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Abstract: The notion of aesthetic curve plays an essential role in the generation of aesthetic forms.
In order to quantify the aesthetics in art and science some aesthetic standards were introduced but, the
beauty is perceived by people in various ways. Bearing this idea in mind, we introduce in this paper the
notion of an approximate aesthetic curve by perturbing the equation that defines it. Moreover, we study
the relation between the solutions of the perturbed equation and the solutions of the exact equation. For
the equation of neutral curves, some stability results in Ulam sense are obtained. We prove that the
equation of aesthetic curves by perturbations to an equation for convergent curves is Ulam stable, while
by perturbation to an equation for divergent curves, it is not Ulam stable.
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1. Introduction

The aesthetic aspect is very important in industrial production design. The notion of an aesthetic
curve plays an essential role in this process. Farin defined the notion of aesthetic curve by considering
that its curvature is monotone with respect to the parameter of the curve [7, 8]. A family of curves
with this property are log-aesthetic curves and their generalizations. Harada and Yoshimoto studied
the planer curves having a monotone curvature by using the Logarithmic Distribution of Curvature
(LDC) [9, 10]. Another approach of aesthetic curves was proposed in [13] by Kanaya by using
Logarithmic Curvature Histograms (LCH) instead LDC. For further information on LCH see also
[14, 15]. Gobithaasan et al. proposed to use the Logarithmic Curvature Graph’s (LCG) Gradient for
the definition of aesthetic curves in [12]. The authors of [12] obtained also a classification of aesthetic
curves taking into consideration the sign of LCH (see also [11, 16]). In the definition of an aesthetic
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form the Golden Ratio (GR) is also frequently used. In [5, 6] the authors propose some new aesthetic
standards based on GR and its generalization.

The aesthetic perception varies from one individual to another even if there are unanimously
accepted criteria. For a physiological point of view concerning visual processing we refer the reader
to [1, 2]. For this reason, in [4] the authors proposed the notion of approximate aesthetic curves.
A curve for which the curvature satisfies approximately the equation of an aesthetic curve is called
an approximate aesthetic curve. In [4], it is studied the behavior of the solutions of the equation of
an aesthetic curve under various perturbations. If small perturbations of an equation produce small
perturbations of its solutions then we say that the equation is stable in Ulam sense.

The problem of Ulam stability was introduced in 1940 in the field of functional equations by S.M.
Ulam. Nowadays, results on Ulam stability for different types of equations and operators have been
obtained. For a comprehensive approach to Ulam stability we refer the reader to the book [3] and
the references therein. In this paper, we study the behavior of the equation of a neutral curve by
perturbations to equations for convergent and divergent curves and we obtain some results on its Ulam
stability.

The stability of an equation or a dynamic system is very important in practical problems because
small deviations from the mathematical model caused, for example, by measurement errors or small
changes occurring when adapting the model to a practical situation will not have a strong effect on
the solution. For this reason, the model realized in practice corresponds to the one provided by
the mathematical equations that describe it. Stability theory offers priceless information about the
answer of a system of an equation to small perturbations. From an aesthetic point of view, the
problem of stability is even more complex because the perception of aesthetics is one of the most
interesting topics for philosophers, scientists, and psychologists; see for instance [1, 2]. Except for the
mathematical behavior, there is also interesting to see how aesthetics is represented in objects and how
a specific curve or shape of an object could convey the feelings we had during perception. Despite
the vast number of studies on this topic in philosophy and science, there are no clear boundaries to
decide on the aesthetics of a curve or shape, we do not know all the conditions under which aesthetic
perception holds. Having this background in mind, we consider it important to talk about approximate
aesthetic curves and to study, as well the stability of equations of aesthetic curves with respect to small
perturbations.

The outline of the paper is as follows. In the introduction, we have presented a short historical
background of the problem of aesthetic curves. In section 2 we provide the ingredients and the general
setup for the study, we give some definitions and the preliminary notions and results necessary to make
this paper self-sufficient. The third section is devoted to our main results, namely, we obtain some
stability results (in Ulam sense) for the case of the equation of neutral curves perturbed to the equation
of convergent curves as well as for the equation of neutral curves of finite length perturbed to the
equation of divergent curves. In Theorem 4 we prove that the equation of neutral curves of infinite
length is unstable with respect to perturbation to divergent curves. The last section contains some
conclusions and remarks.
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2. Aesthetic curves

Consider a curve (C) given by its natural parametric equation

r(s) = (x(s), y(s)), 0 ≤ s ≤ S , (2.1)

where S is the total length of the curve and r is a point of coordinates x, y on (C). If the curve (C) has
infinite length then s ∈ [0,∞).

The Logarithmic Curvature Graph (LCG) Gradient of the curve (C) is given by the relation

λ(s) =
K′′(s)K(s)
(K′(s))2 − 1, 0 ≤ s ≤ S , (2.2)

where K is the curvature of (C). We suppose K is a non-constant function. The notion of aesthetic
curve is defined as follows (see [12]).

Definition 1. A curve is said to be an aesthetic curve if its LCG gradient is either constant or the
gradient is represented by a straight line with a nonzero slope.

Taking into account the sign of the LCG gradient we obtain the following classification:

Definition 2. An aesthetic curve is called:

1) Convergent- if the LCG gradient is positive;
2) Divergent- if the LCG gradient is negative;
3) Neutral- if the LCG gradient is zero.

A characterization of convergent, divergent, and neutral curves is obtained in [4], based on the
monotonicity of K.

Theorem 1. Let (C) be a curve given by the equation (2.1). Then:

1. (C) is convergent if and, only if |K| is strictly decreasing;
2. (C) is divergent if and only if |K| is strictly increasing;
3. (C) is neutral if and only if there exist C1,C2 ∈ R such that

K(s) = C2eC1 s.

Remark 1. Remark that the class of convergent curves (divergent curves) and the class of neutral
curves are not disjoint classes. Consequently, the neutral curves with curvature given by K(s) = C2eC1 s

with C2 < 0 (C2 > 0) are as well convergent (divergent) curves.

For a curve of given curvature, its representation can be obtained from the following relations (see
[4])

r(s) =
(
x(0) +

∫ s

0
cos

(
θ(0) +

∫ t

0
K(u)du

)
dt, y(0) +

∫ s

0
sin

(
θ(0) +

∫ t

0
K(u)du

)
dt

)
(2.3)

where θ(s), 0 ≤ s ≤ S , is the measure in radians of the angle from the positive axis x to the unit tangent
vector to the curve.

On the other hand, if the LCG gradient of the curve is known then its curvature can be explicitly
obtained, see Theorem 4, [4]. For the reader’s convenience, we present this result in the following.

AIMS Mathematics Volume 8, Issue 7, 17272–17283.



17275

Theorem 2. Let (C) be a curve of gradient λ with K′(0) , 0. Then its curvature K is given by the
relation:

K(s) = C2e
∫ s

0
1

C1−
∫ u
0 λ(t)dt

du
, s ∈ [0, S ], (2.4)

where C1, C2 are real constants. Moreover C1 =
K(0)
K′(0) , C2 = K(0).

3. Perturbation of neutral curves

In [4] is defined the notion of approximate aesthetic curves. This definition is introduced taking into
account that the aesthetic value of a curve increases when the LCG gradient approximates to a straight
line (as stated in [12]). A curve with LCG gradient close to a straight line is called perturbation of
an aesthetic curve. For the case of neutral curves (which are aesthetic curves since their gradient is
constant) this perturbation is defined as follows (see [4]).

Definition 3. Let ε > 0. We say that a curve

(C) : r(s) = (x(s), y(s)), 0 ≤ s ≤ S ,

is an ε− neutral curve if its LCG gradient λ satisfies the relation

|λ(s)| ≤ ε, (3.1)

for all s ∈ [0, S ].

A curve satisfying (3.1) for some positive ε is called approximate neutral curve.
Using the notion introduced in Definition 3 we study the stability (in Ulam’s sense) of the equation

of the neutral curves. A curve with the gradient satisfying (3.1) for some positive ε is called a
perturbation of a neutral curve.

Definition 4. The equation
K′′(s) · K(s)

(K′(s))2 − 1 = 0 (3.2)

is called Ulam stable if for every ε > 0 there exists δ(ε) > 0 such that for every curve (C) of curvature
K satisfying the relation ∣∣∣∣∣K′′(s) · K(s)

(K′(s))2 − 1
∣∣∣∣∣ ≤ ε, ∀s ∈ [0, S ], (3.3)

there exist a neutral curve (C̃) of curvature K̃(s) such that

|K(s) − K̃(s)| ≤ δ(ε), ∀s ∈ [0, S ]. (3.4)

If δ(ε) = Lε for some positive constant L, then L is called an Ulam constant of the equation (3.2).
If the infimum of all Ulam constants of an equation is also a Ulam constant, then we call it the best
Ulam constant. Intuitively the stability of the equation of neutral curves, means that for every solution
K of this equation there exists a neutral curve with the curvature K̃ close to K.

In what follows we study the stability of the equation (3.2) by a perturbation of it to an equation for
convergent and divergent curves, respectively. Therefore the relation (3.3) is replaced either by

0 ≤
K′′(s) · K(s)

(K′(s))2 − 1 ≤ ε, s ∈ [0, S ], (3.5)
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for the case of convergent curves, or by

−ε ≤
K′′(s) · K(s)

(K′(s))2 − 1 ≤ 0, s ∈ [0, S ], (3.6)

for the case of divergent curves.
Let m,M be given positive numbers. We denote, in what follows by CM the class of functions

defined by
CM = { f | f ∈ C2([0,∞)), | f (0)| ≤ M}, (3.7)

and by Cm,M the class of functions given by

Cm,M = { f | f ∈ C2([0,∞)), | f (0)| ≤ M, | f ′(0)| ≥ m}.

The first result concerns the stability of the equation of neutral curves of infinite length by
perturbation to an equation for convergent curves.

Theorem 3. Let ε > 0. Then for every convergent curve (C) of curvature K ∈ CM satisfying the relation

0 ≤
K′′(s) · K(s)

(K′(s))2 − 1 ≤ ε, s ∈ [0,∞), (3.8)

there exists a neutral curve (C̃) of curvature K̃ such that

|K(s) − K̃(s)| ≤ Mδ(ε), s ∈ [0,∞), (3.9)

with δ(ε) = max fε, where fε : [0,∞)→ R is defined by

fε(t) = (1 + εt)−
1
ε − e−t, t ≥ 0. (3.10)

Proof. Suppose that (C) is a curve of curvature K ∈ CM satisfying the relation (3.8) and let

λ(s) =
K′′(s) · K(s)

(K′(s))2 − 1, s ≥ 0.

Then K is given by

K(s) = C2e

s∫
0

1
C1−

∫ u
0 λ(t)dt

du
,

where C1 =
K(0)
K′(0) and C2 = K(0), according to Theorem 2

The relation 0 ≤ λ(s) ≤ ε, s > 0 leads to

C1 ≥ C1 −

∫ u

0
λ(t)dt ≥ C1 − εu.

Remark that since (C) is a convergent curve then C1 < 0, in view of Theorem 1, so it follows

1
C1
≤

1

C1 −
∫ u

0
λ(t)dt

≤
1

C1 − εu
, u ≥ 0.
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Integrating on [0, s] we get

s
C1
≤

∫ s

0

1

C1 −
∫ u

0
λ(t)dt

du ≤ −
1
ε

ln
C1 − εs

C1
,

and

e
s

C1 ≤ e
∫ s

0
1

C1−
∫ u
0 λ(t)dt

du
≤

(
C1 − εs

C1

)− 1
ε

, s ≥ 0. (3.11)

Let (C̃) be a neutral curve of curvature K̃(s) = C̃2eC̃1 s, s ≥ 0, with C̃1 =
1

C1
and C̃2 = C2. Then,

according to (3.11), we get

|K(s) − K̃(s)| ≤ |C2|

∣∣∣∣∣∣(1 − ε s
C1

)− 1
ε

− e
s

C1

∣∣∣∣∣∣ , s ≥ 0,

or
|K(s) − K̃(s)| ≤ |C2| | f (t)| , t ≥ 0, (3.12)

where t = − s
C1
.

Next, we prove that fε admits a maximum on [0,∞); (see Figure 1 for the graphical representation
of fε and its corresponding maximum values).

Since
f ′ε(t) = e−t − (1 + εt)−

1
ε−1, t ≥ 0,

the equation f ′ε(t) = 0 is equivalent to

t −
ε + 1
ε

ln(1 + εt) = 0.

Let h(t) = t − ε+1
ε

ln(1 + εt). Then

h′(t) =
ε(t − 1)
1 + εt

, t ∈ [0,∞).

Taking account of the monotonicity of h and of the fact that h(0) = 0, h(1) < 0 and lim
t→∞

h(t) = +∞
we conclude that the equation h(t) = 0 has a unique solution t0 ∈ (1,∞).

Since f ′ε(t) > 0, for t ∈ (0, t0) and f ′ε(t) < 0 for t ∈ (t0,∞) and lim
t→∞

f (t) = 0, we conclude that h
admits a maximum at t0.

Hence
0 ≤ fε(t) ≤ δ(ε), t ∈ [0,∞), (3.13)

where δ(ε) = fε(t0) is the maximum of fε.
Then, according to (3.12) and (3.13) we get

|K(s) − K̃(s)| ≤ Mδ(ε), s ∈ [0,∞).

The theorem is proved.
□
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Figure 1. The graphical representation of fε for ε ∈ { 12 ,
1
5 ,

1
10 } and the corresponding values

of δ(ε) = max fε.

ε xmax δε = max fε
1
2 2.28807 0.11607
1
5 2.1252 0.0507538
1

10 2.06454 0.0261941

For a better understanding of our main stability results, in Figure 2, an example of an equation of a
neutral curve of infinite length perturbed by an equation of a convergent curve is given.

(a) The curvatures K(s) and K̃(s) (b) The curves C and C̃

Figure 2. The representation of curvatures K(s), K̃(s) and the corresponding curves C, C̃ for
ε = 1

2 , K(0) = 2 K′(0) = −1 in Theorem 3 (stability result).
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The next result concerns the stability of the equation of neutral curves of infinite length by
perturbation to an equation for divergent curves. In this case, we prove that the equation is not stable.

Theorem 4. Let ε > 0. Then there exists a divergent curve (C) of curvature K satisfying the relation

−ε ≤
K′′(s) · K(s)

(K′(s))2 − 1 ≤ 0, s ∈ [0,∞)

such that for every neutral curve (C̃) of curvature K̃ we have

sup
s∈[0,∞)

|K(s) − K̃(s)| = +∞

Proof. Let (C) be a curve with curvature K which satisfies the relation

K′′(s) · K(s)
(K′(s))2 − 1 = −ε, s ∈ [0,∞)

and K(0) = K′(0) = 1. Then according to Theorem 2

K(s) = e
∫ s

0
1

1+εu du = e
1
ε ln(1+εs) = (1 + εs)

1
ε , s ∈ [0,∞).

Let now (C) be any neutral curve. Then

K̃(s) = C̃2eC̃1 s, s ∈ [0,∞),

where C̃1 =
K̃(0)
K̃′(0)

and C̃2 = K̃(0).

If C̃2 , 0, then

lim
s→∞
|K(s) − K̃(s)| = lim

s→∞
|C̃2eC1 s − (1 + εs)

1
ε | = +∞.

If C̃2 = 0, then

lim
s→∞
|K(s) − K̃(s)| = lim

s→∞
(1 + εs)

1
ε = +∞.

Therefore

sup
s∈[0,∞)

|K(s) − K̃(s)| = +∞

and the theorem is proved. □

In the next two figures, an example of an equation of a neutral curve of infinite length perturbed by
an equation of a divergent curve is given. In Figure 3 the graphical representation of the curvatures of
the neutral and of the perturbed curve is given, while in Figure 4 the corresponding curves are plotted.
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Figure 3. The representation of the curvatures K(s) = (1 + s
2 )2, K̃(s) = es corresponding to

ε = 1
2 , K(0) = 1 K′(0) = 1 in Theorem 4 (nonstability result).

Figure 4. The curves with the curvatures K(s) and K̃(s) represented in Figure 3.

However, the equation of neutral curves of finite length is Ulam stable with respect to perturbation
to an equation for divergent curves. In this direction, we have the following result.

Theorem 5. Let ε > 0 and let (C) be a curve of curvature K ∈ Cm,M satisfying the relation

−ε ≤
K′′(s)K(s)
(K′(s))2 − 1 ≤ 0, s ∈ [0, S ]. (3.14)

Then there exists a neutral curve (C̃) of curvature K̃ such that

|K(s) − K̃(s)| ≤ M fε
(MS

m

)
, ∀s ∈ [0, S ],

where fε(t) = et − (1 + εt)
1
ε , ∀t ∈ [0,∞).

Proof. Suppose that (3.14) is satisfied on [0, S ] and let λ(s) = K′′(s)K(s)
(K′(s))2 − 1. Then

K(s) = C2e
∫ S

0
1

C1−
∫ u
0 λ(t)

du
, s ∈ [0, S ]
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where
−ε ≤ λ(t) ≤ 0, t ∈ [0, S ].

Then, analogously to the proof of Theorem 3, we get

1
C1 + εu

≤
1

C1 −
∫ u

0
λ(t)dt

≤
1

C1
, u ∈ [0, S ]

and integrating the previous relation on [0, s] it follows

1
ε

ln
C1 + εs

C1
≤

∫ s

0

1

C1 −
∫ u

0
λ(t)dt

du ≤
s

C1

or equivalently to (
C1 + εs

C1

) 1
ε

≤ e
∫ s

0
1

C1−
∫ u
0 λ(t)dt

du
≤ e

s
C1 , s ∈ [0, S ].

Let (C̃) be a neutral curve with the curvature

K̃(s) = C̃2eC̃1 s, s ∈ [0, S ]

with C̃2 = C1 and C̃1 =
1

C1
. Then

|K(s) − K̃(s)| = |C2|

∣∣∣∣∣e∫ s
0

1
C1−

∫ u
0 λ(t)dt

du
− e

s
C1

∣∣∣∣∣
≤ M|e

s
C1 − (1 + ε

s
C1

)
1
ε |, ∀s ∈ [0, S ].

Let f (t) = et − (1 + εt)
1
ε , t ∈ [0,∞).We prove that f (t) > 0 for all t ∈ [o,∞). Indeed, the well known

inequality
ex ≥ x + 1, ∀x ∈ R;

leads to etε ≥ tε + 1, t ≥ 0, which is equivalent to

et ≥ (tε + 1)
1
ε , t ≥ 0.

We prove that f is increasing on [0,∞). Indeed, we have

f ′ε(t) = et − (1 + εt)
1
ε−1, t ≥ 0

and, taking account of

et ≥ (1 + εt)
1
ε ≥ (1 + εt)

1
ε

1
1 + εt

, t ≥ 0,

it follows f ′ε(t) ≥ 0, ∀t ≥ 0. Since k ∈ Cm,M it follows that

C1 =
K(0)
K′(0)

∈

[
0,

M
m

]
so

t =
s

C1
∈

[
0,

MS
m

]
.
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Then, according to the monotonicity of f we get

fε(t) ≤ fε
(MS

m

)
, t ∈

[
0,

MS
m

]
.

The theorem is proved.
□

It is clear that the value of ε in the previous theorems determines the degree of perturbation of the
equation of aesthetic curves. A sharp estimation between the approximate and the exact solution of the
equation is given by the best Ulam constant of it.

4. Discussions and conclusions

One of the main requirements in the design of industrial products is their aesthetic form. The notion
of aesthetics plays an essential role in art and science as well. Therefore, over time, scientists and
artists tried to define various aesthetic standards and used them to generate aesthetic forms. One
of the oldest criteria for the generation of aesthetic forms is the Golden Ratio. It was used by
architects, engineers, and artists from antiquity to the present day to define the proportion between
aesthetic objects. Following this idea Birkhoff introduced in [17] a measure of aesthetic forms taking
into account the order and the complexity of an object. Extensions of the Golden Ratio and some
applications are presented in the papers [5, 6]. But for the generation of an aesthetic form, the notion
of aesthetic curve plays an essential role. Due to the fact that the perception of beauty is subjective,
depending on each individual, it makes sense to talk about approximately aesthetic forms. To the
best of our knowledge the notion of the approximately aesthetic curve, i.e., a curve that satisfies
approximately the equation of an aesthetic curve, was first considered in [4]. In this paper, we prove
that small perturbations of the equation of aesthetic curves produce small perturbations of its solutions,
i.e., the equation of aesthetic curves is Ulam stable under appropriate conditions. Extrapolating we can
conclude that the notion of the aesthetic curve is Ulam stable for some classes of curves.
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