examples of general pointwise slant immersions in Euclidean spaces with an
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almost contact structure.

2. Preliminaries

Let M̃ be a (2m + 1) dimensional Riemannian manifold, then M̃ is said to be an almost contact
metric manifold if it equipped with an almost contact metric structure (φ, ξ, η, g) such that φ is a tensor
field of type (1, 1), ξ a structure vector field, η is a 1-form and g is a Riemannian metric on M̃ satisfying
the following properties [2]

φ2X = −X + η(X)ξ, ϕξ = 0, η(ϕX) = 0, η(ξ) = 1, (2.1)

and

g(φX, φY) = g(X,Y) − η(X)η(Y), η(X) = g(X, ξ), (2.2)

for any X,Y ∈ Γ(T M̃), where Γ(T M̃) be the set of all smooth vector fields on M̃.
In other words, from (2.2), we see that

g(φX,Y) = −g(X, φY),

which means that g(φX, X) = 0, i.e., φX⊥X for each vector field X on M̃.
An almost contact metric structure (φ, ξ, η, g) on M̃ is called a contact metric structure if dη = Ω,

where Ω is the fundamental 2-form, defined by Ω(X,Y) = g(φX,Y) [2].
If we extend the Riemannian connection ∇̃ to be a covariant derivative of the tensor field φ, then we

have the following formula

(∇̃Xφ)Y = ∇̃XφY − φ∇̃XY, (2.3)

for any X,Y ∈ Γ(T M̃).
If the structure vector field ξ is Killing with respect to g, the contact metric structure is called a K-

contact structure. It is known that a contact metric manifold is K- contact if and only if

∇̃Xξ = −φX,

for all X ∈ Γ(T M̃).
An almost contact structure on M̃ is said to be normal if,

Nφ + 2dη ⊗ ξ = 0,

where Nφ is the Nijenhuis tensor of the tensor field φ. A normal contact metric manifold is called a
Sasakian manifold.

It is easy to show that an almost contact metric manifold is Sasakian if and only if [2]

(∇̃Xφ)Y = g(X,Y)ξ − η(Y)X, (2.4)

for any X,Y ∈ Γ(T M̃). Furthermore, from (2.4), we find that

∇̃Xξ = −φX. (2.5)
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Every Sasakian manifold is a K-contact metric manifold.
Let M̃ be a (2m + 1) dimensional Sasakian manifold, and π be a plane section in the tangent space

TpM̃, then π is said to be a φ-section if it is spanned by X and φX, such that X be a unit tangent vector
field orthogonal to ξ. The sectional curvature K(π) of a φ-section π is said to be φ-sectional curvature.
The Sasakian manifold M̃ with the constant φ-sectional curvature c is called a Sasakian space form.
We denote by M̃2m+1(c) the complete simply connected Sasakian space form of dimension (2m + 1)
with the constant φ-sectional curvature c [19].

The curvature tensor of M̃2m+1(c) is given by

R̃(X,Y)Z =
c + 3

4

{
g(Y,Z)X − g(X,Z)Y

}
+

c − 1
4

{
η(X)η(Z)Y

− η(Y)η(Z)X + g(X,Z)η(Y)ξ − g(Y,Z)η(X)ξ (2.6)

+ g(φY,Z)φX − g(φX,Z)φY + 2g(X, φY)φZ
}
,

for any X,Y,Z ∈ Γ(T M̃) [2].
Now, let M be a (n + 1)-dimensional submanifold of an almost contact metric manifold. We denote

by T M the tangent bundle of M and by T⊥M the set of all vectors fields normal to M. For any
X ∈ Γ(T M), we put

φX = T X + FX, (2.7)

where T X and FX are the tangential and normal components of φX, respectively. Also, for any U ∈
Γ(T⊥M), we write

φU = tU + f U, (2.8)

where tU and f U are the tangential and normal components of φU, respectively.
A submanifold M of an almost contact metric manifold M̃ tangent to the structure vector field ξ is

called an invariant if F is identically zero, that is φX ∈ Γ(T M), for any X ∈ Γ(T M), while M is called
an anti-invariant if T is identically zero, that is φX ∈ Γ(T⊥M), for any X ∈ Γ(T M).

Let ∇ indicate the Levi-Civita connection on M, while ∇⊥ is the normal connection in the normal
bundle T⊥M of M. Then, the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + h(X,Y),

∇̃XU = −AU X + ∇⊥XU,

for any X,Y ∈ Γ(T M) and U ∈ Γ(T⊥M) such that h is the second fundamental form of M, and AU is
the shape operator corresponding to U, which are related by

g(AU X,Y) = g(h(X,Y),U). (2.9)

If we let R be the curvature tensor of M, and R⊥ be the curvature tensor of the normal connection ∇⊥.
Then the equation of Gauss, Ricci and Codazzi are given respectively by [4]

R̃(X,Y; Z,W) = R(X,Y; Z,W) + g(h(X,Z), h(Y,W)) − g(h(X,W), h(Y,Z)), (2.10)
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R̃(X,Y; U,V) = R⊥(X,Y; U,V) − g([AU , AV]X,Y) (2.11)

and

(R̃(X,Y)Z)⊥ = (∇Xh)(Y,Z) − (∇Yh)(X,Z), (2.12)

for all X,Y,Z,W ∈ Γ(T M), and U,V ∈ Γ(T⊥M), where (R̃(X,Y)Z)⊥ denotes the normal component of
R̃(X,Y)Z, and the covariant derivative ∇h is given by

(∇Xh)(Y,Z) = ∇⊥Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ). (2.13)

The covariant derivative of T and F, respectively given by

(∇XT )Y = ∇XTY − T (∇XY), (2.14)

(∇XF)Y = ∇⊥X FY − F(∇XY). (2.15)

3. Pointwise slant submanifolds of an almost contact metric manifold

In this section we recall some results of pointwise slant submanifolds of an almost contact metric
manifold M̃.

Definition 3.1. [16] A submanifold M of an almost contact metric manifold M̃ is said to be pointwise
slant, if for each point p ∈ M, the Wirtinger angle θ(X) between φX and TpM is independent of
the choice of a non-zero vector X ∈ TpM. The Wirtinger angle gives rise to a real-valued function
θ : T M − {0} → R which is called the Wirtinger function or slant function of the pointwise slant
submanifold.

We note that a pointwise slant submanifold of M̃ is called slant, if its Wirtinger function θ is globally
constant and also, it is called a proper pointwise slant if it is neither invariant nor anti-invariant nor θ
is constant on M [5, 6].

We recall the following result for a pointwise slant submanifold of an almost contact metric
manifold M̃ [20].

Theorem 3.1. A submanifold M tangent to the structure vector field ξ is a pointwise θ-slant
submanifold of an almost contact metric manifold M̃ if and only if

T 2X = cos2 θ(−X + η(X)ξ), (3.1)

for the slant function θ defined on M.

The following relations are the consequence of Eq (3.1)

g(T X,TY) = cos2 θ(g(X,Y) − η(X)η(Y)), (3.2)

g(FX, FY) = sin2 θ(g(X,Y) − η(X)η(Y)). (3.3)
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for any X,Y ∈ Γ(T M).
Another useful relation for pointwise slant submanifolds of M̃ comes from (2.1) and (3.1) given

in [20] as follows:

(a)tFX = sin2 θ(−X + η(X)ξ), (3.4)
(b) f FX = −FT X,

for all X ∈ Γ(T M).

Lemma 3.1. [13] Let M be a pointwise θ-slant submanifold in Sasakian manifold M̃. Then, we have

(∇XT )Y = AFY X + th(X,Y) + g(X,Y)ξ − η(Y)X, (3.5)

(∇XF)Y = f h(X,Y) − h(X,TY), (3.6)

for any X,Y ∈ Γ(T M).

Throughout this paper, we assume that the structure vector field ξ is tangent to M. Thus, if we denote
by D the orthogonal distribution to ξ in T M, then we can take the orthogonal direct decomposition
T M = D⊕ 〈ξ〉.

From (2.5) and (2.7) with Gauss formula, we get that

∇Xξ = −T X and h(X, ξ) = −FX. (3.7)

Now, for each X ∈ Γ(T M) with θ , 0, we put

X∗ = (csc θ)FX. (3.8)

Let β be a symmetric bilinear T M-valued form on M defined by

β(X,Y) = th(X,Y), (3.9)

for any X,Y ∈ Γ(T M). From (3.4) and (3.7), the above equation takes the form

β(X, ξ) = (sin2 θ)(X − η(X)ξ). (3.10)

Using (2.7) and (3.8) in (3.9), we obtain

φβ(X,Y) = Tβ(X,Y) + (sin θ)β∗(X,Y). (3.11)

Then by (2.8) and (3.9), we find

φh(X,Y) = β(X,Y) + γ∗(X,Y),

where γ be a symmetric bilinear D-valued form on M defined by γ∗(X,Y) = f h(X,Y). Applying the
almost contact structure φ on the above equation, then using (2.1), (2.8) and (3.11), we get

−h(X,Y) = Tβ(X,Y) + (sin θ)β∗(X,Y) + tγ∗(X,Y) + fγ∗(X,Y),

AIMS Mathematics Volume 8, Issue 8, 17470–17483.



17475

as η(h(X,Y)) = 0. Equating the tangential and the normal components of the above relation, we obtain

Tβ(X,Y) = −tγ∗(X,Y), − h(X,Y) = (sin θ)β∗(X,Y) + fγ∗(X,Y).

Using (3.1), (3.4) and (3.8), we conclude that

γ(X,Y) = (csc θ)Tβ(X,Y).

Also,

h(X,Y) = −(csc θ)β∗(X,Y), (3.12)

Using (2.7) and (3.8), the above equation takes the form

h(X,Y) = (csc2 θ)(Tβ(X,Y) − φβ(X,Y)). (3.13)

Taking the inner product of (3.5) with Z ∈ Γ(T M) and using (2.2), (2.7)–(2.9) and (3.9), we derive

g((∇XT )Y,Z) = g(β(X,Y),Z) − g(β(X,Z),Y) + g(X,Y)η(Z) − g(X,Z)η(Y).

For (n + 1)-dimensional pointwise θ-slant submanifold M of M̃2m+1(c), we derive the equation of
Gauss and Codazzi of M in M̃2m+1(c) as follows:

From (2.6) and (2.7), we have

R̃(X,Y; Z,W) =
c + 3

4

{
g(X,W)g(Y,Z) − g(X,Z)g(Y,W)

}
+

c − 1
4

{
η(X)η(Z)g(Y,W) − η(Y)η(Z)g(X,W)

+ η(Y)η(W)g(X,Z) − η(X)η(W)g(Y,Z)
+ g(T X,W)g(TY,Z) − g(T X,Z)g(TY,W)

+ 2g(X,TY)g(TZ,W)
}
.

From (2.10), (3.2) and (3.13), the above equation takes the form

R(X,Y; Z,W) = csc2 θ
{
g(β(X,W), β(Y,Z)) − g(β(X,Z), β(Y,W))

}
+

c + 3
4

{
g(X,W)g(Y,Z) − g(X,Z)g(Y,W)

}
+

c − 1
4

{
η(X)η(Z)g(Y,W) − η(Y)η(Z)g(X,W)

+ η(Y)η(W)g(X,Z) − η(X)η(W)g(Y,Z)
+ g(T X,W)g(TY,Z) − g(T X,Z)g(TY,W)

+ 2g(X,TY)g(TZ,W)
}
,

which gives us the Gauss equation of M in M̃2m+1(c).
Next, for the Codazzi equation if we take the normal parts of (2.6), we obtain

(R̃(X,Y)Z)⊥ =
c − 1

4

{
g(TY,Z)FX − g(T X,Z)FY + 2g(X,TY)FZ

}
. (3.14)
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Furthermore, it follows from (3.8) and (3.12) that

∇⊥X(h(Y,Z)) = ∇⊥X(−(csc2 θ)Fβ(Y,Z)),

which yields

∇⊥X(h(Y,Z)) = −(csc2 θ)∇⊥X Fβ(Y,Z) + 2(csc2 θ cot θ)X(θ)Fβ(Y,Z).

Then by (2.15) and (3.6), the above equation takes the form

∇⊥X(h(Y,Z)) = −(csc2 θ)
[
f h(X, β(Y,Z)) − h(X,Tβ(Y,Z)) + F(∇Xβ(Y,Z)) − 2(cot θ)X(θ)Fβ(Y,Z)

]
.

On the other hand, it also from (3.8) and (3.12) that

h(∇XY,Z) = −(csc2 θ)Fβ(∇XY,Z).

Similarly,

h(Y,∇XZ) = −(csc2 θ)Fβ(Y,∇XZ).

Substituting these relations into (2.13), we obtain

(∇Xh)(Y,Z) = −(csc2 θ)
[
f h(X, β(Y,Z)) − h(X,Tβ(Y,Z)) + F((∇Xβ)(Y,Z)) − 2(cot θ)X(θ)Fβ(Y,Z)

]
.

By (3.4), (3.8) and (3.12), we can write

(∇Xh)(Y,Z) = − (csc2 θ)
[
(csc2 θ)FTβ(X, β(Y,Z))

+ (csc2 θ)Fβ(X,Tβ(Y,Z)) + F((∇Xβ)(Y,Z))

− 2(cot θ)X(θ)Fβ(Y,Z)
]
. (3.15)

Similarly, we have

(∇Yh)(X,Z) = − (csc2 θ)
[
(csc2 θ)FTβ(Y, β(X,Z))

+ (csc2 θ)Fβ(Y,Tβ(X,Z)) + F((∇Yβ)(X,Z))

− 2(cot θ)Y(θ)Fβ(X,Z)
]
. (3.16)

Finally, applying (3.14)–(3.16) in Codazzi equation, we get

(∇Xβ)(Y,Z) − g(β(Y,Z),T X)ξ − 2(cot θ)X(θ)β(Y,Z)
+ (csc2 θ)

{
Tβ(X, β(Y,Z)) + β(X,Tβ(Y,Z))

}
+

c − 1
4

(sin2 θ)
{
g(X,TY)(Z − η(Z)ξ) + g(X,TZ)(Y − η(Y)ξ))

}
= (∇Yβ)(X,Z) − g(β(X,Z),TY)ξ − 2(cot θ)Y(θ)β(X,Z)

+ (csc2 θ)
{
Tβ(Y, β(X,Z)) + β(Y,Tβ(X,Z))

}
+

c − 1
4

(sin2 θ)
{

g(Y,T X)(Z − η(Z)ξ) + g(Y,TZ)(X − η(X)ξ)
}
.
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4. Existence and uniqueness theorems

In this section we present the detailed proofs of the existence and uniqueness theorems for pointwise
slant immersions into a Sasakian space form.

Theorem 4.1. (Existence Theorem) Let M be the connected Riemannian manifold of dimension (n + 1)
equipped with metric tensor g. Suppose that c is a constant and there exists a smooth function θ on M
satisfying 0 < θ ≤ π

2 , an endomorphism T of the tangent bundle T M, a unit global vector field ξ and a
symmetric bilinear T M-valued form β on M such that the following conditions are satisfied:

T (ξ) = 0, g(β(X,Y), ξ) = 0, ∇Xξ = −T X, (4.1)

T 2X = (cos2 θ)(−X + η(X)ξ), (4.2)

g(T X,Y) = −g(X,TY), (4.3)

β(X, ξ) = (sin2 θ)(X − η(X)ξ), (4.4)

g((∇XT )Y,Z) = g(β(X,Y),Z) − g(β(X,Z),Y) + g(X,Y)η(Z) − g(X,Z)η(Y), (4.5)

R(X,Y; Z,W) = (csc2 θ)
{
g(β(X,W), β(Y,Z)) − g(β(X,Z), β(Y,W))

}
+

c + 3
4

{
g(X,W)g(Y,Z) − g(X,Z)g(Y,W)

}
+

c − 1
4

{
η(X)η(Z)g(Y,W) − η(Y)η(Z)g(X,W)

+ η(Y)η(W)g(X,Z) − η(X)η(W)g(Y,Z)
+ g(T X,W)g(TY,Z) − g(T X,Z)g(TY,W)

+ 2g(X,TY)g(TZ,W)
}
, (4.6)

and
(∇Xβ)(Y,Z) − g(β(Y,Z),T X)ξ − 2(cot θ)X(θ)β(Y,Z)

+ (csc2 θ)
{
Tβ(X, β(Y,Z)) + β(X,Tβ(Y,Z))

}
+

c − 1
4

(sin2 θ)
{
g(X,TY)(Z − η(Z)ξ) + g(X,TZ)(Y − η(Y)ξ))

}
= (∇Yβ)(X,Z) − g(β(X,Z),TY)ξ − 2(cot θ)Y(θ)β(X,Z)

+ (csc2 θ)
{
Tβ(Y, β(X,Z)) + β(Y,Tβ(X,Z))

}
+

c − 1
4

(sin2 θ)
{

g(Y,T X)(Z − η(Z)ξ) + g(Y,TZ)(X − η(X)ξ)
}
.

(4.7)

for X,Y,Z ∈ Γ(T M), where η be the dual 1-form of ξ. Then there exists a pointwise θ-slant isometric
immersion of M into a Sasakian space form M̃2m+1(c) such that the second fundamental form h of M is
given by

h(X,Y) = (csc2 θ)(Tβ(X,Y) − φβ(X,Y)). (4.8)
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Proof. Assume that c, θ, ξ, T and M satisfy the given conditions. Suppose that T M⊕D be a Whitney
sum. For each X ∈ Γ(T M) and Z ∈ Γ(D) we simply denote (X, 0) by X, (0,Z) by Z∗ and ξ̂ = (ξ, 0)
with ξ.

Let ĝ be the product metric on T M⊕D. So, if we set η̂ as the dual 1-form of ξ̂, then η̂(X,Z) = η(X),
for any X ∈ T M and Z ∈ D.

We define the endomorphism φ̂ on T M ⊕D by

φ̂(X, 0) = (T X, (sin θ)(X − η(X)ξ)), φ̂(0,Z) = (−(sin θ)Z,−TZ), (4.9)

for each X ∈ Γ(T M) and Z ∈ Γ(D). Then, we find φ̂2(X, 0) = −(X, 0)+ η̂(X, 0)ξ̂. Also, φ̂2(0,Z)=−(0,Z).
Hence, φ̂2(X,Z) = −(X,Z) + η̂(X,Z)ξ̂ for any X ∈ Γ(T M) and Z ∈ Γ(D). From (4.2), (4.3) and (4.9) it
is directly to check that (φ̂, η̂, ξ̂, ĝ) is an almost contact metric structure on T M ⊕D.

Now, we can define an endomorphism A on T M, a (D)∗-valued symmetric bilinear form h on T M
and a metric connection ∇⊥ of the vector bundle (D)∗ over M by

AZ∗X = (csc θ){(∇XT )Z − β(X,Z) − g(X,Z)ξ}, (4.10)

h(X,Y) = −(csc θ)β∗(X,Y), (4.11)

∇⊥XZ∗ = (∇XZ − η(∇XZ)ξ)∗ − (cot θ)X(θ)Z∗ + (csc2 θ){(Tβ(X,Z))∗ + β∗(X,TZ)}, (4.12)

for X,Y ∈ Γ(T M) and Z ∈ Γ(D).
Denote by ∇̂ the canonical connection on T M ⊕ D induced from Eqs (4.9)–(4.12). Using (4.1),

(4.2), (4.4) and (4.9), we get

(∇̂(X,0)φ̂)(Y, 0) = ĝ((X, 0), (Y, 0))ξ̂ − η̂(Y, 0)(X, 0),

(∇̂(X,0)φ̂)(0,Z) = 0,

for any X,Y ∈ Γ(T M) and Z ∈ Γ(D).
Let R⊥ be the curvature tensor associated with the connection ∇⊥ on (D)∗, which gives by

R⊥(X,Y)Z∗ = ∇⊥X∇
⊥
Y Z∗ − ∇⊥Y∇

⊥
XZ∗ − ∇⊥[X,Y]Z

∗,

for any X,Y ∈ Γ(T M) and Z ∈ Γ(D). Then by (4.12), we have

R⊥(X,Y)Z∗ = ∇⊥X
[
(∇YZ − η(∇YZ)ξ)∗ − (cot θ)Y(θ)Z∗

+ csc2 θ{(Tβ(Y,Z))∗ + β∗(Y,TZ)}
]

− ∇⊥Y
[
(∇XZ − η(∇XZ)ξ)∗ − (cot θ)X(θ)Z∗

+ csc2 θ{(Tβ(X,Z))∗ + β∗(X,TZ)}
]

− (∇[X,Y]Z − η(∇[X,Y]Z)ξ)∗ + (cot θ)[X,Y](θ)Z∗

− (csc2 θ){(Tβ([X,Y],Z))∗ + β∗([X,Y],TZ)}.

Using (2.14), (4.1), (4.3), (4.7) and (4.12), we simplify

R⊥(X,Y)Z∗ = (csc2 θ)
[
Y(θ) − X(θ)

]
Z∗ + (R(X,Y)Z − η(R(X,Y)Z)ξ)∗
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+
{c − 1

4
T
[
g(Y,TZ)X − g(X,TZ)Y − 2g(X,TY)Z

]
+

c − 1
4

[
g(Y,T 2Z)(X − η(X)ξ) − g(X,T 2Z)(Y − η(Y)ξ)

− 2g(X,TY)TZ
]

(4.13)
+ csc2 θ

[
(∇̃XT )β(Y,Z) − (∇YT )β(X,Z) − η(∇XTβ(Y,Z))ξ

+ η(∇YTβ(X,Z))ξ − β(X, (∇YT )Z) + β(Y,∇XT )Z)
]}
. (4.14)

Moreover, from (4.1), (4.5), (4.10) and (4.11), we derive

g([AZ∗ , AW∗]X,Y) = csc2 θ
{
g((∇XT )W, (∇YT )Z) − g((∇XT )Z, (∇YT )W)

+ g((∇XT )Z, β(Y,W)) + g((∇YT )W, β(X,Z))
− g((∇XT )W, β(Y,Z)) − g((∇YT )Z, β(X,W)) (4.15)
+ g(β(X,W), β(Y,Z)) − g(β(X,Z), β(Y,W))

+ (1 − 2 cos2 θ)(g(X,W)g(Y,Z) − g(X,Z)g(Y,W))
}
.

Also, using (4.3), we can write

g(β(Y,Z),TW) + g(Tβ(Y,Z),W) = 0.

Taking the covariant derivative of the above equation with respect to X and using (4.3), we obtain

g(β(Y,Z), (∇XT )W) + g((∇XT )β(Y,Z),W) = 0.

Furthermore, from (4.5), we find

g((∇XT )Z, (∇YT )W) = g((∇XT )Z, β(Y,W)) − g(β(Y, (∇XT )Z),W) + cos2 θg(X,Z)g(Y,W).

Substituting the pervious relations in (4.13) and (4.15) with a direct computation, we arrive at

g(R⊥(X,Y)Z∗,W∗) − g([AZ∗ , AW∗]X,Y)

=
c − 1

4

[
(sin2 θ){g(X,W)g(Y,Z) − g(X,Z)g(Y,W)} − 2g(X,TY)g(TZ,W)

]
+ (csc2 θ)

[
Y(θ) − X(θ)

]
g(Z,W).

Notice that the above equation together with (2.6), (4.2) and (4.3) implies that (M, A,∇⊥) satisfies
the Ricci equation of a (n + 1)-dimensional pointwise θ-slant submanifold of the Sasakian space
form M̃2m+1(c), while (4.6) and (4.7) mean that (M, h) satisfies the equations of Gauss and Codazzi,
respectively. Therefore, we have a vector bundle T M ⊕ D over M equipped with product metric
g, the second fundamental form h, the shape operator A, and the connections ∇⊥ and ∇̂ which
satisfy the structure equations of a (n + 1)-dimensional pointwise θ-slant submanifold of M̃2m+1(c).
Consequently, by applying Theorem 1 of [10] we conclude that there exists a pintwise θ-slant
isometric immersion from M into M̃2m+1(c) whose second fundamental form is given by h(X,Y) =

csc2 θ(Tβ(X,Y) − φβ(X,Y)). �
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The next result provides the sufficient conditions to have the uniqueness property for pointwise slant
immersions.

Theorem 4.2. (Uniqueness Theorem) Let M̃2m+1(c) be a Sasakian space form and M be a connected
Riemannian manifold of dimension (n + 1). Let x1, x2 : M → M2m+1(c) be two pointwise θ-slant
isometric immersions such that 0 < θ ≤ π

2 . Suppose that h1 and h2 be the second fundamental forms of
x1 and x2, respectively. Assume that there exists a vector field ξ̂ on M satisfies xi

∗p(ξ̂p) = ξxi(p), for any
p ∈ M and any i = 1, 2. Suppose that

g(h1(X,Y), φx1
∗Z) = g(h2(X,Y), φx2

∗Z), (4.16)

for all X,Y,Z ∈ Γ(T M). In addition, if we consider that at least one of the following conditions is
satisfied:

(i) θ = π
2 ,

(ii) there exists a point p in M such that T1 = T2,
(iii) c , 0,

then T1 = T2 and there exists an isometry α of M̃2m+1(c) such that x1 = α(x2).

Proof. The proof of this Theorem is similar of the Uniqueness Theorem in the complex space forms
(see [1, 8]) by taking ξ̂ in the orthonormal frame tangent to M. �

5. Some examples of pointwise slant immersions

In this section we give some examples of general pointwise slant immersions in an almost contact
metric manifolds.

Example 5.1. Consider the Euclidean 5-space R5 with the cartesian coordinates (x1, x2, y1, y2, t) and
the almost contact structure

φ
( ∂
∂xi

)
= −

∂

∂yi
, φ

( ∂
∂y j

)
=

∂

∂x j
, φ

( ∂
∂t

)
= 0, 1 ≤ i, j ≤ 2,

such that ξ = ∂
∂t , η = dt and g be the standard Euclidean metric on R5. It is easy to show R5 is an almost

contact metric manifold with an almost contact metric structure (φ, ξ, η, g). Let M be a submanifold
of R5 given by the immersion ψ as follows:

ψ(u, v, t) = (2v, cos u, sin u, 0, t),

where u, v are non vanishing real valued functions on M. Then the tangent space of M is spanned by
the following vectors

X1 = − sin u
∂

∂x2
+ cos u

∂

∂y1
, X2 = 2

∂

∂x1
, X3 =

∂

∂t
.

Then,

φX1 = sin u
∂

∂y2
+ cos u

∂

∂x1
, φX2 = −2

∂

∂y1
, φX3 = 0.
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Hence, the slant angle is given by

cos θ =
g(X2, φX1)
‖X2‖‖φX1‖

=
2 cos u

2
= cos u.

So, θ = u is a slant function and from it ψ is a pointwise slant immersion with pointwise slant
distributionDθ = Span{X1, X2} and T M = Dθ ⊕ 〈ξ〉.

Example 5.2. Let R7 be the Euclidean 7-space with the cartesian coordinates (xi, y j, t) and the almost
contact structure

φ
( ∂
∂xi

)
= −

∂

∂yi
, φ

( ∂
∂y j

)
=

∂

∂x j
, φ

( ∂
∂t

)
= 0, 1 ≤ i, j ≤ 3,

such that ξ = ∂
∂t , η = dt and g be the standard Euclidean metric on R7. Consider a submanifold M

of R7 given by the following immersion:

ψ(u, v, t) = (u cos v, v cos u, u, u sin v, v sin u, kv, t),

for any u, v non vanishing real valued functions and k , 0 be a real number. Then, the tangent space
of M is spanned by the following vectors

X1 = cos v
∂

∂x1
− v sin u

∂

∂x2
+

∂

∂x3
+ sin v

∂

∂y1
+ v cos u

∂

∂y2
,

X2 = −u sin v
∂

∂x1
+ cos u

∂

∂x2
+ u cos v

∂

∂y1
+ sin u

∂

∂y2
+ k

∂

∂y3
,

X3 =
∂

∂t
.

Clearly, we obtain

φX1 = − cos v
∂

∂y1
+ v sin u

∂

∂y2
−

∂

∂y3
+ sin v

∂

∂x1
+ v cos u

∂

∂x2
,

φX2 = u sin v
∂

∂y1
− cos u

∂

∂y2
+ u cos v

∂

∂x1
+ sin u

∂

∂x2
+ k

∂

∂x3
,

φX3 = 0.

Then, we find that the slant angle satisfies θ = cos−1
(

u−v+k
√

v2+2
√

u2+k2+1

)
, since u, v (u , v) are non vanishing

real valued functions on M, hence the slant angle is none constant. Thus, M is a pointwise slant
submanifold of R7 with the slant function θ and pointwise slant distributionDθ = Span{X1, X2}, where
T M = Dθ ⊕ 〈ξ〉.

Example 5.3. A submanifold M of R13 given by the following immersion

ψ(u, v, t) = (eu, 2u, sin v, u, u − v, cos u, −eu, v, cos v, −v, u + v, sin u, t),

for non vanishing u, v. We set the the tangent space T M of M is spanned by the following vectors

X1 = eu ∂

∂x1
+ 2

∂

∂x2
+

∂

∂x4
+

∂

∂x5
− sin u

∂

∂x6
− eu ∂

∂y1
+

∂

∂y5
+ cos u

∂

∂y6
,
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X2 = cos v
∂

∂x3
−

∂

∂x5
+

∂

∂y2
− sin v

∂

∂y3
−

∂

∂y4
+

∂

∂y5
,

X3 =
∂

∂t
.

Clearly, we have

φX1 = −eu ∂

∂y1
− 2

∂

∂y2
−

∂

∂y4
−

∂

∂y5
+ sin u

∂

∂y6
− eu ∂

∂x1
+

∂

∂x5
+ cos u

∂

∂x6
,

φX2 = − cos v
∂

∂y3
+

∂

∂y5
+

∂

∂x2
− sin v

∂

∂x3
−

∂

∂x4
+

∂

∂x5
,

φX3 = 0.

It is easy to see that M is a pointwise slant submanifold with slant function θ = cos−1
(

3
√

2
√

5
(e2u + 4)

−1
2

)
andDθ = Span{X1, X2}, where T M = Dθ ⊕ 〈ξ〉.
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