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1. Introduction

In financial investment, one of the popular and significant components of financial derivatives is
the stock option. In view of both theory and practice, option pricing mathematical palatial differential
equation (PDE) models constitute an important subject to be explored beyond integer order. Black and
Scholes [1] constructed a model in the form of second-order parabolic integer order PDEs with respect
to stock price and time. This model is based on geometric Brownian motion with a constant drift and
volatility. However, due to the idealistic standards of the traditional Black-Scholes (BS) model, integer
order PDEs may not effectively simulate the process in situations with hops over small time steps to
capture the substantial fluctuations of a stock price [2]. With the newfound features of the fractional
PDEs, the fractional BS equations appear more relevant to extend mathematical models related to
option pricing.

When a fractional order PDE is used for the financial modelling, the involved standard Brownian
motion in the stochastic process of the classical model is replaced by fractional Brownian motion.
The non-locality of integrals and fractional derivatives is a powerful resource for memory
illustration [3]. Jumarie [4] applied the fractional Taylor formula to derive the time- and
space-fractional BS models. To price the exotic options in markets with jumps, a fractional diffusion
model was developed by Cartea and del-Castillo-Negrete [5]. Liang et al. [6] proposed bifractional
BS models of option pricing. Farhadi et al. [3] employed a time-fractional BS model (TFBSM) to
describe the effect of trend memory. Considering the rising challenges involved in obtaining the
solution of more complex fractional BS PDEs models, further investigation into the subject seems to
be a very important and practical research objective.

To price the European option price using the fractional BS model, Zhang et al. [7] utilized implicit
finite difference techniques and Özdemir and Yavuz [8] used multivariate Padé approximation; Cen
et al. [9] used an integral discretization scheme for time and for the spatial discretization, the central
differencing scheme (CDM) on a piecewise uniform mesh was used.

To solve the American option fractional BS model, Chen [10] employed a predictor-corrector
approach in a finite-moment log-stable model. To investigate a space-fractional parabolic variational
inequality model for pricing American options, a power penalty method with a finite-difference
mechanism was utilized by Chen and Wang [11]. Without costs on the transactions of risky and
riskless securities, the BS model has been an effective procedure for pricing options in a complete
market. However, the BS option pricing methodology is not useful for riskless securities or stocks in
the presence of transaction costs on trading, as it is impossible to perfectly hedge [12]. Edeki
et al. [13] has extended the nonlinear BS model to time-fractional order and utilized a modified
differential transform method for numerical solution of the model. In recent years, physics-informed
neural networks have emerged as a popular meshless method for solving the BS model and forward
and inverse PDE problems [14, 15].

For the solutions of several types of challenging linear, nonlinear, integer- and fractional-order
PDEs that arise in science and engineering [16–19], meshless methods using radial basis functions
(RBFs) represent a feasible alternative numerical mechanism. In the literature, various meshless
techniques have been published. The reported work includes the Piret and Hanert [20] fractional
diffusion equations, Hosseini et al. [21] fractional telegraph equation, Ghehsareh et al. [22]
two-dimensional fractional evolution equation, Kumar et al. [23] time-fractional diffusion wave
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equation, Dehghan et al. [24] time-fractional nonlinear sine-Gordon and Klein-Gordon equations
Mohebbi et al. [25] time-fractional nonlinear Schrödinger equation, Mohebbi et al. [26]
two-dimensional modified anomalous fractional sub-diffusion equation, Wei et al. [27]
two-dimensional time-fractional diffusion equations, Aslefallah and Shivanian [28] nonlinear
time-fractional integro-differential reaction-diffusion equation, Wei et al. [29] variable-order
time-fractional diffusion equation and Avazzadeh et al. [30] time-fractional diffusion-wave equation.

Very few authors have attempted to solve the TFBSM by using an RBF to price the European
option [31]. To the best of our knowledge, this article is the first one to extend the local RBFs
collocation method (LRBFCM) to solve the TFBSM with American options and nonlinear TFBSM
with transaction cost in an illiquid market. In this paper, a hybrid Guassian-cubic RBF [32] is first
localized and then appended with a linear polynomial in order to reduce the ill-conditioned problem
of the resultant coefficient matrix. Afterward, by utilizing the localized hybrid RBF method, the
solution of the time-fractional BS model can be computed accurately and efficiently, while also
preserving the maximum principle. This method has the potential to be applied to different variants of
fractional BS models, other PDE problems in finance and other fields that involve fractional
derivatives.

The proposed LRBFCM improves the accuracy and stability of function approximation by
combining a low-degree polynomial component with an RBF component. The polynomial component
captures the overall behavior of the function, while the RBF component focuses on the local features.
This hybrid approach is more effective than traditional RBF methods as it can capture both local and
global features of the function.

2. Preliminaries and models

Definition 2.1. The right modified Riemann-Liouville derivative [4, 33] is

∂βp(v, τ)
∂τβ

=
1

Γ (1 − β)
d
dτ

T∫
τ

(p(v, ζ) − p(v,T ))
(ζ − τ)β

dζ, 0 < β ≤ 1. (2.1)

Definition 2.2. The Caputo’s fractional derivative [34] is

∂βp(v, τ)
∂τβ

=
1

Γ (1 − β)

τ∫
0

(τ − ζ)−βpζ(v, ζ)dζ, 0 < β ≤ 1. (2.2)

The TFBSM [7, 35] for option pricing along with the boundary and final conditions is

∂βp
∂τβ

= −
1
2
σ2v2∂

2 p
∂v2 − rv

∂p
∂v

+ rp, 0 < β ≤ 1, 0 ≤ τ ≤ T, v ≥ 0,

p(0, τ) = g1(τ), p(+∞, τ) = g2(τ),
p(v,T ) = v(v).

(2.3)

The basic assumption of model (2.3) is that the underlying asset follows the standard geometric
Brownian motion pattern and that variation in option price is similar to fractal transmission [7, 35]. A
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linear transformation of the variable t = T − τ converts model (2.3) to an initial value problem with
the payoff function as an initial condition. Thus, a reformulated fractional PDE model along with its
boundary and initial conditions is

∂βp
∂tβ

=
1
2
σ2v2∂

2 p
∂v2 + rv

∂p
∂v
− rp,

p(0, t) = g1(t), p(+∞, t) = g2(t),
p(v, 0) = v(v).

(2.4)

Equation (2.4) reduces to a classical BS model for β = 1. Specifically, the following three models are
considered for derivation of the numerical solution via the proposed mechanism.
(i). The TFBSM for European options [36]

∂βp
∂tβ
−

1
2
σ2v2∂

2 p
∂v2 − rv

∂p
∂v

+ rp = 0, (v, t) ∈ (0, vmax) × (0,T ),

p(0, t) = g1(t), p(vmax, t) = g2(t),
p(v, 0) = v(v).

(2.5)

(ii). The nonlinear TFBSM in an illiquid market with transaction costs [13]

∂βp
∂tβ

+ rv
∂p
∂v

+
1
2
σ2v2

(
1 + 2ρv

∂2 p
∂v2

)
∂2 p
∂v2 − rp = 0, (v, t) ∈ (0, vmax) × (0,T ), (2.6)

subject to

p(v, 0) = max
(
v − ρ−1

(√
vov +

vo

4

)
, 0

)
.

(iii). The TFBSM for American put options using the penalty term approach [37]. The following form
is the extension of the model in [38, 39] on a fixed domain to time-fractional order.

∂βp
∂tβ

=
1
2
σ2v2∂

2 p
∂v2 + rv

∂p
∂v
− rp +

µC
p + µ − q(v)

, (v, t) ∈ (0, vmax) × (0,T ),

p(v, 0) = max(E − v, 0),
p(0, t) = E, lim

v→∞
p(v, t) = 0,

(2.7)

where 0 < β ≤ 1, the stock price is v, the initial stock price is vo, σ(≥ 0) is the volatility of the returns,
r is the risk-free rate, the strike price is E, the expiry time is T , the liquidity of the market is ρ, C ≥ rE,
0 < µ � 1, q(v) = E − v and the price of the option is p(v, t).

3. Space derivatives discretization using the LRBFCM

The derivatives of p(v, t) are approximated at the centers vi,
{vi1 , vi2 , vi3 , ..., vini

} ⊂ {v1, v2, . . . , vNn}, ni � Nn, i = 1, 2, . . . ,Nn.

p(vi) ≈
ni∑
j=1

λ jψ(vi j) +

ni∑
j=1

γk p(vi j), i = 1, 2, . . . ,N, (3.1)
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where ψ is a hybrid RBF, ψ(‖vi j − vl‖) = exp
(
−‖vi j − vl‖

2/c2
)

+ ω‖vi j − vl‖
3, l = i1, i2, . . . , ini , p(vi j)

is a linear combination of polynomials on Rd, the shape parameter is c and ω = 10e−6 along with the
following extra consistency conditions

ni∑
j=1

λ j p(vi j) = 0, i = 1, 2, . . . ,N. (3.2)

The matrix form of (3.1) and (3.2) is [
p
0

]
=

[
B P

PT 0

] [
λ
γ

]
, (3.3)

where p = [pi1 , · · · , pini
]T , B = ψ(‖vi j − vl‖), λ = [λi1 , · · · , λini

]T , γ = [γi1 , · · · , γini
]T and P = p(vi j).

The matrix form of (3.3) is
P = BΛ, (3.4)

where Λ =

[
λ
γ

]
, B =

[
B P

PT 0

]
and P =

[
p
0

]
.

The matrix B invertibility is ensured by [40]. From (3.4), we have

Λ = B−1
P. (3.5)

Differentiating (3.1) yields the derivative of p

p(m)(vi) =

ni∑
j=1

λ jφ
(m) +

ni∑
j=1

γ j p(m), i = 1, 2, . . . ,N. (3.6)

The matrix notation of (3.6) is
P

(m) = B(m)Λ, (3.7)

or
P

(m) = B(m)B−1
P. (3.8)

The approximate semi-discretized LRBFCM form along with the initial conditions, and boundary
conditions is given for models (2.5)–(2.7)

dβp
dtβ

= Dp + k(t), p(0) = b, (3.9)

where the LRBFCM approximation yields D as the sparse coefficient matrix. The order of vectors
b and k is N × 1 and the vectors b and k denote the initial and boundary conditions of the problem
respectively.

4. Time derivative discretization

Caputo’s time derivative ∂βp(v,t)
∂tβ for 0 < β ≤ 1 is

∂βp(v, t)
∂tβ

=


1

Γ(1−β)

t∫
0

∂p(v,η)
∂η

(t − η)−β dη, 0 < β < 1

∂p(v,t)
∂t , β = 1.

(4.1)
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Consider M + 1 equally spaced time steps t0, t1, . . . , tM in the interval [0, t], such that the time steps
τ, tn = nJ, n = 0, 1, 2, . . . ,M, and that the first-order finite difference scheme to approximate time-
fractional derivative term is

∂βp(v, tn+1)
∂tβ

=
1

Γ(1 − β)

tn+1∫
0

∂p(v, η)
∂η

(tn+1 − η)−β dη,

=
1

Γ(1 − β)

n∑
j=0

( j+1)J∫
jJ

∂p(v, η j)
∂η

(
t j+1 − η

)−β
dη,

(4.2)

where ∂p(v,η j)
∂η

is approximated as follows

∂p(v, η j)
∂η

=
p(v, η j+1) − p(v, η j)

η
+ O(J).

Then

∂βp(v, tn+1)
∂tβ

=
1

Γ(1 − β)

n∑
j=0

p(v, t j+1) − p(v, t j)
J

( j+1)J∫
jJ

(
t j+1 − η

)−β
dη,

=
1

Γ(1 − β)

n∑
j=0

p(v, tn+1− j) − p(v, tn− j)
J

( j+1)J∫
jJ

(
t j+1 − η

)−β
dη,

=


J−β

Γ(2−β) (pn+1 − pn) + J−β

Γ(2−β)

n∑
j=1

(pn+1− j − pn− j)[( j + 1)1−β − j1−β], n ≥ 1,

J−β

Γ(2−β) (p1 − p0), n = 0.

Let a0 = J−β

Γ(2−β) and b j = ( j + 1)1−β − j1−β, j = 0, 1, . . . , n. The above equation in a more precise form
can be written as [41]

∂βp(v, tn+1)
∂tβ

=


a0(pn+1 − pn) + a0

n∑
j=1

b j(pn+1− j − pn− j), n ≥ 1,

a0(p1 − p0), n = 0.
(4.3)

5. Numerical results

Using linear and nonlinear PDEs, we validate the applicability, accuracy, and order of convergence
of the proposed LRBFCM. The solved test problems are related to European and American options,
with and without exact solutions . For accuracy measurements, we have used the maximum error (L∞)
and relative error (Lrel) norms and numerical rate of convergence (Lcr) in space:

L∞ = max|pex − p|,

Lrel = |(pex − p) /pex| ,
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Lcr =
log10

(
‖pex − pn j‖/‖pex − pn j+1‖

)
log10

(
n j/n j+1

) ,

where pex and p represent the exact and numerical values respectively. If the price of an option is
particularly sensitive in one location, it makes sense to focus the mesh in that area. Adapting the grid
around the option’s strike price E may be advantageous.

v j = E + θ sinh(d1
j

N
+ d2(1 −

j
N

)), j = 1, 2, ...,N,

where d1 = sinh−1((vN − E)/θ), d2 = sinh−1((vo − E)/θ), θ = 0.5, 5.

Test Problem 5.1. Consider a time-fractional model [7] with homogeneous boundary conditions

∂βp
∂tβ

=
1
2
σ2v2∂

2 p
∂v2 + rv

∂p
∂v
− rp + f (v, t), (v, t) ∈ (0, vmax) × (0,T ),

p(0, t) = 0, p(vmax, t) = 0,
p(v, 0) = v2(1 − v),

(5.1)

where

f =

(
2t2−β

Γ(3 − β)
+

2t1−β

Γ(2 − β)

)
v2(1 − v) − (t + 1)2[x(2 − 6v) + y(2v − 3v2) − zv2(1 − v)]

is chosen such that p = (t + 1)2v2(1 − v) is the exact solution of (5.1). The parameters in this problem
are r = 0.05, σ = 0.25, x = 1

2σ
2, y = r − a, z = r, vmax = 1 and T = 1.

Test Problem 5.2. Consider a time-fractional model [7] with non-homogeneous boundary conditions

∂βp
∂tβ

=
1
2
σ2v2∂

2 p
∂v2 + rv

∂p
∂v
− rp + f (v, t), (v, t) ∈ (0, vmax) × (0,T ),

p(0, t) = (t + 1)2, p(vmax, t) = 3(t + 1)2,

p(v, 0) = v3 + v2 + 1,

(5.2)

where

f =

(
2t2−β

Γ(3 − β)
+

2t1−β

Γ(2 − β)

)
(v3 + v2 + 1) − (t + 1)2[x(6v + 2) + y(3v2 + 2v) − z(v3 + v2 + 1)]

is utilized to ensure that p = (t + 1)2(v3 + v2 + 1) yields the exact solution of (5.2). Values for the
parameters are used here as r = 0.5, x = 1, y = r − a, z = r, vmax = 1 and T = 1.

Figures 1 and 2 respectively, illustrate the rates of convergence and slopes of the time-fractional
models (5.1) and (5.2). Figure 3 shows the numerical solution of (5.1) using N = 64 and β = 0.7,
whereas Figure 4 shows the numerical solution of (5.2) using N = 16 and β = 0.7. The numerical
results generated by the LRBFCM are in good agreement with the exact solutions and implicit discrete
scheme (IDS) [7], as can be seen from the figures. The suggested LRBFCM’s numerical results for
Test Problem 5.1 for N = 21, β = 0.7, and various values of the shape parameter c are displayed in
Figure 5 (left), along with the relevant condition numbers κ (right). One can observe from the figure
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that the LRBFCM provides reliable and accurate results throughout a wide range i.e., (0 − 500), and
that the numerical values are equivalent to those of the IDS [7]. The suggested approach is only slightly
superior to the error norm of the IDS [7]. The reason is that the suggested approach is explicit and
contains temporal step-size restrictions, whereas the implicit scheme does not have such restrictions.
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Figure 1. L∞ error at various h values for Test Problem 5.1 using the LRBFCM and IDS [7].
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Figure 2. L∞ error at various h values for Test Problem 5.2 using the LRBFCM and IDS [7].
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Figure 3. Numerical solution of the LRBFCM for Test Problem 5.1 using N = 64, β = 0.7
and T = 1.
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Figure 4. Numerical solution of the LRBFCM for Test Problem 5.2 using N = 16, β = 0.7
and T = 1.
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Figure 5. (left) L∞ versus shape parameter c; (right) condition number κ versus shape
parameter c for Test Problem 5.1.
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Test Problem 5.3. Consider the following TFBSM [36] for European call options:

∂βp
∂tβ

=
1
2
σ2v2∂

2 p
∂v2 + rv

∂p
∂v
− rp, (v, t) ∈ (0, vmax) × (0,T ),

p(v, 0) = max(v − E, 0),
p(0, t) = 0, p(vmax, t) = vmax − Ee−rt, t ∈ (0,T )

(5.3)

with r = 0.04, σ = 0.3, E = 10, vmax = 40 and T = 1.

Since there is no exact solution for (5.3) the error norm is approximated using the double mesh
approach. Table 1 compares L∞ error and convergence rates using the LRBFCM and the CDM [36].
Using β = 0.7 and N = 41, Figure 6 illustrates the numerical solution of a European call option.
Figure 7 shows the volatility value (σ = 0.3) to display the price of a European call option for various
β values at the out-of-the-money (OTM), at-the-money (ATM), and in-the-money (ITM) positions. We
have modified the volatility value to compare the TFBSM’s contribution to that of the classical BS
model, and we discover that, in the case of European call options, changing the volatility values can
affect the outcomes. The numerical outcomes of the TFBSM are somewhat superior to those produced
by the conventional BS (β = 1) when the volatilityσ < 0.43, and comparably better values are achieved
for the call option. The numerical output of the classical BS (β = 1) model performs just slightly better
than that of the TFBSM when the volatility σ ≥ 0.43. (see Figures 8 and 9). Figure 10 displays the
cost of the European call option for β = 0.7 and N = 50 given uniform nodes (left) and non-uniform
nodes (right). Figure 11 depicts a detailed comparison of European call option prices for uniform and
non-uniform nodes. Figure 11 illustrates that a non-uniform grid can provide a somewhat reasonable
pricing. Despite the suggested technique being more explicit and cost-effective than the CDM [36], it
is evident from the assessment that its performance is equivalent to that of the CDM [36].

Table 1. Comparison of L∞ and convergence rates (Lrel) for various uniform nodes and β
values for Test Problem 5.3.

N = 64 N = 128 N = 256 N = 512
β CDM [36] LRBFCM CDM [36] LRBFCM CDM [36] LRBFCM CDM [36] LRBFCM

0.1 1.2029e−3 3.7775e−3 2.9366e−4 9.4820e−4 7.2309e−5 2.2235e−4 1.7939e−5 5.0526e−5
2.03 1.99 2.02 2.09 2.01 2.14 - -

0.3 1.1477e−3 3.6010e−3 2.7890e−4 9.0293e−4 6.8796e−5 2.2586e−4 1.7077e−5 5.3165e−5
2.04 2.00 2.02 2.00 2.01 2.09 - -

0.5 1.0952e−3 3.4144e−3 2.6816e−4 8.5492e−4 6.1627e−5 2.1359e−4 1.6437e−5 5.1588e−5
2.03 2.00 2.02 2.00 2.01 2.05 - -

0.7 1.0831e−3 3.2257e−3 2.6511e−4 8.0467e−4 6.5542e−5 2.0029e−4 1.6287e−5 4.4524e−5
2.03 2.00 2.02 2.01 2.01 2.17 - -

0.9 1.1384e−3 3.0512e−3 2.7875e−4 7.7231e−4 6.8869e−5 1.7356e−4 1.7125e−5 3.9350e−5
2.03 1.98 2.02 2.15 2.01 2.14 - -
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Figure 6. 3D view of European call option pricing for Test Problem 5.3 at N = 41 and
β = 0.7.
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Figure 7. Numerical solutions of European call option pricing for Test Problem 5.3 for
different values of β under conditions of OTM (left), ATM (center), ITM (right).
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Figure 8. Evaluation of European call option pricing for Test Problem 5.3 for various
volatility values (σ = 0.1, 0.5, 0.9) at ATM.
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Figure 9. Evaluation of European call option pricing for Test Problem 5.3 for various
volatility values (σ = 0.1, 0.5, 0.9) at ITM.
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Figure 10. Numerical solution obtained using uniform (left) and non-uniform (right) nodes
for European call option pricing for Test Problem 5.3 at N = 50, β = 0.7 and T = 1.
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Figure 11. A close view of uniform and non-uniform node numerical solution for European
call option pricing for Test Problem 5.3 at N = 50, β = 0.7 and T = 1.

Test Problem 5.4. Consider the nonlinear TFBSM [13] under the condition of a transaction cost

∂βp
∂tβ

+ rv
∂p
∂v

+
1
2
σ2v2

(
1 + 2ρv

∂2 p
∂v2

)
∂2 p
∂v2 − rp = 0, (v, t) ∈ (0, vmax) × (0,T ), (5.4)
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subject to

p(v, 0) = max
(
v − ρ−1

(√
vov +

vo

4

)
, 0

)
,

where the market liquidity is ρ and initial stock price is vo. The exact solution of this equation is

p(v, t) = v − ρ−1√vo

√v exp

r + σ2

4

2

 t +

√
vo

4
exp

(
r +

σ2

4

)
t

 . (5.5)

For purposes of numerical illustration, we take into account the parameters |ρ| = 0.01, r = 0.06,
σ = 0.4, vo = 4 and various v and β values. Tables 2 and 3 compare relative errors and also show the
computational time for the proposed LRBFCM while Figures 12 and 13 compare numerical estimates
for β = 1 and β = 0.5, respectively. Figure 13 (right) demonstrates that the MDTM [13] diverges while
the LRBFCM yields accurate and converging results. The tables and figures make it clear that the
LRBFCM offers substantially better accuracy even for the nonlinear TFBSM when transaction costs
are included.

Table 2. Comparison of numerical solutions and relative errors at β = 1 and T = 0.5 for Test
Problem 5.4.

MDTM [13] LRBFCM
v Exact p Lrel p Lrel

0.5 250.6286 243.2212 0.029555 246.4610 0.0166286
1.0 311.1902 301.9564 0.029673 307.0002 0.0134642
1.5 357.7770 347.1821 0.029613 353.5727 0.0117511
2.0 397.1301 385.4947 0.029299 392.9138 0.0106167
2.5 431.8603 419.4882 0.028648 427.6335 0.0097873
3.0 463.3067 450.5316 0.027574 459.0704 0.0091436
3.5 492.2649 479.4798 0.025972 488.0199 0.0086234
4.0 519.2532 506.9340 0.023725 514.9999 0.0081909
4.5 544.6315 533.3594 0.020697 540.3707 0.0078233
Computational time of the LRBFCM = 0.46 seconds for N=50
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Table 3. Comparison of numerical solutions and relative errors at β = 0.5 and T = 0.5 for
Test Problem 5.4.

MDTM [13] LRBFCM
v Exact p Lrel p Lrel

0.02 134.1475 131.455 0.020071 128.9427 0.0387987
0.04 146.1798 143.0975 0.021086 142.9939 0.0217936
0.06 155.4171 152.0336 0.021770 152.0159 0.0218846
0.08 163.2077 159.5681 0.022300 159.7693 0.0210674
0.10 170.0738 166.2063 0.022740 166.6394 0.0201933
1.0 311.1901 - - 308.5197 0.0085813
2.0 397.1300 - - 394.9583 0.0054686
3.0 463.3067 - - 461.5175 0.0038618
Computational time of the LRBFCM = 0.71 seconds for N=400
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Figure 12. Numerical solution for Test Problem 5.4 using the LRBFCM (left) and MDTM
(right) at T = 0.5 and β = 1.
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Figure 13. Numerical solution for Test Problem 5.4 using the LRBFCM (left) and MDTM
(right) at T = 0.5 and β = 0.5.
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Test Problem 5.5. Consider the following TFBSM for American put options using the penalty term
approach

∂βp
∂tβ

=
1
2
σ2v2∂

2 p
∂v2 + rv

∂p
∂v
− rp +

µC
p + µ − q(v)

, (v, t) ∈ (0, vmax) × (0,T ),

p(v, 0) = max(E − v, 0),
p(0, t) = E, p(vmax, t) = 0, t ∈ (0,T )

(5.6)

with parameters σ = 0.2, r = 0.1, E = 1, µ = 0.01,C = rE, q(v) = E − v, vmax = 2 and T = 1.

The exact solution of the PDE (5.6) is not available. Therefore, to estimate the errors, we applied
the double mesh principle. Table 4 compares the reference price [38] to the results of the integer
order model (β = 1) and existing methods [38, 39]. In fact, when β = 1, the suggested approach
resembles [38,39]. Table 5 provides the numerical solution for numerous values of N and β. The rates
of convergence and corresponding slopes are shown in Figure 14. The surface plot of an American
put option with β = 0.5 and N = 21 is shown in Figure 15. Figure 16 illustrates the pricing of an
American put option at ITM (left), ATM (middle) and OTM for various levels of β under the condition
of volatility (σ = 0.2). The figure shows that the value of the put option decreases as the value of
β decreases. When volatility is increased for the American put option from 0.1 to 0.9, the TFBSM
numerical results become better than those of the traditional BS (β = 1) (see Figures 17 and 18).
Therefore, we draw the conclusion that, in comparison to the traditional BS procedure, the TFBSM
can more precisely capture physical features like a jump or significant movement. As illustrated in
Figure 19, the price of an American put option has also been determined for uniform nodes (left) and
non-uniform nodes (right). Figure 20 displays a close view of the uniform and non-uniform grids used
to compare the prices of American put options. Figure 20 shows that we can get a rather reasonable
pricing on a non-uniform grid.

Table 4. Comparison of exact and approximate solutions at T = 1 and β = 1 values for Test
Problem 5.5.

v Reference price [38] LRBFCM [38] [39]
0.6 0.4000037 0.4000043 0.4000176 0.4000185
0.7 0.3001161 0.3001216 0.3001007 0.3002333
0.8 0.2020397 0.2020324 0.2019901 0.2022428
0.9 0.1169591 0.1168272 0.1165422 0.1154885
1.0 0.0602833 0.0601380 0.0597033 0.0580422
1.1 0.0293272 0.0292004 0.0287648 0.0276763
1.2 0.0140864 0.0140160 0.0136840 0.0132349
1.3 0.0070408 0.0070086 0.0068192 0.0066983
1.4 0.0038609 0.0038484 0.0037485 0.0037539
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Table 5. L∞ at various uniform nodes and β values for Test Problem 5.5.

N 21 41 81 161
β = 0.9 5.7315e−3 8.3826e−4 1.6169e−4 4.7204e−5

β = 0.7 5.8620e−3 1.1410e−3 2.3723e−4 2.0000e−4

β = 0.5 6.0068e−3 1.3576e−3 7.5219e−4 5.6710e−4

β = 0.3 2.3432e−3 2.5194e−3 1.5109e−3 6.7021e−4
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Figure 14. L∞ error at various values of h and β for Test Problem 5.5 using the LRBFCM.
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Figure 15. 3D view of American put option pricing for Test Problem 5.5 at N = 21 and
β = 0.5.
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Figure 16. Numerical solution of American put option pricing for Test Problem 5.5 for
different values of β, ITM (left), ATM (center), OTM (right).
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Figure 17. Evaluation of European call option pricing for Test Problem 5.5 for various
volatility values (σ = 0.1, 0.5, 0.9) at ATM.
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Figure 18. Evaluation of American put option pricing for Test Problem 5.5 for various
volatility values (σ = 0.1, 0.5, 0.9) at ITM.
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Figure 19. Numerical solution under the conditions of uniform (left) and non-uniform (right)
nodes for American put option pricing for Test Problem 5.5 at β = 0.5 and T = 1.
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Figure 20. A close view of uniform and non-uniform node numerical solutions for American
put option pricing for Test Problem 5.5 at β = 0.7 and T = 1.

6. Conclusions

The paper presents a successful solution to the the TFBSM for both European and American
options, as well as a nonlinear time-fractional model for an illiquid market with transaction costs,
using the proposed method of the LRBFCM. The LRBFCM combines a polynomial component with
an RBF component, resulting in improved accuracy and stability of the function approximation. The
polynomial component captures the overall behavior of the function, while the RBF component
focuses on local features. This method has the potential to be applied to various fractional BS models,
as well as other PDE problems in finance and other fields that involve fractional derivatives.

We have observed the following value additions during numerical experimentation

• To compare the TFBSM’s advantages over the classical BS model for call and put options,
numerical experiments were performed for various β values.
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• It has been observed that the change in volatility can influence the end results. We have observed
that the TFBSM’s numerical outcome for call options, when the volatility σ < 0.43, is
substantially better than that of the classical BS model (β = 1).
• The TFBSM performs better than the classical BS model when the volatility for put options is

raised from 0.1 to 0.9.
• Call and put option strike prices estimated on non-uniform nodes are higher than those calculated

on uniform nodes.
• When compared to the classical BS technique, the TFBSM can more correctly capture physical

features such as large movements or jumps.
• Numerical results of the explicit LRBFCM are comparable for the reported implicit methods.
• In some circumstances, the performance of the LRBFCM is proven to be more efficient and

accurate than current approaches in the literature.
• The numerical approach of the LRBFCM is reliable and practical when applied to fractional

PDEs, as evidenced by the numerical results of the numerous option pricing models that were
solved using it.
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