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Abstract: A threshold strategy model is proposed to demonstrate the extinction of tumor load and
the mobilization of immune cells. Using Filippov system theory, we consider global dynamics and
sliding bifurcation analysis. It was found that an effective model of cell targeted therapy captures
more complex kinetics and that the kinetic behavior of the Filippov system changes as the threshold is
altered, including limit cycle and some of the previously described sliding bifurcations. The analysis
showed that abnormal changes in patients’ tumor cells could be detected in time by using tumor cell-
directed therapy appropriately. Under certain initial conditions, exceeding a certain level of tumor
load (depending on the patient) leads to different tumor cell changes, that is, different post-treatment
effects. Therefore, the optimal control policy for tumor cell-directed therapy should be individualized
by considering individual patient data.
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1. Introduction

A tumor is a new organism formed when local tissue cells lose the normal regulation of their growth
under the action of various carcinogenic factors, resulting in their abnormal proliferation. Tumors can
be divided into benign tumors and malignant tumors according to the degree of harm to the human
body. At present, cancer refers to all malignant tumors. In the modern era of rapid development
of science and technology and advanced medical technology, it has not been completely solved and
has been plaguing human beings, and curing tumors is still an elusive subject [1–3]. There are two
main reasons why tumors are difficult to cure. On the one hand, tumor cells cannot be completely
killed. It is well known that genetic mutations are beyond our prediction and control, and tumors
are diseases caused by genetic mutations in human cells and the continuous growth of tumor cells as
well as their multiplication. This also results in no way to fully monitor and control the growth of
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tumor cell load, but for the therapeutic aspect of tumors, we need to understand their growth pattern.
Therefore, during exploration, many mathematics scholars have provided various mathematical models
to accommodate and interpret tumor growth data as a way to predict patient survival and to make
treatment recommendations. Several of these scholars’ models suppose that the tumor load grows
exponentially, but most consider their growth to be decelerating [3,4]. Although these models describe
equations with a single relationship between cells, i.e., only the growth status of the tumor cells is
considered, it is possible to distinguish between different types of tumors in terms of their rate of
proliferation and thus to consider the association between them and the patient’s age [5]. On the
other hand, tumors are constantly changing. That is, the tumor load is indeterminate and cannot be
fully known with certainty in terms number and other characteristics; it is always changing under the
pressure of drugs, the immune system and internal competition, not at the will of man. In the case
of autoimmunity, tumor cells appear partially dead, but some of them masquerade as normal cells,
and others mutate, thus deceiving the immune system and avoiding the attack of immune cells [6, 7].
Apparently tumor cells are not “dull and fixed” but “smart and changing.”

During the treatment process, the relationship between tumor cells and immune cells is complex.
On the one hand, the number of immune cells increases in response to tumor cell stimulation, as with
natural killer (NK) cells and T cells [8]. On the contrary, tumor cell load was reduced under the
influence of with immune cells, a connection similar to “predator-prey” [9–13]. On the other hand,
the amount of environmental capacity is unchanged, and there is also a “competitive” relationship
between immune cells and tumor cells [9, 14]. The relationship between them is complicated by the
existence of these two kinds of relationships simultaneously, which has attracted many scholars to
propose conceptual models to explore their interrelationships and explain experimental
phenomena [15–19].

In addition to the single equations describing tumor growth in terms of ordinary differential
equations (ODE), scholars need to consider more immunological details about the tumor-immune
relationship. Then to combine more biological details, we add some other components that may be
different types of cells to one of the two equations (such as killer cells, healthy tissue cells) and
cytokines.

The classical tumor-immune model was first proposed by Kuznetsov et al. [17]. This model is{ dx
dt = s +

cxy
ε+y − βxy − µx,

dy
dt = ry(1 − y

K ) − αxy,
(1.1)

where x denotes the load of immune cells and y denotes the load of tumor cells. s is the emergence rate
of immune cells into the tumor region from outside, which is not related to the presence or absence
of tumor cells. β is the rate at which immune cells are killed or deactivated in the presence of tumor
cells. µ is the death rate of the immune cells. r is their intrinsic growth rate, and K is the carrying
capacity of tumor cells. In addition, α is the killing rate of tumor cells by immune cells through the
law of mass action. Many phenomena visible in the body can be demonstrated by this model, such
as immune stimulation of tumor growth, “sneaking through” of the tumor, and formation of a tumor
“dormant state.” Nevertheless, some complex kinetic models in (1.1) may not be available, such as
periodic solutions and Hopf bifurcation.

Combining the model in [17] and the parameter c represents the antigenic nature of the tumor in the
equation in [18]. Li et al. [20] developed another model considering the response of immune cells to
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tumor cell growth and regression, which is hypothesized to lead to an increase in the concentration of
tumor cells as the immune cells increase, described as{ dx

dt = s + cy − βxy − µx,
dy
dt = ry(1 − y

K ) − αxy
1+εy .

(1.2)

That is, when having tumor antigenicity, the immune cell load is increased with the level of tumor
cells, with all parameters being positive. The model (1.2) can have at most three positive equilibria
(i.e., equilibria in the presence of tumor) and a larger range of more complex dynamic behavior than
the model (1.1). The obtained results suggest that antigenicity has a role in the control of tumor cell
growth.

Model (1.2) contemplates tumor cells and immune cells and is concerned with antigenic effects.
Under its assumptions, the model (1.2) is extended and deepened to consider the threshold model of
tumor cell load, in which the tumor cell load is constantly changing, The initial state of the tumor load
can affect the physician’s judgment and treatment, and the size of the threshold is the key to decide the
treatment for the patient. A model is obtained showing the complex relationship between tumor cells
and immune cells.

The aim of this study was to develop a new Filippov tumor-immune model with a threshold
strategy to characterize the effect of tumor cell load on patient stress and enhanced immune cell load
to suppress tumor cell load. The remaining parts are as follows: In Section 2, we present a
mathematical model of tumor-immunity-antigenicity interactions and introduce some of the relevant
basics. The basic preliminary and analysis of the equilibrium point of the model and its stability
conditions are given in Section 3. In Section 4, we investigate the sliding model and its dynamical
properties. In Section 5, we discuss the range of values for the nonexistence of nonconstant periodic
solutions of the system. In Section 6, we analyze the global dynamics of the proposed system and
analyze the effect of the threshold Tc. In Section 7, we analyze the equilibria and sliding bifurcation,
including the boundary focus bifurcation and grazing (or touching) bifurcation. This can be used to
demonstrate clinical phenomena and explain their biological significance. A short summary and some
ideas are presented at the end of this paper.

2. Models and preliminaries

In this paper, we extend model (1.2) under the assumption of Li [20] and obtain the following
conceptual model: 

dx
dt = cy − βxy − µx,
dy
dt = ry(1 − y

K ) − αxy
1+εy ,

}
y < Tc,

dx
dt = cy − βxy − µx + s,
dy
dt = ry(1 − y

K ) − αxy
1+εy − qy.

}
y > Tc.

(2.1)

For simplicity and to retain the parameters needed to reflect the biological background, the
system (2.1) is invariantly steeled such that

y =
y
K
, t = µt, s =

s
µ
, c =

cK
µ
, β =

βK
µ
, r =

r
µ
, α =

α

r
, ε = εK, q =

q
µ
,
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we get { dx
dt = cy − βxy − x + τs,
dy
dt = ry(1 − y − αx

1+εy ) − τqy, (2.2)

with

τ =

{
0 y < Tc,

1 y > Tc.
(2.3)

Define X = (x, y)T , H(X) = y − Tc, where H(X) is a smooth scale function. The discontinuity
boundary

∑
can be described as

∑
=

{
X ∈ R2

+|H(X) = 0
}
. Let

FS 1(X) =

(
F11

F12

)
=

(
cy − βxy − x
ry(1 − y − αx

1+εy )

)
,

FS 2(X) =

(
F21

F22

)
=

(
cy − βxy − x + s
ry(1 − y − αx

1+εy ) − qy

)
.

It is not difficult to find out that R2
+ = S 1

⋃∑⋃
S 2. Thus, the system (2.2) is rewritten as:

Ẋ(t) = F(X) =

{
FS 1(X),X ∈ S 1,

FS 2(X),X ∈ S 2,
(2.4)

where S 1 = {X ∈ R2
+|H(X) < 0}, and S 2 = {X ∈ R2

+|H(X) > 0}. In the system (2.4), when y < Tc, the
tumor cells are mainly suppressed by the immune system. When y > Tc, the tumor cells are
suppressed or eliminated using biological means. The general case of planar Filippov system to be
studied theoretically with dynamical system tools, but this requires excellent mathematical techniques
under the consideration of factors such as cytokine storms [21] and time delays [22, 23]. The
equilibrium point (2.2) in Filippov system (2.4) has the following definition [24].
Definition 2.1. An equilibrium X∗ is denoted as a real equilibrium if FS 1(X

∗) = 0, H(X∗) < 0 or
FS 2(X

∗) = 0, H(X∗) > 0. Similarly, X∗ is denoted as a virtual equilibrium if FS 1(X
∗) = 0, H(X∗) > 0

or FS 2(X
∗) = 0, H(X∗) < 0.

Definition 2.2. An equilibrium X∗ is denoted as a pseudo-equilibrium if it is an equilibrium of the
sliding mode of system (2.2), i.e., λFS 1(X

∗) + 1 − λFS 2(X
∗) = 0, H(X∗) = 0 and 0 <λ < 1 with

λ =
〈HX(X),FS 2 (X∗)〉

〈HX(X),FS 2 (X∗)−FS 1 (X∗)〉
.

Definition 2.3. An equilibrium X∗ is denoted as a boundary equilibrium of Filippov system (2.2) if
FS 1(X

∗) = 0 or FS 2(X
∗) = 0 with X∗ ∈

∑
.

Definition 2.4. An equilibrium X∗ is denoted as a tangent point of Filippov system (2.2) if〈
HX(X), FS 1(X

∗)
〉

= 0 or
〈
HX(X), FS 2(X

∗)
〉

= 0 with X∗ ∈
∑

.

3. Dynamics of two subsystems

3.1. Dynamics of subsystem S 1

If y < Tc, an endemic equilibrium satisfies the subsystem S 1 of system (2.2), we easily obtain the
boundary equilibrium E1

0 = (0, 0), and in addition. We have

cy − βxy − x = 0,
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1 − y −
αx

1 + εy
= 0.

Substituting x =
cy

1+βy into the above second equation,

f1(y) = 1 − n1y + m1y2 − βεy3, (3.1)

where n1 = 1 + αc − β − ε and m1 = βε − β − ε.

Note f1
′(y) = −n1 + 2m1y − 3βεy2. Using Descartes’ Rule of Signs combined with derivatives for

cubic equations,three positive roots exist if the following conditions are satisfied:
n1 = 1 + αc − β − ε > 0,
m1 = βε − β − ε > 0,
m1 ≥

√
3βεn1.

By calculation, the above three equations cannot be satisfied simultaneously, so there is no case
of three positive roots. Also consider that f1(0) = 1, f1(1) = −αc, so there must be a positive root
in [0, 1]. That is, there is only one positive equilibrium in system S 1. Consider the positive equilibrium
E1 = (x1, y1) of subsystem S 1, whose Jacobian matrix is

J(E1) =

(
−βy1 − 1 c − βx1

−
αry1

1+εy1
r[1 − 2y1 −

αεx1

(1+εy1)2 ]

)
.

Substituting x1 =
cy1

1+βy1
into c − βx1 and x1 =

(1−y1)(1+εy1)
α

into r[1 − 2y1 −
αεx1

(1+εy1)2 ], we can rewrite

J(E1) =

 −βy1 − 1 c
1+βy1

−
αry1

1+εy1

ry1(ε−1−2εy1)
1+εy1

 .
Then the characteristic equation about the endemic equilibrium E1 = (x1, y1) is given by the following
equation:

λ
2
− trJ(E1)λ + detJ(E1) = 0,

where

trJ(E1) =
−1 − 4(2r + β)εy2

1 + ((r − 1)ε − r − β)y1

1 + εy1
,

detJ(E1) =
r(2βε2y1

4 + ((2 − β)ε2 + 3βε)y1
3 + (−βε − ε2 + β + 3ε)y1

2 + (cα − ε + 1)y1)
(1 + εy1)2 .

If trJ(E1) < 0, and detJ(E1) > 0, the endemic equilibrium E1 is locally asymptotically stable.

3.2. Dynamics of subsystem S 2

If y > Tc, an endemic equilibrium satisfies the subsystem S 2 of system (2.2). We easily obtain the
disease-free equilibrium E2

0 = (S , 0), in addition to having [20]

cy − βxy − x + s = 0,

r(1 − y −
αx

1 + εy
) − q = 0.
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Substituting x =
cy+s
1+βy into the above second equation,

f2(y) = L − n2y + m2y2 − βrεy3, (3.2)

where L = r − αrs − q, n2 = (cα − β − ε + 1)r + q(β + r), m2 = ((β − 1)ε − β)r − qβε.
Equation (3.2) has only one positive root, and the endemic equilibrium E2 = (x2, y2) of subsystem

S 2 has a Jacobian matrix of

J(E2) =

(
−βy2 − 1 c − βx1

−
αry2

1+εy2
r[1 − 2y2 −

αεx2

(1+εy2)2 ] − q

)
.

Substituting x2 =
s+cy1
1+βy1

into c−βx1 and x2 =
(1−y1−

q
r )(1+εy1)
α

into r[1−2y2−
αεx2

(1+εy2)2 ]−q, we can rewrite

J(E2) =

 −βy2 − 1 c−βs
1+εy2

−
αry2

1+εy2

ry2(ε−1−2εy2)
1+εy2

 .
Then the characteristic equation about the endemic equilibrium E2 = (x2, y2) is given by the

following equation:

λ
2
− trJ(E2)λ + detJ(E2) = 0,

where

trJ(E2) =
−1 − 4(2r + β)εy2

2 + ((r − 1)ε − r − β)y2

1 + εy2
,

detJ(E2) =
r(2βε2y2

4 + ((2 − β)ε2 + 3βε)y2
3 + (−βε − ε2 + β + 3ε)y2

2 + ((c − βs)α − ε + 1)y2)
(1 + εy2)2 .

If trJ(E2) < 0, and detJ(E2) > 0, the endemic equilibrium E2 is locally asymptotically stable.

4. Sliding dynamics

4.1. Sliding segment and region

First, we discuss the existence of a sliding segment and region. If there are regions near the manifold
of the flow

∑
in which the two different structures of the system (2.4) have vectors pointing to each

other, there is a “sliding mode” [25]. By means of the Utkin’ equivalent control method in [26], we
receive the definition of the sliding domain correlation.

Let h(X) =
〈
HX(X), FS 1(X)

〉 〈
HX(X), FS 2(X)

〉
. Then, the sliding domain satisfies∑

S = {x ∈
∑
|h(X) ≤ 0}

=
{
(x, y) ∈ R2|

(r(1−Tc)−q)(1+εTc)
αr ≤ x ≤ (1−Tc)(1+εTc)

α

}
.

Note: The Filippov system (2.2) does not involve the escape region, because these two inequalities
are not satisfied simultaneously.
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4.2. Pseudo-equilibrium

Due to the fact that H(X) = 0 and the first equation of model (2.2) holds, it is possible to derive

∂H
∂t

= ry(t)(1 − y(t) −
αx(t)

1 + εy(t)
) − τqy(t) = 0,

with y(t) = Tc.

Solving the above equation yields

τ =
r
q

(1 − Tc −
αE

1 + εTc
).

Substituting the first equation of system (2.2),

dx(t)
dt

=
−ε((βx − c)q + rs)Tc

2 + ((−βx − xε + c)q + rs(ε − 1))Tc − xq − rs(αx − 1)
(εTc + 1)q

.
= φ(x). (4.1)

Then the pseudo-equilibrium point can be expressed as Ep = (x∗,Tc), where

x∗ =
((cq − rs)Tc + rs)(εTc + 1)

Tc
2βqε + q(β + ε)Tc + αrs + q

,

and x∗ ∈
∑

S . The pseudo-equilibrium Ep is viable with (r(1−Tc)−q)(1+εTc)
αr < x∗ < (1−Tc)(1+εTc)

α
[25]. By

arranging this inequality, there is an easy way to provide pseudo-equilibrium Ep only when y2 < Tc <

y1. At this point, it is worthwhile to analyze the stabilization of the pseudo-equilibrium of the Filippov
system (2.2). Following the ODE theory of stabilization, it is possible to derive y on both sides of
Eq (4.1).

φ′(x) =
−1

qεTc + q
(βqεTc

2 + βqTc + εqTc + αrs + q).

It is easy to see that φ′(x) < 0, which shows that the pseudo-equilibrium Ep = (x∗,Tc) of the Filippov
system with the sliding part

∑
S is locally asymptotically stable [27].

4.3. Boundary equilibrium

Let EB be the boundary equilibrium, i.e., EB satisfies the following:
cy − βxy − x + τs = 0,
ry(1 − y − αx

1+εy ) − τqy = 0,
y − Tc = 0.

(4.2)

So, one can get two different boundary equilibrium points through the solution of (4.2):

E1
B = (

cTc

1 + βTc
,Tc), E2

B = (
cTc + s
1 + βTc

,Tc),

corresponding to τ = 0, τ = 1. Here, Tc satisfies f1(Tc) = 0 or f2(Tc) = 0, so for f1(Tc) = 0, we have
Tc = y1, and for f2(Tc) = 0, we have Tc = y2. We then obtain the possible boundary equilibria:

E1
B = (

1
α

(1 − Tc)(1 + εTc), y1), E2
B = (

1
αr

(r(1 − Tc) − q)(1 + εTc), y2).
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4.4. Tangent point

By letting T be the tangent point, according to the definition, the next equation can be obtained.{
ry(1 − y − αx

1+εy ) − τqy = 0,
y − Tc = 0.

(4.3)

Therefore, the possible tangent points are

T1 = (
1
α

(1 − Tc)(1 + εTc),Tc), T2 = (
1
αr

(r(1 − Tc) − q)(1 + εTc),Tc),

which are the solutions to (4.3) corresponding to τ = 0, τ = 1. When Tc is a threshold value y1 or y2,
the boundary equilibrium points E1

B and E2
B collide with the tangent points T1 and T2, respectively.

5. The absence of non-continuous periodical solutions

In the before two sections, it was discussed the dynamics of system (2.2) and sliding dynamics.
The absence of non-continuous periodical solutions is also an essential characteristic of the
system (2.2) [20].

For the subsystem S 1, denote:

P(x, y) = cy − βxy − x and Q(x, y) = ry(1 − y −
αx

1 + εy
).

Use the Dulac function B(x, y) =
1+εy

ry , we have

∂(BP)
∂x

+
∂(BQ)
∂y

= −
(1 + βy)(1 + εy)

ry
+ [(ε − 1) − 2εy] = −

ε(β + 2r)y2 + (β + ε + r − εr)y + 1
ry

.

Obviously, ∂(BP)
∂x +

∂(BQ)
∂y < 0 if ε ≤ 1. By a simple calculation shows that

∆1 = (β + ε + r − εr)2 − 4ε(β + 2r) = (ε − 1)2r2 − 2(βε + ε2 + 3ε − β)r + (β − ε)2.

The discrimination of the equation ∆1 = 0 is 16ε(ε + 1)(βε + 2ε − β), and being more than 0 for ε > 1.
r = rm is the larger root of ∆1 = 0 when ε > 1. Then ∆1 < 0 for ε > 1 and β+ε

ε−1 < r < rm, which
means that ∂(BP)

∂x +
∂(BQ)
∂y < 0 in this case. In summary, by the Bendixson-Dulac Theorem, subsystem

S 1 has no nonconstant periodic solutions for which a condition is true: (1) ε ≤ 1, (2) ε > 1 and

r < rm =
(βε+ε2+3ε−β)+2

√
ε(1+ε)(βε+ε2−β)

(ε−1)2 .
Similarly, for the subsystem S 2, denote:

P(x, y) = s + cy − βxy − x and Q(x, y) = ry(1 − y −
αx

1 + εy
) − qy.

Use the Dulac function B(x, y) =
1+εy

ry , we have

∂(BP)
∂x

+
∂(BQ)
∂y

= −
(1 + βy)(1 + εy)

ry
+[(ε−1−

qε
r

)−2εy] = −
ε(β + 2r)y2 + (β + ε + r − εr − qε)y + 1

ry
.

After calculating, by the Bendixson-Dulac Theorem, subsystem S 2 has no non-continuous periodical
solutions for which one of the below conditions applies: (1) r ≤ q, (2) r > q and ε ≤ r

r−q , (3) ε > r
r−q

and r < (βε+ε2+3ε+qε−β−qε2)+2
√

2ε((1+
β
2−q)ε− β2 )(1+ε)+2qε

(ε−1)2 .
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6. Global dynamics of the Filippov system

In this regard, it is time to discuss the global dynamics of the Filippov system (2.4). Based on the
preceding discussion, it is clear that the equilibrium state of model (2.2), the presence of the sliding
region, as well as the sliding region will receive a threshold Tc size. Moreover, we remove the
appearance of non-continuous periodic solutions and review that the pseudo-equilibrium is locally
asymptotically stable. Moreover, the trajectory through the endpoint of the sliding domain does not
touch it again when traversing the subsystem S 2.

Case (1): y1 < Tc, in this case, the endemic equilibrium of the free subsystem S 1 is real, while
the endemic equilibrium of the control system S 2 is virtual (Figure 1a,b). The Filippov system (2.2)
solution will converge to Ep or E1, which needs to be considered for various initial values.

Case (2): y2 < Tc < y1, in which the endemic equilibrium state E1, E2 of the free subsystem is
virtual (Figure 1c,d). For various initial values, the solution of the system (2.2) will converge to Ep.

Case (3): 0 < Tc < y2, in which the endemic equilibrium of the free subsystem S 1 is virtual, while
the endemic equilibrium of the control system S 2 is real (Figure 1e,f). And the solution (2.2) of the
Filippov system will tend to Ep or E2.

In general, when the selected threshold level Tc is large enough (as above the value of E1), the
control strategy is not triggered and therefore the solution approaches the free subsystem, which
depends on the particular values, such as the Figure 1a,b. However, if the selected threshold Tc is
small enough (as a value less than E2), the control strategy is always triggered, so the solution of the
segmented smoothing system approaches the control subsystem, depending on the individual values,
as shown in Figure 1c,d. When the threshold Tc is chosen as an intermediate value, there may be a
new sliding balance, as shown in Figure 1e,f. It means that the tumor cells can be destroyed or the
number of tumor cells can be reduced to a certain low level. This requires the selection of appropriate
threshold levels to trigger biological means to effectively control the growth of tumor cells [28].

AIMS Mathematics Volume 8, Issue 8, 19699–19718.
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Figure 1. Trajectory plots of Tc for different thresholds. Tc = 0.9 in (a), (b); Tc = 0.4 in (c),
(d); and Tc = 0.27 in (e), (f). The parameters are chosen as c = 3, β = 1, r = 5, α = 0.3, and
ε = 2. s = 0.5, q = 2.5 in (a), (c), (e); and s = 1, q = 2 in (b), (d), (f). The two red lines are
the nullclines of system S 1, and the two green lines are the nullclines of system S 2. The gray
part indicates the sliding segment.
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7. Equilibria and sliding bifurcation analysis

7.1. Analysis of boundary focus bifurcation

Now, we study the boundary focus bifurcation of the Filippov system (2.4). The reader can find
relevant definitions of boundary equilibrium and tangent point in the preparatory knowledge. Boundary
equilibrium bifurcation may occur in the Filippov system (2.4) when an endemic equilibrium collides
with a tangent point and boundary equilibrium. In this subsection, Tc is chosen to be the bifurcation
parameter, and no other parameters are changed. Refer to Figure 1.

When Tc > y1, from Figure 2a, the real equilibrium ER
1 exists. It can be seen that the trajectories that

start from the S 1 region, staying in the S 1 region without colliding with the boundary, will converge to
ER

1 . The trajectory from the S 2 region will also collide with the sliding region. The trajectories colliding
with the sliding region will pass the tangent point T2 and finally converge to ER

1 . The trajectory from
the region S 2 will pass through the sliding region and finally converge to ER

1 .

When Tc = y1, the real equilibrium ER
1 , tangent point T2 and pseudo-equilibrium Ep collide together

in Figure 2b. The trajectories of all impacted sliding regions will converge to T2(Ep).

When y2 < Tc < y1, it can be found that the real equilibrium ER
2 will turn into virtual equilibrium EV

2
from Figure 2c,d. In addition, the pseudo-equilibrium Ep also exists. The trajectories of all impacted
sliding regions will converge to Ep.

When Tc = y2, in Figure 2e, the real equilibrium ER
2 , tangent point T1 and pseudo-equilibrium Ep

collide together. The trajectories of all impacted sliding regions will converge to T1(Ep).

When Tc < y2, in Figure 2f, the real equilibrium ER
2 exists, and it can be seen that the trajectory

starting from region S 2 and remaining in the S 2 region without colliding with the boundary will
converge to ER

2 . The trajectory from the S 2 region will also collide with the sliding region. The
trajectories that collide with the sliding region will pass the tangent point T1 and finally converge to
ER

2 . The trajectory from region S 1 will cross the sliding region and eventually converge to ER
2 .
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Figure 2. Boundary focus bifurcation for Filippov system (2.2). Parameter value fixed as
Figure 1. (a) Tc = 0.9, (b) Tc = 0.8468, (c) Tc = 0.6, (d) Tc = 0.4, (e) Tc = 0.32954, (f)
Tc = 0.27, The gray part indicates the sliding segment. The two red lines are the nullclines
of system S 1, and the two green lines are the nullclines of system S 2.
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7.2. Global sliding bifurcation

The global sliding bifurcation mainly includes grazing (or touching) bifurcation, buckling
bifurcation and crossing bifurcation. In this study, we mainly consider the possible sliding
bifurcations under different thresholds.

Grazing (or touching) bifurcation: It can be seen that when Tc = 0.2, the Filippov system (2.4) has
a stable limit cycle inside the region G1 (the region of system S 1), illustrated in Figure 3a. At this time
there are two tangent points T1 and T2 located on the boundary of the sliding mode of the Filippov
system (2.4), where there is an unstable real equilibrium ER

1 in the subsystem S 1 and another pseudo-
equilibrium EV

2 in the subsystem S 2. When the parameter Tc gradually decreases to about 0.177, the
limit cycle of the Filippov system (2.4) collides with its tangent point T2, and a grazing (or touching)
bifurcation occurs in Figure 3b. When Tc keeps decreasing, the cycle transforms into a sliding cycle
when Tc = 0.15, where one of the sliding segments is part of the cycle in Figure 3c.

From the point of view of specific elaboration, when the bifurcation parameter Tc decreases to 0.07,
the stable limit cycle disappears, and the pseudo-equilibrium Ep appears at Tc = 0.07. Meanwhile, the
real equilibrium ER

1 becomes the virtual equilibrium EV
1 , and the real/virtual equilibrium bifurcation

occurs at Tc = 0.07 in Figure 3d. Also Figure 3d shows that the pseudo-equilibrium of the Filippov
system cannot coexist with the real equilibrium.

When the bifurcation parameter Tc is reduced to 0.03, the pseudo-equilibrium Ep disappears. At the
same time, the virtual equilibrium EV

2 changes to the real equilibrium ER
2 in Figure 3e. Finally, Figure 3f

takes out the sliding cycle separately and observes the change of the sliding cycle. From Figure 3f, it
is observed that the length of the sliding segment decreases as the parameter Tc decreases.
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Figure 3. Grazing (or touching) bifurcation for Filippov system (2.4). Parameters are: c = 8,
β = 1.5, r = 5, α = 2, ε = 6, s = 0.2, q = 0.5. (a) Tc = 0.2, (b) Tc = 0.177, (c) Tc = 0.15, (d)
Tc = 0.07, (e) Tc = 0.03.
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Buckling bifurcation is defined as a standard segment of the cycle that starts passing through an
invisible secondary tangent when the bifurcation parameter changes. In Figure 3a,b (see Figure 4
for a concrete representation), a sliding cycle collides with an invisible tangent point, and the new
cycle contains a portion of the sliding segment. It depicts the buckling bifurcation of the Filippov
system (2.4) when Tc changes. In that case, the system shows a buckling bifurcation case, but its
equilibrium point and sliding segment do not change much. There is an unstable focus E1 in subsystem
S 1, and all the orbits converge to a stable periodic solution.

Figure 4 depicts the buckling bifurcation when different Tc values are chosen, which indicates that
the dynamical behavior of the system is sensitive to Tc.

(a) (b)

(c)

Figure 4. Buckling bifurcation of Filippov system (2.4). Parameters are: c = 8, β = 1.8,
r = 9, α = 2, ε = 6.5, s = 1, q = 0.5. (a) Tc = 0.45, (b) Tc = 0.47, (c) Tc = 0.48.

Crossing bifurcation can be interpreted as the sliding cycle becoming a cross cycle as the bifurcation
parameter changes, as shown in Figure 5. We can see that when Tc decreases from 0.48 to 0.47,
the sliding cycle contains the right endpoint of sliding segment, as shown in Figure 5b,c. When Tc

continues to decrease to 0.45, the sliding cycle has a great change, and it contains the whole sliding
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segment in Figure 5a,b. This phenomenon is reflected as crossing bifurcation. However, it actually
changes Tc when it shows crossing bifurcation in Figure 3c,d.

(a) (b)

(c)

Figure 5. Crossing bifurcation of Filippov system (2.4). Parameters are: Tc = 0.43, c = 8,
β = 1.8, r = 9, α = 2, ε = 6.5, s = 1. (a) q = 0.5, (b) q = 0.6, (c) q = 0.8.

In summary, the Filippov system (2.4) occurs when the bifurcation parameter is changed : grazing
(or touching) bifurcation, buckling bifurcation, crossing bifurcation. The phenomenon reflects that a
change in a key parameter Tc causes a change in the dynamical behavior of the Filippov system (2.4).
It also shows that Tc is an important factor in controlling tumor cell load.

8. Conclusions

In the modern era of rapid medical development, tumors remain a challenge that mankind has not
been able to overcome. In considering the treatment of tumors, the tumor cell load is an obvious
criterion for the effectiveness of treatment. When a patient’s tumor cells increase to a certain number,
physicians take some drugs or surgery in order to control rapid growth of tumor cells, so that it can be
controlled within a certain range. In its biological context, we develop the model of a dynamic tumor
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immunity that involves a threshold strategy guided by the tumor load, and the model we propose also
incorporates the segmental elimination of tumor cells and the growth rate of immune cells to describe
the treatment triggered by the threshold related to tumor cells. Throughout this paper, we have favored
the study of the global dynamics of the system (2.4) and analyze the sliding bifurcation (boundary
focus bifurcation and grazing (or touching) bifurcation) of the Filippov system.

When the threshold value Tc is relatively high, i.e., Tc > y1, a limit cycle exists in a region of the
subsystem S 1 as in Figure 3a,b,c. Our results show that there is a significant change in the dynamic
in subsystem S 2. Depending on the value taken for the threshold, the presence or absence of the limit
cycle changes. In the case of clinical phenomena considered, this can be interpreted as in the case of
a high threshold. The number of tumor cells and immune cells can be kept under control considering
the initial number of tumor cells in some patients. However, in the case of patients with a dramatic
increase of tumor cells, irreparable damage can be caused to the patient’s body due to the failure of
the physician to perform medical measures relevant to them, accompanied by the destruction of the
immune system. Based on the above, we can conclude that at high thresholds, this treatment strategy
does not actually have any significant impact on the patient.

When a very low threshold is set in Figure 3e, treatment actually becomes similar to continuous
treatment. Thus, relatively low or high thresholds are not good choices for treating patients with
tumors. However, when the appropriate threshold is chosen, the dynamics will change as the
controllable range of tumor cells is expanded. The pseudo-equilibrium Ep exists when y1 < Tc < y2 in
Figure 3d. Therefore, patient treatment results may vary widely under different initial tumor loads and
immune cell counts with the same treatment strategy. For some tumor patients, tumor cells can be
controlled at a certain level, while other patients may experience a certain range of tumor cell
fluctuations at certain times.

Indeed, several scholars have now studied multiple components of tumor-immune models, some
involving the binding and association of multiple types of cells and signaling molecules [29–31],
including some involving threshold models of immune cells [24]. Regarding dynamic behavior, a
simple model does not imply simple dynamic behavior, and it is possible to obtain more complex
results when considering different global sliding bifurcations, limit cycles, etc., with corresponding
clinical implications of relevance.

Each dynamic feature in dynamic behavior corresponds to a biological or clinical situation, and we
need to focus on each dynamic feature. It is worth noting that in the actual biological or clinical
situation, different types of tumors, tumor load, treatment duration, treatment modality and treatment
intensity, including the concentration of the drug used, can affect the therapeutic effect on the tumor.
The complexity of treatment is reflected by the concentration of the drug used and the period of drug
injection, as well as by the consideration of drug concentrations in drug therapy, which has not been
detailed in this paper. The patient’s clinical phenomena should be the tendency and load of tumor
growth, removal or recurrence or transfer of the tumor, whether the tumor growth oscillates and how
the oscillation period changes (not yet studied in this paper). In this sense, differences in tumor
treatment conditions lead to different clinical phenomena, while influencing tumor treatment
conditions precisely as described by mathematical models. Thus, a mathematical model of
tumor-immune interactions needs to be explored. Threshold strategies can describe the three main
elements of the complex association or “predator-prey” and “competition” among tumor cells and
immune cells interactions.
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Just as we saw from the model (2.2), we do not consider immune cells when implementing these
strategies. Is it possible to maintain the immune cells above a certain level while considering the tumor
cells? If it is possible, what therapeutic strategies should be used, i.e., what control parameters should
be considered? In considering the practical aspects, it is reasonable to classify different tumor types due
to the different growth characteristics of these tumors. For drug therapy, the combined use of drugs
must be better than the single use of drugs in terms of effectiveness and long-term development of
human health, when faced with the concentration of drugs, the way they are combined, the sensitivity
of drugs, the registration period of drugs, etc. Taking into account these aspects, this will be the purpose
and idea of future work.
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