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Abstract: In recent years, many efficient key exchange protocols have been proposed based on
matrices over the tropical semirings. The tropical addition of two elements is the minimum of the
elements, while the tropical multiplication is the sum of the two elements. This paper proposes a novel
key exchange protocol based on the min-plus semiring (ZU {co}, @, ®) by introducing anti-s-p-circulant
matrices, which forms a commutative subset of M,.,(Z U {co}). We have given further analysis of the
protocol in detail using upper or lower-s-circulant matrices. Additionally, we prove that the set of
all lower-s-circulant matrices is a sub-semiring of the tropical semiring M,,(Z U {co}). We discuss
the detailed security analysis of the protocol with upper or lower-s-circulant matrices and provide
cryptographic algorithms for both key exchange protocols with detailed explanations. We compare
the protocol based on upper or lower-s-circulant matrices and our proposed protocol in terms of time
complexity and memory usage. Finally, we analyse the security and show that our protocol is safe
against popular attacks of tropical key exchange protocols. The security of these protocols relies on
the difficulty of solving tropical non-linear equations.
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1. Introduction

‘Cryptography’ is the process of establishing secure communication between the sender and the
receiver of information [1,2]. The sender uses a method called ‘encryption’ to turn plaintext into a
secret message called ‘ciphertext’, while the receiver uses a method called ‘decryption’ to convert the
ciphertext back into plaintext [3,4]. A ‘key’ is secret common knowledge shared by both entities. There
are two broad types of cryptography: symmetric key cryptography and asymmetric key cryptography.
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Symmetric key cryptography uses a single secret key for both encryption and decryption, which is
only known by the sender and the receiver [5]. In asymmetric key cryptography, one key is used for
encryption, and a different key is used for decryption [3,6]. Many varieties of cryptographic algorithms
have been constructed over classical algebra [2]. Cryptographic algorithms over tropical algebra have
gained significance in recent years, and tropical cryptography is one of the fields used to construct
secure cryptographic algorithms. Martin Hellman and Whitfield Diffie suggested the two-keys
cryptosystem in 1976 to overcome the issue of key distribution in symmetric key cryptography [4, 7].
The general protocol that uses semi-direct products of semigroups was introduced in [8], and one of
its special cases is the standard Diffie-Hellman protocol based on cyclic groups. This paper gives
a conjecture that, when the protocol is used with non-commutative semigroups, it acquires several
useful features. They suggest the extension of a particular non-commutative semigroup of matrices
over a certain finite group ring by a conjugation automorphism as a suitable platform. However, the
protocol introduced in [8] was attacked by the linear algebra attack [9]. The Cramer-Shoup scheme was
introduced in [10] and proved to be secure against adaptive chosen ciphertext attacks. Stickel proposed
the key exchange protocol based on classical algebra [11], which was then attacked by Shpilrain [12].
Grigoriev and Shpilrain extended Stickel’s protocol by using tropical polynomials and showed that
solving the system of tropical linear equations was NP-hard [13]. An advantage of using tropical
algebras as the platform for building key exchange schemes is that, in tropical schemes, one does
not have to perform any classical multiplication since tropical multiplication is classical addition and
is not invertible [14-16]. However, the major weakness of the tropical protocol is that the tropical
powers of the matrices exhibit a particular pattern, as noted by Kotov and Ushakov. This pattern helps
them to attack Grigoriev’s key exchange protocol [17]. Grigoriev and Shpilrain’s next key exchange
protocol was based on semidirect product [18], but it had the weakness that the sequence (M, H)'
is linearly ordered, which was found by Rudy and Monico [19]. Issac and Kahrobaei implemented
the linear periodicity attack [20] to attack the same protocol that used semidirect product. These
attacks showed that key exchange protocols with matrix powers over the tropical approach are easily
attackable. Different attacks of various tropical key exchange protocols were consolidated in [6]. The
significance of our research is that our protocols are related to the tropical two sided matrix action
problem that can be reduced to a system of non-linear equations, and solving such a system is NP-
hard [13].

Our contribution: In this paper, we propose a key exchange protocol over the tropical semiring with
min-plus operation. We avoid using power and linearly ordered operations over tropical concepts
to ensure the safety of our schemes against popular attacks. We introduce the abelian subset
((AWDLIED($))n, ®, ®) of the semiring (M,x,(3), D, ®), which is obtained by modifying the set of
p-circulant matrices and use it to frame our new protocol. Similarly, the protocol introduced in [21]
uses the set of upper-z-circulant matrices, which is also obtained by modifying the set of circulant
matrices. We provide a detailed analysis of the protocol using upper-z-circulant matrix [21] replaced
by the protocol using lower-s-circulant matrix. We compare the protocols using the lower-s-circulant
matrix instead of the upper-z-circulant matrix in the protocol introduced in [21] with our proposed
protocol. We also provide some propositions on the commutativity of the set of lower-s-circulant
matrices (€;(s)),,®,®) and the commutative property of the set of anti-s-p-circulant matrices. We
also give some propositions on the security of both protocols. We provide the security analysis of our
proposed protocol against the existing tropical attacks of Kotov & Ushakov, Rudy & Monico.
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The rest of the sections are organized as follows. In Section 2, we discuss some basic definitions and
notations. Section 3 contains an analysis of key exchange protocol 1, which uses the lower-s-circulant
matrix, the key generation scheme of protocol 1 with cryptographic algorithm, and an example.
Similarly, in Section 4, we discuss our proposed key exchange protocol, the key generation scheme
with the algorithm and an example. We also provide the security analysis of proposed protocol 2 in
Section 4. Section 5 contains a comparative analysis of the protocol based on upper or lower-s-circulant
matrices and our proposed protocol with the experimental results like time complexity, memory usage
and possible attacks for both protocols.

2. Preliminaries

Definition 1. [22] A non-empty set S with two binary operations addition (+) and multiplication (-) is
called a semiring, if it satisfies the following axioms:

1) S is an abelian monoid under the operation addition with ‘0’ as the unique identity element,

2) S is a monoid under the operation multiplication with a unique identity element denoted by ‘1°,
3u-(v+w)isequaltou-v+u-wand (v+w) -uisequaltov-u+w-uVu,v,wes,

4) Bothu-0andO-uareequaltoOVu €S,

5) The identities under the two operations should not be the same element.

Example 2.1. The set N U {0} forms a semiring under the operations classical addition and classical
multiplication where, N is the set of all natural numbers.

Definition 2. The following are the two tropical binary operations.

e x®y=max(x,y) (or) x®y = min(x,y).
e xXOy=x+Yy.

Definition 3. [22] A set R = S U {co} under the operations ‘@’ (tropical addition, (min)) and ‘®’
(tropical multiplication) is called a min-plus semiring if,

Dudv=voduVuveR,

) wuevyeow=ud(wvoéw)and u®v)Qw=u®(vew)V u,v,w € R,

D uswveow) =uev)®duew)Vu,v,weR,

4) de€ RY u € Rsuchthate ® u = u ® e = u (Here, the additive identity is ‘c0’),
5) inverse does not exist.

Let Z denote the set of all integers and 3 = Z U {oco}. In this paper, we have concentrated on the
min-plus semiring R = (3, ®, ®).

We know that (3, ®, ®) is a commutative semiring with additive identity and multiplicative identity
‘o0’ and ‘0’ respectively. Let M,«,(3) denote the set of all n X n matrices over J3.

2.1. Matrices over the min-plus semiring

The collection of all matrices over the semiring S with ‘m’ rows and ‘n’ columns is denoted by
M, (R). Let A € M,,,(R). Every ij™ element of A is denoted by ‘a;i’. Let P = (pij) € Mux(R),
Q = (qij) € men(R)’ T= (tij) € Mnxl(R) and a € R.
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In min-plus algebra [14-16] addition of two matrices is calculated by

P& Q = (min((pij), (4ij))mxn

and multiplication of two matrices is calculated by

P®T = min{((pu) + (tx)}mxi

where, k € {1,2,--- ,n}
a®P=a®p;j=a+pj

Example 2.2. The following is an example of tropical addition, tropical multiplication of two matrices
and the tropical addition, tropical multiplication of a matrix.

2 -1 15 21
LetA‘[4 9]’ _[—18 34]’“‘9
2 -l
A@B_[_lg 9]
29 23
A®B‘[—9 25]
oa |9 @ 2 -1l -2
P00 9|%|4 9 |T|13 18
2 -1l
aEBA—[4 9]

Definition 4. A matrix T € M,,,(3) is said to be circulant C,, with entries ¢y, ¢y, - - , ¢, if it is of the
form

T G Cyp1 -t 2
Cr C1 [ et C3
LS I ) . G
,Cn Cp—1 Cyp-—2 **° Cl_

Definition 5. A matrix T € M,,,,(3) is said to be lower-s-circulant if the matrix is of the form

C1 Cn Cn—-1 R &)
SQ cy Cq Cy e 3
S®c3 SO C1 SRR 71
S®C, S®C,-1 SQC,2 -+ Cq]

where ¢, ¢, -+ , ¢, 5 € 3. The set of all lower-s-circulant matrix of order ‘n’ is denoted by (€;(s)),.
Here, ‘I’ denotes that the element ‘s’ is added in all the ‘lower diagonal’ entries.
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Example 2.3. An example of lower-2-circulant matrix is given below.

4 17 23 12
12 4 17 23
Let €=1r2 b 4 17
17 23 12 4
Then,
4 17 23 12
14 4 17 23
©i2)e = 25 14 4 17
19 25 14 4

Proposition 2.4. If A € (€,(s)),, B€ (€(t)), and s # t, then A® B +# B® A.

Proof. Let A € (€(s)), and B € (€(1)),

[ a an ap-1 o ag] [ b by by oo byl
a + s ap a, cee a3 by +t b, b, --- b
a+s a+s a; cee Uy b+t by+t b, cee by
A_a4+s a+ s a+s - as B = bi+t b3+t by + s bs
la,+s a,_.1+S a,,+s --- ai] b, +t b1+t b, o+t --- by]

To prove the non-commutativity of €;(s), and &(1),, it is enough to prove that (A ® B);; # (B® A);; for
some |l <i,j<n.
Let us calculate the value of (A ® B);; and (B® A);;. We get,

(A® B);; = min{a; + by,a, + by +t,a,_.1 +bs +t,a,o +bs+t,--- ,a, + b, + 1}
(B®A)11 = min{bl +a1,b,,+a2 + S,bn_l +as + s,bn_2+a4+ S, ,b2+an + S}
Since s # t, we have (A® B);; # (B® A),. Thus, AQ B # B® A. |

Definition 6. A matrix 7 € M,,,(3) is said to be an anti-s-circulant (AC;(s)), matrix with entries
C1,Ca,- "+ ,Cp, s 1f it is of the form

[ s® ¢y s®c, - S®c3
S® Cy s®c; - Cy s ® C3
s ® 3 S®cy; -+ S®cCs sVcCy
S® Cp-1 Cn-2 e S®c; s®cy
Cp SRCp—1 - S®Cr SQcCq]
where ¢y, ¢z, -+ , ¢, 8 € 3 and set of all anti-s-circulant matrix of order ‘n’ is denoted by (UE/(s)),.

Here, ‘I’ and ‘u’ denote that ‘s’ is added to both upper and lower anti-diagonals.
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Definition 7. A matrix T € M,«,(3) is said to be an anti-s-p-circulant with entries ¢y, ¢,, - - -

is of the form

[ s® ¢ sQ®cy,
S® o s ® Cq
s® c3 NI e))
§® Cp-1 Cn-2
Cp S ® Cp-q

, Cp, 8 1f 1t

C 1
s ® C3
SQ®cCy

S ® 3
Cy4
S ® cs

s ® Cy
S ® o

s® c,
s® ]

where, ¢y —ci1 = pV 1 <k <nand p € Z and the set of all anti-s-p-circulant matrix of order ‘n’ is

denoted by (A(D,[C]))(5)),.

Example 2.5. An example of lower-13-circulant matrix and anti-13-circulant matrix of order 4 is

given below.

5 21 7 -4
-4 5 21 17
Let E=17 4 5 21
21 7 -4 5
The lower-13-circulant matrix of € is,
5 21 7 —4 5 21 7 -4
-4®13 5 21 7 9 5 21 7
(©(13)a = 7013 -4®13 5 2117120 9 5 21
21913 713 -4®13 5 34 20 9 5
The anti-13-circulant matrix of € is,
513 21®13 7®13 -4 18 34 20 -4
" B 413 513 21 713 B 9 18 21 20
(U (13))a = 7913 -4 5013 21®13| |20 -4 18 34
21 7913 -4®13 513 21 20 9 18
An example of anti-13-5-circulant matrix is,
513 2013 15®13 10 18 33 28 10
" B 1013 5®13 20 15® 13 _ 23 18 20 28
ADs[ED;)(A3))s = 15913 10 513 20®13| |28 10 18 33
20 1513 10®13 5®13 20 28 23 18

Proposition 2.6. If A € (U(D,[C]);})($)n, B € (AD,[ED/)(D)), then AQB + BRAY s # 1.
Proof. Let A € (WD, [CD))()n, B € (D, [ED))(D))n

ay+s a,+s a,+s
a+s a+s  a,+s
A=
a1+ S§ a,-» a,-3+§
a, dy_1+S Apo+ S
AIMS Mathematics

ay |
az+ s

a,+ s

a + §|

>b1+l' b,+t b1+t b, ]
b+t b+t b,+t by +t

b, +t b, b, s+t b, +t
b, b,.1+t b, o+t by + 1|

Volume 8, Issue 7, 17307-17334.
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To prove the non-commutativity of the set (U(D,[€]);)(s)), and (A(D,[E])})(?)),, it is enough to prove
that (A ® B);; # (B® A);j forsome 1 < i, j < n.
Let us compare (A ® B);; and (B® A)»,

(A® B)j, = min{a; + s+ b, +t,a,+s+by+t,a,_1+5s+by+t,--- ,a3+ S5+ b,p,ar,+b,_1 + 1t}
(B®A), =min{by +t+a,+s,b,+t+a1+s,b,_1+t+a,+s,--- ,bs+t+a,,,b,+a,1+ s}
since s # ¢, it implies (A ® B), # (B® A);; and hence A® B # B® A. O

Proposition 2.7. (€/(s)), (set of all lower-s-circulant matrices over 3) is a commutative tropical
semiring and a subsemiring of M,x,(3).

Proof. 1) To prove that (€ (s)), is a subsemiring of M,,,(3) it is enough to prove that it is
closed under tropical addition and tropical multiplication. Let A,B € (G(s)), with entries
ai,ay,- - ,ap,ay + S,a, + 8, ,a, + sand by, by, -+ ,b,, by + s,by + 5, - , b, + s respectively.

[ a ay ap—1 e ap) [ by b, by o by
a + s a a, cee Az b2+S b1 bn b3
a+s a+s a ey bs+s by+s b, <o by
A_a4+s a+s a+s - as B = by+s by+s by+s --- bs
la,+s a,_.1+s a,,+s --- a] b, +s b,_.1+s b,,+s --- by]

(a) Clearly (€(s)), is closed under tropical addition.

[ min{al’ bl} min{ana bn} min{an—la bn—l} e mm{az, b2}
min{a,, by} + s min{a;, by} min{a,, b,} .-+ min{as, b3}
min{as, b3} + s min{a,, b} + s min{a;, by} -+ min{ay, bs}
A®B =\ \in{as, by} +s minfas, b3} +s  minfay, by} +s -~ minfas, bs)| € &
| min{a,, b,} + s min{a,_1,b,-1} +s min{a,2,b, 2} +s --- min{a;, b}

(b) Let the entry (A ® B);; denotes the i j™ entry of the matrix A® B. (C); and (D), 1 < k < n
be the entries of circulant matrices to generate the lower-s-circulant matrices A ® B and B® A
respectively. Assume that A, B € (€(s)),. To prove that the set of all lower-s-circulant matrices
are closed under the tropical multiplication, it is enough to prove that the matrix A ® B is also in
the following form

[ (O) (O (O)pt (O -+ (O)]
Ch+s (O (O Chp1 -+ (O)3
Cx+s (Chts (Ch (O o (O
Chuts (Cp+s (Chn+s (O o (O)s
[(C)p+s Oy +s (Opats (C)szts - (O)]
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The diagonal entries of the tropical multiplication A ® B of the matrices A and B are,

(A®B)11 :min{a1 +b1,an+b2+s,an_1 +b3+s,an_2+b4+s,--- ,Cl2+bn+S}
(A@B)zz :min{a2+bn+s,a1 +by,a,+by+ 5,0, +b3+s,---a3 + b, +S}

(A®B),m =min{a, + by + S,a,_1 + b3 + s,a,» + by + s,a,_3+bs+ s,---a; + by}
By rearranging the terms, it is clear that (A ® B)y are equal for all 1 < k < n. In general, let us
call these entries as (C);.

A®B)1=(A®B)y =--=(A®B),, = (C);
(C)] = min{a1 + b],an + bz + 5, a,-1 + b3 +s,a,-2 + b4 + 8,000 ,ap + bn + S}
Now, the upper off diagonal entries are obtained as follows,
(A® B)j; = min{a; + b,,a, + by,a,.1 +bry+s,a, 5 +bs+s,--- ,ar+b,_1 + 5}
(A ®B)23 = min{a2 + bn—l + s,a1 + bn,an + b],an_] + bg + S8, ,a3 + bn_z + S}
(A ® B)(n—l)n = min{an—l + bn—(n—Z) + 8,42 + bn—3 + 8, ,ap t bna a, + bl}

By rearranging the terms, we can see that the entries (A ® B) -y are equal for all 2 < k < n. We
denote this value as (C), in general

(A®B)n=(A®B)y3 =+ = (A® B)(-1), = (C),

Then,
(C), = min{a; + b,,a, + by,a,-1 + by + s,a,.o +bs+s,--+ ,a, + b,_| + s}

The next upper off diagonal elements are obtained as,

(A® B);3 = min{a; + b,_1,a,+b,,a,_.1+b1,a,2+by+s,--- ,a, + b,_» + 5}
(A® B)yy = min{a, + b,_» + s,a; + b,_1,a, + b,,a,_1 + by,--- ,a3 + b,_3 + 5}
(A ® B)(—2pn = min{a,_| + by_(n-3) + S, ap2 + by_s + s, -+ ,a; + by, a, + by}

Again by rearranging the terms, it is clear that the entries (A ® B)_2y are equal ¥V 3 < k < n. We
name these entries as (C),_; in general.

(A®B);3=(A®B)y =+=(AQ® B)u-2yn = (C)1

Then,
(C)n—l = min{al + bn—la a, + bn, ap-1 + bla ap-— + b2 + 8,00 ,d2 F bn—Z + S}

The entries (A ® B)(,-1), (A ® B),, are obtained as,
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(A ® B)l(n—l) = min{a3 + b],Clz + b2 + s,a1 + b3,an + b4, cee,az + b]}
(A@B)zn = min{a2 + b2 + s,a1 + b3,an + b4,an_1 + b5 +S8,-,a3 + b]}
In general, we denote it as (C);. Then,
(C)s =min{ay + by + s,a; + bs,a, + by,a,_1 +bs+s,--- ,a3+ by}
By continuing this process, finally we end up with the entry (A ® B),,. We name this entry as (C);

(A® B)1, = (C), =min{a; + by,a, + b3, a,_1 + bs,ap_p +bs, - ,a, + by}

Similarly, we obtained the lower off diagonal elements with following values

(A® B)y; = min{a, + by + s,a1 + by + s,a,+ bz + s,a,_1 +bs+s,--- ,a3+ b, + 5}
(A® B)y =min{as + b, + s,a, + by + s,a, + by + s,a; +bs +s,--- ,as + b,_1 + s}
(A ® B)yn-1y = min{a, + b3 + s,a,-1 + by + s,a,.2 + bs + s,a,.3 + bg + s5,--- ,a; + by + s}

By rearranging the above terms, we can see that (A ® B)x-1) are equal for all 2 < k < n. That is,

(A®B)) =(A®B)x =+ = (A® B) -1y
=min{a, + by + s,a1 + by + s,a, + bz + s,a,_; + by +s,--- ,a3+ b, + s}
:min{a1 +b2,an+b3,an_1 +b4,an_2+b5,-~~ ,Clz+b1}+S: (C)2+S

Now, the second lower off diagonal entries are obtained as,
(A® B);; =min{as + by + s,ar + by + 2s,a1 + bs + s,a, + by + s,--- ,a4 + b, + s}

(A®B)42 :min{a4+bn+s,a3 +by+5,a, +by + 25,41 +b3+S,"' ,Cl5+bn_1 +S}

(A®B)n(n—2) = min{az + by +2s,a1 + b3 +s,a,+bs+ 5,0, + b5 +8,-,a3 + b, + S}
Again, second lower off diagonal elements (A ® B)yx-2) are equal for all 3 < k < n. Which can be
denoted as

(A®B)31 =(A®B)y = -+ = (A® B)nsopm

=min{ay + b; + s,ar + b, + 2s,a1 + b3 + s,a, + by + 5, ,a4 + b, + s}

= min{a2 +by+s,a; + b3,an + by, a,1 +b5 +5,---,a3 + bl} + 5= (C)3 + s
Again by continuing this process, the final lower off diagonal entry is obtained as,
(A® B),; = min{a,, + by + s,a,_1 + by + 2s,a,.» + b3 + 2s,a,_ 3+ by + 2s,--- ,a; + b, + s}

=min{a; + b,,a, + b1,a,-1 + by + s,a,o + b3+ s,--- ,a, + b,_1 + s} + s
= +s

AIMS Mathematics Volume 8, Issue 7, 17307-17334.
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By placing all obtained elements in the following matrix of order n we get the form of lower-s-

circulant matrix

[ (O) (O (C)n1 Oy -+ (O)]

Cr+s (O (O Ot - (O)3

AR C)xs+s (Chr+s (O (O e (O
OL=1(Clu+s (Ca+s (Ch+s (O o (O)s
[(C)+s (O t+s (Opats (C)pszts - (O)]

Hence, it is proved that the set of all lower-s-circulant matrix is closed under tropical

multiplication.
2) To show that (€;(s)), is commutative, it is enough to show that (C); = (D), and
Oy +s=D)y+sforalll <k <n.

Since we found the entries of A ® B in the previous proof, it is enough to find the entries of B® A.

(D); =min{b; +a;,b, +a, + s,b,_1 +a3+ s,b,_ o +as+s,--- ,b, +a, + s}

By rearranging the terms we get,

(D)] :min{a1 +by,a, + by + s,a,_ +b3 + 8,0, +bs+ s, ,Clz+bn+S}

=(C)
Similarly,

(D), = min{b; + a»,b, + asz, b,y + as,b,_» + as,--- ,by + a;}
=min{a, + by,a, + b3, a,_y + bs,a,» + bs,--- ,a, + by}
=(C)

Also,

(D); =min{b, + ar + s,by + a3, b, + a4, b,y +as + s,--- ,b3 + a;}
=min{a, + b, + s,a1 + b3,a, + bs,a,_1 + bs+s,--- ,az + by}
=(0);

By continuing this process, we obtain the entry (B ® A),_; as,
(D),—y = min{by + a,_1,b, + a,,b,_1 +a,b, o +a+s,--- ,by +a,, + s}
=min{a; + b,_1,a, + b,,an_1 + b1, a,2 + by + 5, -+ ,a2 + b,_ + s}
= (O)p

Finally, the term (B ® A), is obtained as,
(D), = min{b; +a,,b, + a;, b, +a» + s,b, o +a3+s,--+ ,by +a,_| + s}

min{a; + b,,a, + by, a,.1 + by + s,a,0+bs+s,--- ,ar + b,_1 + 5}
= (O

Now the next entry is obtained as,

(D), + s =min{b, +a; + s,by+ar + s,b, +az + s,b,_1 +as +s,--- ,by+a, + s}

= min{bl + az,bn +a3,bn_1 + a4, bn_2 +as, - ,b2 + 611} + S
= min{a1 + bz,an + b3,an_1 + b4,an_2 + b5,' s ,dy) + b]} + s
=(Ch+s
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Similarly,

(D); + s =min{bs +a; + s,br +ar + 2s,by +az + s,b, +as +s,--- ,bs +a, + s}
=min{b, + a, + s,by + as, b, + a4, b,y +as +s,--- ,by +a;} + s}
=min{a, + b, + s,a, + bz, a, + by, a,_1 +bs+s,--- ,a3+ b1} + s
=(C)s+s

Also,

(D),—1 + s =min{b, +a,_, + s,b, +a, + s,b,_ +a, + s,b,_» +a)+2s,--- ,by +a,, +2s}
= min{b, + a,_1,b, + a,, b, + a1, b, o +a, +s,--- ,by +a, ,+ st+s
= min{a, + b,_1,a, + b,,a,_1 + b, a, o +by+s8,--- ,ar +b, o+ 5} +§
=(C)p-1 + 5

And the final entry of B ® A is obtained as,

(D), +s=min{b, + a, + s,b,_ +a, +2s,b, » + a3 +2s,b, 3 + a4 +2s,--- ,by +a, + s}
= min{b, + a,,b, + a\,b,_1 + a + s,b, > +az +s,--- ,by +a,_ + s} + s}
= min{a, + b,,a, + by,a,_.1 +br+ s,a, o +bs+s,--- ,ar+b,_ 1+ s} +s
=) +s

Hence, it is proved that (C), = (D)y V1 <k <nand (C)y+s=(D)+sYV2 <k <n.
Thus,
A®B=BQ®A.

Proposition 2.8. (U(D,[C])/)(s)), (set of all anti-s-p-circulant matrices) is a commutative subset of
the tropical semiring M,,(3).

Proof.
[ ay+s a,+s a,. +s -  a | [ by +s b,+s b, +s -+ b
a+s a+s a,+s - az+s b+s bi+s b,+s -+ by+s
Let A= : : |& B=
a,_1+s a,., a,3+S -+ a,+s b,.i1+s b, b,s3+s -+ b,+s
a, Ap1+S apo+s -+ ap+s) | by, by1+s byy+s -+ by +s]

To prove the commutativity of ((A(D,[€]);)(s))n, it is enough to prove that (A ® B);; = (B® A);;, ¥
1<i,j<n.

Let A, B € ((W(D,[C])})(5))n, then we have a;, ® by, = by, ® ay,V 1 < ki, ky < n.
By using this property we get,
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(A® B);; = min{a; + by +2s,a, + by +2s,--- ,a3 + b,_1 + 2s,a, + b,}
=min{b; +a; +2s,b, +ar, + 2s,--- ,bs + a,_1 +2s,b, + a,}
=(B® A

(A® B)|, = min{a; + b, + 2s,a, + by +2s,--- ,a3+ b,_» + s,a, + b,_; + s}
=min{b; +a, +2s,b, +a; +2s,--- ,bs +a,,+ s,b, +a,_1 + s}
=(B®A)n

(A® B);, = min{a; + by + s,a, + by +2s,--- ,az + b, + 2s,a, + by + s}

=min{b, +ar + s5,b, +az +2s,--- ,bs+a,+2s,by, +a; + s}
=(B®A)

Similarly,

(A® B)y; = min{a, + by + 2s,a; + by +2s,--- ,a4 + b,_1 + 2s,a3 + b, + s}

=min{b, +a; +2s,by +a, +2s,--- ,bs +a,_1 +2s,b3 + a, + k)
= (B®A)y

(A® B)yy = min{a, + b, + 2s,a; + by +2s,--- ,as + b,_»,a3 + b,_1 + 25}

=min{b, + a, +2s,by +a; +2s,--- ,bs +a,_», bz + a,_1 + 2s}
=(B®A)»n

By continuing the process, we get,

(A® B)y, = min{a, + by + s,a; + b3 +2s,--- ,as + b, + s,as + by + 2s}
=min{b, + a, + s,by + a3 +2s,--- ,by +a, + s,b; + a; + 2s}
= (B®A),

(A® B)(y-1y1 = min{a,_; + by +2s,a,.o + by +s,--+ ;a1 + b,_; +2s,a, + b, + s}
=min{b,_; +a; + 28, b, +a, +s,--- ,by +a,_1 +2s,b, +a, + s}
= (B®A)u-1)1

(A® B)(y—1y» = min{a,_y + b, + 2s,a,.o + by + s,--- ;a1 + by_p + s,a, + b,_; + 2s}
=min{b,_1 +a,+2s,b,o+a1+s,--- by +a,.» +k,b, +a,_; +2s}

= (B®A)n-12

(A &® B)(n—l)n = min{an_l +by +2,a, 0+ b3 +s,---,a,+b,+2s,a,+ b + 2S}
=min{b,_1 +ar +2,b,» +azy+s,--- ,b; +a, +2s,b, +a; +2s}
= (B®A)u-1yn

Similarly, the entries of (n)" row of the matrix A ® B is,
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(A® B),; = min{a, + b1 + s,a,_1 + by +2s,--- ,a, + b,_1 +2s,a; + b, + s}
=min{b, +a + s,b,_1 +a, +2s,--- ,b, +a,_1 +2s,b; +a, + s}
= (B®A)u

(A® B),, = min{a,, + b, + s,a,_1 + by +2s,--- ,ar + b,_» + s,a; + b,_; + 2s}
=min{b, +a,+ s,b,_1 +a; +2s,--+- ,by+a,.»+ 5,b1 +a,_1 +2s}
=(B®A)n

(A® B),, = min{a, + by,a,_1 + b3y +2s,--- ,a, + b, + 2s,a; + by + 2s}
=min{a, + by, a,_.1 + b3+ 2s,--- ,a, + b, + 25,a, + by + 2s}
= (B® A

Thus,
A®B=BQ®A. o

3. Public key exchange protocol 1

In this section, we discuss the protocol introduced in [21] with the help of lower-s-circulant
matrices. Further we study the protocol which use upper or lower-s-circulant matrices to compare
it with our proposed protocol that uses anti-s-p-circulant matrices ((U(D,[C])})(s)),.

3.1. Description of the protocol 1

Step 1: Let ¥, s, be the public parameters.

Step 2: Alice selects two matrices C; and C, and finds the two matrices 2, B;.

Step 3: Bob selects two matrices C; and Cy4 and finds the two matrices 2, B,.

Step 4: Alice finds K, = U; ® (Y) ® B, and sends it to Bob.

Step 5: Bob finds K, = %, ® (Y) ® B, and sends it to Alice.

Step 6: Alice computes G| = U; ® K, ® B;.

Step 7: Bob computes G, = U, @ K, ® B,.

Step 8: By the properties of tropical algebra, the shared keys are the same. K = G| = G,.
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Algorithm 1: Key exchange algorithm for protocol 1.
Input : Matrices Y, Cy, C,, C3, C4 and integers s, t,n
Output: Shared secret key

1 ® := Tropical multiplication

2 L(s) := Lower triangular matrix with entries ‘s’

3 =C1+ L)

4 B =Cr+ L(1)

5 Uy :=C5+ L(s)

6 By :=Cyu+ L(D)

7K, =YY%,

8 K, =, 0Y®3B,

9G; =K, 3B,

10 G, =K, %,
11 return Shared secret key G, = G,

3.2. Key generation and parameters of protocol 1

e Let Y, s,¢ be the public parameters, where the entries of Y are the elements from the tropical
semiring (Z U {oo}, ®, ®). Similarly s, t are integers.

e Alice selects two circulant matrices C; and C; from the tropical semiring (M,,(3), ®, ®) and finds
the matrices 2, B, with the use of s, r where €, is set of all circulant matrices of order n.

o (c)!, (c)', (), -+ (cy) and ()%, (c2)?, (c3)%, - - - (c,)* are the elements of circulant matrices C,;
and C; respectively.

[ (1) (cn)! (i)' o ()]

5® (c)! (c1)! (cn)! e (e)!

A = [5®(3) 5®(cr)! (et o (cd)!
_S®icn)1 S®(én_1)l S®(;‘n—2)l (c;)l_

[ (c1)? (cn)? (cn-1)? o0 ()]

1® (c2)* (c1)? (cn)? e (e3)?

B, = [t (c3)* 1®(c) (1) e (ca)?
_t ® ('Cn)2 I® (C.‘n—l)2 Y (C"n—Z)Z e (C;)z_

e Alice computes K, = U; @ (¥Y) ® B;.

e Bob selects two circulant matrices C3 and C,4 from the tropical semiring (M,(3), ®, ®) and finds
the matrices 2, and B, with the help of s, 7.

o (c1)>,(c2)’, (c3)’, -+ (cy)? and ()%, (c2)*, (c3)*, - - - (c,)* were the elements of circulant matrices Cs
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and C, respectively.

[ ()’
5® (c2)?
912 =|[5® (C3)3

|5 ® ic,,)3

[ (C1)4
1® (c)*
%2 =|I® (C3)4

[1® (cn)*
Bob computes K, = A, ® (¥) ® B,.
Alice finds the matrix

Bob finds the matrix

Finally, the shared keys are same K =

(cn)’? (1) oo ()]
(c1)? (cn)? o (e3)?
5® (c2)? (c1)? s (ey)?
s® (én—l)S 5® (én—2)3 e (C;)3_
(cn)? (o)t 0 ()]
(c1)* (cn)? o (e
1® (cp)* (c1)* o (eg)?
[® (C"n—l)4 I® (C.‘n—2)4 e (C;)4_

G[ :9«[1®Kb®%1.

G2 :912®Ka®%2.
G] :Gz.

The proof is given in the following Proposition 3.2.

3.3. A toy example
Example 3.1. Consider

-601 -615 54332
Y=]-554 98 45 |,s=-154,t=1797,n =13
4325 65 3232
Alice choose
[ -8 126 335 —423 -827 232
C,=1335 -8 126|,C, =232 —-423 -827
[126 335 -8 —-827 232 —423
and she finds
[ -8 126 335 —-423 -827 232
A, =181 -8 126],B; =]2029 -—-423 -827
|—-28 181 -8 970 2029 -423
Bob choose
(059 -7 131 =712 18822 573
Cy; =131 959 -7|,Cs=]| 573 =712 18822
| -7 131 959 18822 573 =712
and he finds
[ 959 -7 131 712 18822 573
A =|-23 959 -7|,8,=|2370 712 18822
|—161 -23 959 20619 2370 -712
AIMS Mathematics
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Alice finds
[-1032 —1436 -1450
K,=1-985 —-1389 -1261|and sends to Bob.
[—1052 —-1456 -1470
Bob finds )
-1273 -621 -674
K, =|—-1336 —1350 —51 |and sends to Alice.
|—1474 —-1488 —-690
Alice finds
[—-1704 -2108 —2051]
G, =1|-1771 -=-2175 -2189
|—1905 -2309 -2323]
Bob finds

[—1704 —-2108 —2051]
G, =|-1771 =2175 -2189
[—1905 -2309 -2323]

Thus, the shared keys are equal G, = G».

Suppose an attacker tries to find 2, B; from the known matrices K,, Y, s, ¢

-601 -615 54332 by by by
=554 98 45

4325 65 3232

ap an aq

® ® -985 -1389 -1261

-1052 -1456 -1470

a; — 154 ap ar
a; — 154 a) — 154 ap

by + 1797 by b,
by, + 1797 by + 1797 by

l—1032 —-1436 —1450}

Then, he will end up with the following tropical non-linear system,
min{(—601) ® ap ® by, 1182 ® ay ® b1,56129 ® ap ® b,,4325 ® a; ® by, 1862 ® a; ® b;,5029 ® a; ®
by, (=554)® a, ® by, 1895 ® a, ® b1,1842 ® a, ® by} = —1031
min{(-=615)®ay® by, 56129 ®ay®b;,(—601)®ay®b,,65®a; ® by, 5029 a; ®b;,4325®a, ®b,,98®
ar ® by, 1842 ®@ a, ® b, (=554) ® a, ® by} = —1436
min{54332®ay® by, (—601)®ay® b, (—=615)Ray®b,,3232®a,; ®b(,4325®a,®b;,650a,®b,,45®
ar ® by, (-554) ® a, ® b1,98 ® a, ® b} = —1450
m1n{(—554) ®ayg ® b(), 98 ® ap ® b] + 1842 ® ap ® bz, (—755) ®a ® b(), 1028 ® a ® b], 55975 ® ar ®
b,,4325 ® a, ® by, 1862 ® a, ® b1,5029 ® a, ® by} = —985
min{98 ® ay ® by, 1842 ® ay ® by, (—554) ® ay ® by, (=769) ® a; ® by, 55975 ® a; ® b,1042 ® a; ®
by, (-89)®a, ® by, 55975 ® a, ® b,4325 ® a, ® by} = —1389
m1n{45 ®ag® b(), (—554) ®ag® b] 5 98 ® ap bz, 54178 ® a® b(), (—755) ®a ® b] . (—769) ®a ® bz +
3232@612 ®b0 + 4325 ® ar ®b1 + 65 ® ar ®b2} =-1261
min{4325® ay® by + 1895 ® ay®b; + 5029 ® ay @ b, + (-708) ®a; ® by + 1741 ® a; ® b1, 1688 ® a; ®
by, (=755) ® a,by, 1028 ® a, ® by,55975a,b,} = —1052
min{65®a0®b0, 5029®a0®b1, 4325 ®a0®b2, (—56)@611 ®b0, 1688@611 ®b1, (—708)@01 ®b2, (—769)®
a® b(), 55975 ® a ® bl, (—755) Rar ® bz} = —1456
min{3232Q®ay®by, 4325®ay®b1,65®a¢®b,, (—109)®a; @by, (=708)®a; @b, (=56)®a; ®b,, 54486 ®
ar ® by, (=755) ® a, ® by, (-769) ® a ® by} = —1470

To attack the protocol, this system of non-linear equations has to be solved. But we already know
that solving non-linear tropical equations is NP-Hard [13].
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3.4. Security analysis

The security of this protocol relies on the non-commutativity the lower-s-circulant matrix and the
lower-¢-circulant matrix.

Proposition 3.2. If Py € (€,(5)),, O1 € (C())n, P2 € (€(5))n, Q2 € (C(2)),, and s # t, then

1) P,®K,® 0= P, ® K, ® O,
2) K, K, and K, ® K, # P, ® K, ® O, and P, ® K, ® O,

whereKa = (P1®Y® Ql), Kb = (P2®Y®Q2).

Proof. 1) In this part of the proposition we prove that the shared secret keys are equal.
We know that by Proposition 2.7, Py ® P, = P, ® Py and P1 ® Q; # Q1 ® P;.

Now, we consider,
RHS =P ®K,® 0,

=P1®(P20Y®0)® 0
=(P1®P)®Y®(0:®01)
=(P,®P)®Y®(01® Q)
=P,®P19Y®0)® 0
=P,®K,® 0
=LH.S
Hence, we proved that the shared keys are equal.
2) In this part of the proposition, we show that an attacker cannot find the secret key with the known
matrices K,, K, . Now, to prove the security of the protocol 1,
K. 9K, =(P1®Y®Q01)Q(P,®Y® Q)
=PIYQR(0,9P)Y® (0,
By Proposition 2.4
PIY®R(O1®P)RYRD, # PIY®(P,®01)Y® (0,
+#+P,®K,®0,,PI®K,® Q0
Hence, K, ® K, and K, ® K, # P, ® K, ® O, and P, ® K, ® O,
m]

The time complexity of solving a tropical Grobner basis [23] for a tropical non-linear system of
equations with n X n matrices is known to be O(2?") which is extremely larger than O(n?).

4. Public key exchange protocol 2

In this section, we propose a new key exchange protocol based on the anti-s-p-circulant matrices.
We have given the algorithm, example and the security analysis of the proposed protocol.

4.1. Description of the protocol 2

Step 1: Let ¥, s, ¢, p be the public parameters.
Step 2: Alice selects two p-circulant matrices C; and C; and finds the two matrices Py, Q.
Step 3: Bob selects two p-circulant matrices C3 and C, and finds the two matrices P;, Q,.
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Step 4: Alice finds K, = P; ® (Y) ® Q, and sends it to Bob.
Step 5: Bob finds K, = P, ® (Y) ® P, and sends it to Alice.
Step 6: Alice computes G| = (P; ® (Kp) ® Q).

Step 7: Bob computes G, = (P, ® (K,) ® O»).

Step 8: Computed values of both keys are same K = G| = G,.

Algorithm 2: Key exchange algorithm for protocol 2.

Input : Matrices Y, Cy, C,, C3, Cy4 and integers s, ¢, p
Output: Shared secret key

1 ® := Tropical multiplication

2 AL(a) := Anti-lower triangular matrix with entries ‘a’

3 AU(a) := Anti-upper triangular matrix with entries ‘a’

4 ALU(a) := AL(a) + AU(a)

5 PL:=Ci+ALU(s)

6 O, =C,+ALU(t)

7 P, :=C;+ALU(s)

8§ O, :=C4 +ALU(?)

9K, =P Y®Q;

10 K, =P,Y®Q0,

11 G :=P1®K,® 0

12G, =P, 9K, ® 0,

13 return Shared secret key G| = G,

4.2. Key generation and parameters of protocol 2

e Let Y, s, ¢ p be the public parameters, where the entries of Y are the elements from the tropical

semiring (3, ®, ®). Similarly s, € Z.

e Alice selects two p-circulant matrices C; and C, from the tropical semiring (M, (3),®,®) and
finds Py, Q; are the anti-s-p-circulant and anti-z- p-circulant matrices with the use of p-circulant

matrices C; and C, respectively.

o (c)' ()", (c3)', -+ (c)! and (c1)%, (c2)?, (c3)%, - - - (c,)* are the elements of p-circulant matrices

C, and C;, respectively.

P =|s®(z) s®(c) (cn)!

0, =|re@)? 9@’ (@)

AIMS Mathematics

[s@(c))! s®(c)'  s®(cp)!
s®(c2)! s®(c)' s®(cy)!

(Cf;)l s & (;'n—l)l Y (;‘n—Z)l
(1®(c1)? t®(ch)* 1®(cp1)’

1®(c2)? t®(c1)*  1®(cy)?

@ tee)? 18 ()

(c2)!
s® (c3)!
s® (cq)!

S®£C1)l_

(Cz)2 ]
1 ® (c3)?
1® (cq)*

1 ® (cl)z_
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e Alice computes K, = P; ® (Y) ® Q.
e Bob selects two p-circulant matrices C3 and C,4 from the tropical semiring (M,(3), ®,®). P>, 0>
are the anti-s-p-circulant and anti-- p-circulant matrices with the use of C5 and C, respectively.

e (o), (c1), (), - (cour)® and (co)*, (e, (c2)*, -+ (cpo1)* are the elements of C; and C,

respectively.
(s®(c1)® s®(c)’ s®(cpm1)’
s®(c2) s®(c1)  s®(cn)’
P, =|s®(c) s®(c) (c1)’
@) 58 58 (c)
(1@ (c1)* 1®(cy)* 1®(chr)’
1@ ()t @)t 1®(c,)’

0, =|1® () & () (c1)*

()

e Bob computes K, = P, @ (Y) ® O,.

e Alice finds the matrix

e Bob finds the matrix

G =Pi®K,® 0.

G2:P2®KQ®Q2.

e Finally, shared keys were same K = G| = G,.

The proof is given in the following Proposition 4.2.

4.3. A toy example
Example 4.1. Consider

1090000
23
—55432

Y =

Alice choose

—-12201
-12203
-12205

C =

and finds

-12272
—12274
—-12205

P1:

AIMS Mathematics

—33434
-2251
32455

-12205
—-12201
—-12203

—-12276
—-12201
-12274

32434543

34442

-12203
-12205
—12201

,Co =

~12203
~12276|, 0, =

-12272

|

r® (Cn—l )4 r® (Cn—2)4

—-2082
—-2084
—-2086

(c2)?
5® (c3)°
s ® (ca)’

S®£Cl)3_

(c)* |
1 ® (c3)*
1® (cy)*

l®(.C1)4_

955543 }, s =-=T1,t =98876,n =3

-2086 -2084
-2082 -2086
-2084 -2082

-100960 -2082 —-100962

-2086

—100958 -100962 -2084 }

-100960 —100958
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Bob choose
284 —-288 -286 =205 -209 -207
C; =|-286 -284 -288|,C,=|-207 =205 —209}
—288 —-286 -—-284 =209 -207 =205
and finds
-355 -359 -286 —-99081 -99085 -207
P, =1-357 -284 —359] , 0, = l—99083 -205 —99085}
—-288 =357 -355 —-209 -99083 -99081
Alice finds
—168593 —-168597 —-146668
K, = [—168666 —-168670 —146670]
168662 —168666 —146601
and sends to Bob.
Bob finds
—154799 —-154803 -132874
K, = [—154872 —154876 —132876}
—154868 —154872 —132807

and sends to Alice.

Alice finds
268112 —-268110 -268114]
G, =1-268108 -268106 -268110
|—268110 —-268108 —268112]
Bob finds

268112 -268110 —-268114]
G, =|-268108 -268106 -268110
[—268110 -268108 —-268112)

Shared keys G| = G,

ap—71 ay-171 a 1090000 —33434 32434543 by + 98876 b, + 98876 b
ap —171 ap ap—-71|® 23 -2251 955543 | ®|b; + 98876 by by + 98876
a a; =71 ap-T71 —55432 32455 34442 by by + 98876 by + 98876

-168666 -168670 —146670
168662 —168666 —146601

—-168593 —168597 146668]

To attack the protocol the attacker has to solve the following tropical non-linear system of equations.
mm{l 188805 ®ay ®b0, 65371 ®ay ®b1, 32434472@00 ®b2, 43444@&1 ®b0, 1313310@01 ®b1, 34442 ®
a; ® by,98828 ® a, ® by, 96554 ® a, ® b1,955472 ® a; ® by} = —168593
min{—33505®ay® by, 32533348 ®ay®b;, 1188805®ay®b,,32455®a, ®by, 133318 ®a; ®b;,43444®
ar ® bz, (—2322) ®ar, ® bo, 1054348 ® a ® b], 98828 ® a ® bz} = —168597
min{32533348®a(®b, 1089929®a,®b,,65371R®ay®b,, 133318®a,®by, (—55432)®a, ®b;, 131331®
a; ® by, 1054348 @ a, ® by, (—48) ® a, ® b1, 96554 ® a, ® by} = —146668
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min{98899 ® ayp ® by, 96625 ay® b, 955543 ® ay®b,, 1188805 ® a; ® by, 65371 ®a; ® b, 32434472 ®
a; ® by,43373 ® a, ® by, 131260 ® a, ® by, 34371 @ ar ® by} = —168666
min{(—2251) ® ap ® by, 1054419 ® ay ® b;,98899 ® ap ® b,,(—=33505) ® a; ® by, 32533348 ® a; ®
by, 1188805 ® a; ® b,,32384 ® a, ® by, 133247 ® a, ® b,,43373 ® a, ® by} = —168670
min{1054419 ® ap ® by, 23 ® ap ® b1,96625 ® ay ® b,, 32533348 ® a; ® by, 1089929 ® a; ® b, 65371 ®
a) ® by, 133247 ® a, ® by, (=55503) ® ar ® by, 131260 ® a, ® by} = —146670
min{43373 ® ayp ® by, 131260 ® ay ® b,,34371 ® ay ® b,,98828 ® a; ® by, 96554 ® a; ® b;,955472 ®
a; ® by, 1188876 ® a; ® by, 33434 ® a, ® by,32434543 ® a, ® by} = 168662
min{32384 ® ap ® by, 133247 ® ap ® b1,43373 @ ap ® by, (—-2322) ® a; ® by, 1054348 ® a; ® b;, 98828 ®
a; ® by, (=33434) ® a, ® by), 32533419 ® a, ® b1, 1188876 ® a, ® b, = —168666
min{133247®ay ® by, (—=55503)®ay®b;, 131260 ® ay ® b,, 1054348 ®a; ® by, (—48)®a; ® b, 96554 ®
a) ® by,32533419 ® a, ® by, 1090000 ® a, ® by, 65442 ® a, ® by} = —146601

Solving this system of non-linear equation is NP-Hard. Thus, this makes our protocol secure [13].

4.4. Security analysis

The security of this protocol relies on the non-commutativity of anti-s-circulant matrix with anti-z-
circulant matrix.

Theorem 4.2. If Py € ((WWD,[CD)()n, Q1 € (WDL[CDHNO)n, P2 € (WDL[CH)()ns Q2 €
(QADL[CD)D))n then

1) P,K,® 0,=P,® K, ® O
2) Ka®Kbande®Ka¢P2®Ka®QzandP1®Kb®Q1

where K, = (P1®Y®Q), K, =(P,®Y ® 0»)

Proof. 1) We know that by Proposition 2.8, Py ® P, = P, ® Py and P, ® Q1 # Q1 ® P;.
Now we consider,
RHS = P1 ®Kb®Q1

=P1®P,0Y®0)Q 0
=(P1®P)QRYQ®(02® Q1)
=(P,®P)RY®(01®0»)
=PhoP1®9Y®01)® 0,

=P,®K,® (0, =LHS
Hence the shared keys are equal.
2) Now to prove the security of the protocol 1

K.®9K,=(Pi1®Y®Q0)Q®(P,0Y®(0»)

By Proposition 2.4, we have,

PIY®R(OV I ®P)RYR®0D, #PI®YR(P,01)Y® (0,
#P,9K,® 05, PI®K,® (O

AIMS Mathematics Volume 8, Issue 7, 17307-17334.



17328

Hence,
K,®K, #P, K, ® 0, & P, ® K, ® O
K@K, =(P,Y®0)Q(P1®Y® Q)
=P,Y®((0,®P)®Y ® (0,
By Proposition 2.4

P,YR((ODH®P)RYRQ1 #PL,YR®(P1®0)0Y® (0

P, K, ®0,, P ®K,® O
Hence, we have,

K@K, #P, K, ® 0, & P ® K, ® O
O

The tropical Grobner basis algorithm which is one approach to solving tropical non-linear
systems [23]. In the worst case, the time complexity of computing a tropical Grobner basis for a
system of equations with n by n matrices is known to be O(2?").

4.5. Possible attacks

The following are some of the attacks that an adversary may try to attack the proposed key exchange
protocol and we have given how our key exchange scheme is secure against those attacks.

4.5.1. Brute force attack

The brute force attack is an attacking technique in which the man in the middle tries all possible
values to find the key. Suppose the attacker tries to get the key G = P1 @ P, ® Y @ O ® Q, from the
public matrix Y and from the shared matrices K, = P1®(Y)® 01, K, = P,®(Y)® Q, guessing the secret
parameters is very hard since there are infinite possibilities. Also, if he try to find the values of P;, O,
and P,, O, from K, and K}, respectively then the possibility of finding Py, Q; and P,, Q, are infinite
since we have taken the entries from the tropical semiring (Z U {oo}, @, ®). Thus, we can conclude that
protocol 2 is secure from brute force attack.

4.5.2. Linear algebra attack

The linear algebra attack is a key recovery technique by which an adversary may try to use the linear
algebraic properties to attack the cryptosystem. The attack of Sphilrain on the classical Stickel’s key
exchange protocol is based on the fact that the keys were generated using invertible matrices.

In protocol 2, since we deal with tropical algebra, the matrices which we use ((U(D,[C]);)(s)), are
not generally invertible. Thus, it makes our protocol secure from linear algebra attacks.

4.5.3. Kotov and Ushakov attack

The KU attack is based on the fact that the tropical matrices displays pattern in higher tropical
power. And also tropical multiplication of tropical coefficient is actually the usual addition of the
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coefficient with all the entries of the matrix. This fact helped Kotov and Ushakov to find the matrix
TV =U - [A® © BY]

which allowed them to find the private parameters.

In protocol 2, we have used commutative elements from the semiring and we have not taken tropical
powers of any matrix that is the primary reason why Kotov and Ushakov attack [17] won’t work on
protocol 2. We know that any circulant matrix with entries ag, ay, - - - ,a,-; can be written as the form
of agl +a,P+- - -+a,_; P"! in classical algebra, where P = [0,1,---,0;0,0,1,---,0;---;1,0,---,0].
In protocol 2 public matrix Y cannot be written as the polynomial format unlike the one in [13]. The
private parameters P;, Q1, P>, O, are not a circulant matrix they are from the lower/upper circulant
matrices and they cannot be represented by the shared matrices P ® Y ® Q; and P, Y ® Q5.

4.5.4. Rudy and Monico attack

The public key exchange protocol based on semidirect product of max plus matrices discussed in
Section 4 of article [18] is developed by Grigoriev and Shpilrain. Let R = (M,«,(Z), ®,®) and Alice
and Bob agree the public matrices M, H € R. Final key of Alice is (BoH")®A = B&H"®(BH™)DA
equals to the key of Bob(Aoc H") @ B=A® H"®(A® H") ® B [18]. Where H" and H" denoted the
m™ and n' tropical power of H matrix respectively. This protocol is attacked by Rudy and Monico by
the simple binary search attack [19]. The main idea of the simple binary search attack is to find the
tropical power m at which the tuple (M, H) becomes (A, H™) with the known A. But in protocol 2 we
never use any tropical powers. Hence, Rudy and Monico attack is not valid in protocol 2.

5. Comparative analysis

In this section, we have compared the experimental results of both protocol 1 and protocol 2 with
some familiar tropical protocols. The following experiments were done in a computer with 11th Gen
Intel(R) Core(TM) i5-11300H @ 3.10 GHz processor with 8 GB ram running on windows 11 with
64-bits operating system. The algorithms of the protocols are executed in maple 2018 software.

Table 1. Comparison with some tropical schemes.

Schemes Kotov and Ushakov  Rudy and Monico
attack attack
Grigoriev’s protocol in [13] X X

Grigoriev’s protocol in [18]

Protocol based on upper or lower-s-circulant matrices

NN S

X
v
Proposed protocol 2 v

Note: In the Table 1, X denotes that the scheme is attacked by the corresponding attack and v
denotes that the scheme is safe against the attack.

Most of the tropical protocols proposed in recent years involves the exponentiation of the tropical
matrices. When we compare the time complexity of tropical power based algorithms with our proposed
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algorithm, we can see that the time complexity of those algorithms is higher than our algorithms. That
is, O(n*) < O(n"*3) where, n is the dimension of matrices involved in tropical powers.

The idea of using commuting matrices in tropical linear algebra on the Stickel’s protocol instead of
tropical powers and polynomials have already been examined in [24-26]. In many protocols they have
used circulant matrices but, the main idea of our paper is to generate secret keys efficiently with the
commutative subset (A(D,[C]);)(s)),, ®, ®) of tropical semiring (Mx,(3), ®, ®).

5.1. Comparison of protocol based on upper or lower-s-circulant matrices and proposed protocol 2

The key exchange protocol 1 is based on upper or lower-s-circulant matrices which contains 2n
elements in A, B, €, D and the protocol 2 based on anti-s-p-circulant matrices Py, P», Q, O, which are
performed with 2n elements. The time complexity of both protocols are same. From Figure 1 we can
analyse the key generation time of protocol 1 and protocol 2.

Given data in Table 2 is plotted in Figure 1 above.

Table 2. Key generation time in seconds.

Key size (Bits) Time taken (sec) Time taken (sec)
(Protocol based on upper or lower circulant matrices) (Proposed protocol 2)

32 0.017 0.016

50 0.068 0.042

64 0.087 0.075

128 0.13 0.1

256 0.22 0.19

Time consumption

02257 __ Protocol 1

—— Protocol 2

0.200

0.175 ~

0.150 ~

0.125 ~

0.100

Time taken (sec)

0.075

0.050 -

0.025 ~

T T T T
50 100 150 200 250
Key size (bits)

Figure 1. Time comparison graph in seconds.
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Memory usage: We have analysed memory usage of protocol based on upper or lower-s-circulant
matrices and our proposed protocol 2. This shows that the memory usage of our proposed protocol 2
is better than the memory usage of protocol 1.

Experimental datas of memory usage given in Table 3 is plotted in Figure 2.

Table 3. Comparison of memory usage in MiB.

Bits Memory usage Memory usage (Proposed protocol 2)
(Protocol based on upper or lower-s-circulant matrices )

32 1.046 1.005

50 1.14 1.099

64 1.342 1.239

128  1.494 1.330

256  1.54 1.441

Memory usage

—— Protocol 1
1.5 4 —— Protocol 2

1.4 1

1.3 1

1.2 1

Memory in bytes (MiB)

1.1 -

1.0 1

T T T T
50 100 150 200 250
Key size (bits)

Figure 2. Comparison of memory usage (MiB).

Time complexity of protocol based on upper or lower-s-circulant matrices: In the key exchange
protocol 1, we have four public parameters Y, s,z,n. Here Y, s, t are fixed and variable is n. Matrices
Ay, Ay, By, B, each with 2n elements and tropical multiplication is performing four times in the
protocol. Therefore, the total time complexity of multiplying five matrices in the tropical semiring
(€,(s)), with order n is O(n® x 4) = O(n?).

Time complexity of proposed protocol 2: In the key exchange protocol 2, we have four public
parameters Y, s,t,n. Here Y, s, ¢t are fixed and variable is n. Matrices Py, P,, Q1, Q> each with 2n

AIMS Mathematics Volume 8, Issue 7, 17307-17334.



17332

elements and tropical multiplication is performing four times in the protocol. Therefore, the total time
complexity of multiplying five matrices in the tropical semiring ((A(D,[€])/)(s)),, ®, ®) with order n
is O(n® x 4) = O(n®).

Both protocol 1 and protocol 2 have the same time complexity but the memory usage of protocol 2
is lesser than that of protocol 1. The reason is that the protocol 2 is generated by the use of commutative
subset of (A(D,[E])})(5))n, ®, ®) of tropical semiring (M,x,(3), ®, ®). Let protocol 1 is performed with
the lower-s-circulant matrices of order n and protocol 2 is performed with anti-s-p-circulant matrices
of order k, where k > n then, protocol 2 would be more efficient than protocol 1.

6. Conclusions

In this paper, we have proposed the key exchange protocol by introducing the commutative set of
anti-s-p-circulant matrices. Most of the protocols over tropical semirings were proposed based on the
tropical powers of the matrices. Attacks on the tropical protocols are commonly based on the fact
that they exhibit pattern in higher powers. Some of the popular attacks are linear periodicity attack,
RM attack, KU attack, etc. To overcome these attacks, we have proposed our protocol which do not
involve the exponentiation of tropical matrices. We have given further analysis of the protocol 1 and
additionally we have proved some propositions. In the security analysis, we have proved that our
proposed protocol is resistant against popular attacks of the existing tropical protocols. Comparative
analysis of protocol 1 and our proposed protocol 2 is given. We can see that our proposed protocol
performs better in terms of memory usage. In future, we may try to apply these protocols in the security
of digital signature and identity authentication schemes. Also, our future work is to find the existence
and uniqueness of the solution of tropical two sided matrix action problem.
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