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1. Introduction

Fractional differential equations are a study of the concept of arbitrary integrals and derivatives of
non-integer order. The idea of fractional calculus was first discussed by Gottfried Wilhelm Leibniz
in 1695. In real-world applications, fractional calculus excels more than classical calculus. Moreover,
it has attracted enormous attention from the scientific communities studying biology, physics,
economics, mechanics, control theory, signal and image processing, biophysics, blood flow
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phenomena, aerodynamics, fitting of experimental data and chemistry. Further, readers can see the
following research articles for fractional calculus and its applications: [1–5].

The topological degree method is used to determine whether an equation has a solution or not in a
simpler manner than the traditional methods. We need stronger conditions when we deal with problems
like differential equations using traditional methods. However, such strong conditions are not required
in the topological degree method. This topological degree method is advantageous for finding the
existence of solutions using weaker conditions instead of stronger ones. This manuscript examines
nonlocal conditions, which have the advantage of producing better results in real-world applications
compared to classical local conditions. Nonlocal conditions can be more useful for expressing some
physical phenomena than local conditions. The Hilfer fractional derivative was introduced by Hilfer
and is a generalisation of the Riemann-Liouville and Caputo fractional derivatives. This generalised
fractional derivative of the orders ϑ ∈ [0, 1] and $ ∈ (0, 1) can be reduced to the Riemann-Liouville
fractional derivative at $ = 0 and the Caputo fractional derivative at $ = 1, respectively. Hilfer
proposed the solution of generalised differential equations of fractional order. Compared to the Caputo
fractional derivative, the Hilfer fractional derivative parameters allow more degrees of freedom and a
variety of stationary states with connections to local as well as nonlocal conditions.

In recent years, many authors have been involved in the field of Hilfer fractional derivatives
(see, [6, 7]). In [8, 9], the authors investigated impulsive fractional differential equations and
multi-point boundary value problems via the topological degree method. Recently [10], the authors
studied the existence of weak solutions for a semilinear fractional elliptic system with Dirichlet
boundary conditions by using the Leray-Schauder degree method. In a continuation, the authors
introduced the topological degree method for the Caputo-Hadamard type derivatives [11]. The
authors extended the topological degree method for existence and uniqueness solutions to ψ-Caputo
fractional differential equations in [12]. In the research articles [13, 14], the authors established the
topological degree method for the Caputo fractional differential equation, which was also extended to
impulsive differential equations and fractional difference equations. The proposed method is to study
the existence and uniqueness of the solutions of the Hilfer fractional neutral functional
integro-differential equation with nonlocal conditions. Our research is motivated by the fact that, to
the best of our knowledge, no previous studies have investigated this topic. As a result, we will
demonstrate this concept and consider the following form of Hilfer fractional neutral functional
integro-differential equation with a nonlocal condition:

HDϑ,$(Θ(t) −M(t,Θt)) = HΘ(t) + Pu(t) + ξ(t,Θt,

∫ t

0
χ(t, s,Θs)ds), t ∈ I := [0,T ],

I1−η
0+ Θ(t) = δ(t) −

M∑
ρ=1

CρΘ(tρ), t ∈ (−r, 0], (1.1)

where Ξ is a Banach space, HDϑ,$ denotes the Hilfer fractional derivative of order 0 ≤ ϑ ≤ 1 and 0 <
$ < 1, and I1−η

0+ are generalised fractional derivatives of order 1 − η = (1 − ϑ)(1 −$). H is a closed,
linear, and bounded operator in Ξ. The control function u(t) takes values in L2(I,Ξ). The bounded
linear operator P is a function from Ξ to Ξ. The initial value function D := {δ : (−r, 0] → Ξ is
continuous, where r > 0} and neutral function M : I × D → Ξ are also continuous. The functions
ξ : I × D × Ξ → Ξ and χ : I × Ξ × D → Ξ are both continuous with respect to t on I.

∑M
ρ=1 CρΘ(tρ)

AIMS Mathematics Volume 8, Issue 7, 17154–17170.



17156

is a nonlocal condition, and Cρ is constant. Let Θt ∈ (−r, 0] be a continuous function defined by
Θt(s) = Θ(t + s) for −r ≤ s < 0.

The following are the significant features of our suggested work:

• The strongly continuous operator, linear operator, bounded operator and the Wright type function
are used to obtain the solution representation of our system.
• Functional differential equations are used to examine the past or the aftereffects of an event.
• The Kuratowski measure of noncompactness is considered in this manuscript.
• The novelty of this manuscript is in finding existence and uniqueness by manipulating the weaker

conditions instead of the stronger conditions.
• The originality of this manuscript was that it used the topological degree method for functional

fractional differential equation and neutral term in the given system to also discover the existence
and uniqueness of a solution by employing specific assumptions. These assumptions have never
been manipulated before in any research article. These assumptions will yield a more easy way
to get a solution than prior studies [15–19].

The manuscript is organised into five sections. In Section 2, we introduce some preliminary
definitions, propositions, and lemmas that can be used to prove the proposed work. Additionally, it
provides the solution representation of the Hilfer fractional neutral functional integro-differential
equation with a nonlocal condition. In Section 3, we establish the necessary and sufficient conditions
for the existence and uniqueness of the Hilfer fractional neutral functional integro-differential
equation with a nonlocal condition. In Section 4, we provide two numerical examples. At the end of
this manuscript, we discuss the conclusion.

2. Preliminaries and solution representation

In order to attain the objective, we give some propositions and lemmas. Throughout this paper,
we use the following notations: C(I,Ξ) is a continuous function from I = [0,T ] → Ξ. Define the
operator Y = {Θ : t(1−ϑ)(1−$)Θ(t) ∈ C(I,Ξ)}, with the norm ‖.‖Y = supt∈I |t

(1−ϑ)(1−$)Θ(t)|. Obviously, Y
is a Banach space.

Definition 2.1. [20] The Hilfer fractional derivative is the generalised Riemann-Liouville fractional
derivative of order 0 ≤ ϑ ≤ 1 and 0 < $ < 1, with lower limit “a” defined as

Dϑ,$
a+ f (t) = Iϑ(1−$)

a+

d
dt

I(1−ϑ)(1−$)
a+ f (t).

Definition 2.2. [21] A function Θ is said to be a solution of the nonlocal problem if Θ satisfies the
Eq (1.1) and the condition I1−η

0+ Θ(t) = δ(t) −
∑M
ρ=1 CρΘ(tρ).

Note 2.3. [21] The function ω : Q → R+ (where R+ is the set of positive real numbers) is defined by

ω(B) = in f {ε > 0 : B ⊂
⋃m

j=1 M j and diam(M j) ≤ ε},

where diam(M j) is defined by diam(M j) = sup{|x1 − x2| : x1, x2 ∈ M j, j = 1, 2, 3, ..,m}, and B ∈ Q (Q
is a family of all bounded sets) is called the Kuratowski measure of non compactness. The notation of
ω in the above definition will be considered in the following theorems, lemmas and propositions of this
manuscript.
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Definition 2.4. [21] A map F∗ : ψ ⊂ Ξ → Ξ is said to be ω-Lipschitz if there exists κ ≥ 0 such that
ω(F∗(B)) ≤ κω(B), ∀B ⊂ ψ.

Definition 2.5. [21] A map F∗ : ψ ⊂ Ξ→ Ξ is said to be ω- condensing if ω(F∗(B)) < ω(B), ∀B ⊂ ψ
with ω(B) > 0.

Proposition 2.1. [21] If F∗,Y∗ : ψ → Ξ are ω-Lipschitz mappings with constants κ, κ′, respectively,
then F∗ + Y∗ : ψ→ Ξ are ω-Lipschitz with constants κ + κ′.

Proposition 2.2. [21] If F∗ : ψ → Ξ is compact, then F∗ is ω-Lipschitz with constant value equal to
zero.

Proposition 2.3. [21] If F∗ : ψ→ Ξ is Lipschitz with constant κ, then F∗ is ω-Lipschitz with the same
constant κ.

Proposition 2.4. [21] Let τ = {(I − F∗, ψ,Θ) : ψ ⊂ Ξ open and bounded, F∗ ∈ Cω(ψ),
Θ ∈ Ξ\(I − F∗)(∂ψ)}, and then there exists one degree function D : ω → N0 which satisfies the
following properties:

• D(I, ψ,Θ)=1 ∀ Θ ∈ ψ (Normalization).
• For every disjoint, open sets ψ1, ψ2 ⊂ ψ and every Θ does not belong to (I − F∗)(ψ\(ψ1 ∪ ψ2)) we

have D(I, ψ,Θ) = D(I, ψ1,Θ) +D(I, ψ2,Θ) (Additive on domain).
• (I − H(t, .), ψ,Θ(t)) is independent of t ∈ [0, 1] for every continuous, bounded mapping H :

[0, 1] × ψ → Ξ which satisfies F∗(H([0, 1] × B)) < F∗(B), ∀B ⊂ ψ with F∗(B) > 0, and every
continuous function Θ : [0, 1] → Λ which satisfies Θ(t) , Λ − H(t,Λ),∀t ∈ [0, 1],∀Λ ∈ ∂ψ.
(Invariance under homotopy).
• D(I − F∗, ψ,Θ) , 0⇒ Θ ∈ (I − F∗)(ψ) (Existence).
• D(I − F∗, ψ,Θ) = D(I − F∗, ψ1,Θ) for every open set ψ1 ⊂ ψ, and every Θ does not belong to

(I − F∗)(ψ\ψ1) (Excision).

Lemma 2.6. [21] Let F∗ : Ξ→ Ξ be ω-condensing, and

W = {Θ ∈ Ξ : ∃Ω ∈ [0, 1] such that Θ = ΩF∗Θ}.

IfW is a bounded set in Ξ, so there exists E > 0 such thatW ⊂ BE(0), and then

deg(I −ΩF∗,BE(0), 0) = 1, ∀ Ω ∈ [0, 1].

Then, F∗ has at least one fixed point.

Lemma 2.7. (Gronwall’s inequality) [22] Assume that `(t) and ℘(t) are non negative continuous
functions for t ≥ t0. Let K > 0 be a constant. Then, the inequality

`(t) ≤ K +

∫ t

t0
℘(s)`(s)ds,

implies the inequality

`(t) ≤ K exp
(∫ t

t0
℘(s)ds

)
.
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Note 2.8. [22] If `(t) ≤ K
∫ t

t0
`(s)ds where ` andK are as above in Lemma 2.7, then `(t) = 0 for t ≥ t0.

Lemma 2.9. [23] The operators S ϑ,$(t) and Ψ$(t) have the following properties:

• Ψ$(t) is continuous in the uniform operator topology.

• For any fixed t > 0, S ϑ,$(t) and Ψ$(t) are linear, strongly continuous, and bounded operators,

‖Ψ$(t)‖ ≤
Vt$−1

Γ($)
and ‖S ϑ,$(t)‖ ≤

Vt(ϑ−1)($−1)

Γ(ϑ(1 −$) +$)
. (2.1)

Lemma 2.10. Let 0 ≤ ϑ ≤ 1, 0 < $ < 1 and ρ = 1, 2, ..,M. Then, the Eq (1.1) can be equivalent in
the form of

Θ(t) =


δ(t) −

∑M
ρ=1 CρΘ(tρ) t ∈ (−r, 0];

S ϑ,$(t)(δ(0) −
∑M
ρ=1 CρΘ(tρ) −M(0,Θ0) +M(t,Θt))

+
∫ t

0
HΨ$(t − s)M(s,Θs)ds

+
∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θs,

∫ s

0
κ(s,m,Θm)dm))ds t ∈ [0,T ];

where S ϑ,$ = Iϑ(1−$)
0+ Ψ$(t), Ψ$(t) = t$−1T$(t), and T$(t) =

∫ ∞
0
$σ℘$(σ)S (t$σ)dσ.

℘$(σ) =

∞∑
n=1

(−σ)n−1

(n − 1)!Γ(1 − n$)
, σ ∈ (0,∞),

where ℘$(σ) is a function of Wright type which satisfies
∫ ∞

0
σδ℘$(σ)dσ =

Γ(1+δ)
Γ(1+$δ) , σ ≥ 0.

3. Main results

This section’s vital focus is to explore the existence and uniqueness of solutions of Eq (1.1). Our
approach is primarily based on the following assumptions:

R(1). For arbitrary Θ∗,Θ∗∗ ∈ C(I,Ξ), where I =: [0,T ], there exist constants Cξ,B
ρ
ξ ∈ (0, 1) such that

(i) |M(t,Θ∗t ) −M(t,Θ∗∗t )| ≤ Cξ |Θ∗t − Θ∗∗t |.

(ii)
∑M
ρ=1 |CρΘ

∗(tρ) − CρΘ∗∗(tρ)| ≤ B
ρ
ξ |Θ

∗(tρ) − Θ∗∗(tρ)|, where,
∑M
ρ=1 |Cρ| ≤ B

ρ
ξ .

R(2). The functions ξ : I × D × Ξ → Ξ and κ : I × Ξ × D → Ξ are both continuous with respect to t
on I and there exists a constants B1 > 0,B2 > 0, Lξ > 0 such that

(i) |ξ(t,Θ∗t ,Z
∗
t ) − ξ(t,Θ∗∗t ,Z

∗∗
t )| ≤ B1|Θ

∗
t − Θ∗∗t | + B2|Z

∗
t −Z

∗∗
t |,

(ii) |Z∗t −Z
∗∗
t | ≤ Lξ |Θ

∗
t − Θ∗∗t |,

whereZ∗t =
∫ t

0
χ(t, s,Θ∗s)ds, andZ∗∗t =

∫ t

0
χ(t, s,Θ∗∗s )ds.

Theorem 3.1. The existence of a solution for the Hilfer fractional neutral functional
integro-differential equation with nonlocal condition (1.1) is equivalent to the existence of a fixed
point operator R.
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Proof. First, we have to define the operator U : C(I,Ξ)→ C(I,Ξ) in the following form

U(Θ(t)) = S ϑ,$(t)(δ(0) −
M∑
ρ=1

CρΘ(tρ) −M(0,Θ0) +M(t,Θt)). (3.1)

Next, we define the operator P : C(I,Ξ)→ C(I,Ξ) by

P(Θ(t)) =

∫ t

0
HΨ$(t − s)M(s,Θs)ds

+

∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θs,

∫ s

0
χ(s,m,Θm)dm))ds, ∀ t ∈ [0,T ].

Finally, the operator R : C(I,Ξ)→ C(I,Ξ) is defined for every t ∈ [0,T ] and is given by

R(Θ(t)) = U(Θ(t)) +P(Θ(t))

= S ϑ,$(t)(δ(0) −
M∑
ρ=1

CρΘ(tρ) −M(0,Θ0) +M(t,Θt))

+

∫ t

0
HΨ$(t − s)M(s,Θs)ds

+

∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θs,

∫ s

0
χ(s,m,Θm)dm))ds

= Θ(t).

Thus, the existence of a solution to the Hilfer fractional neutral functional integro-differential equation
with nonlocal condition (1.1) is equivalent to the existence of a fixed point operator R. �

Theorem 3.2. The operator U : C(I,Ξ) → C(I,Ξ) is Lipschitz with constant Gρξ , where

G
ρ
ξ =

V(Cξ+B
ρ
ξ )

Γ(ϑ(1−$)+$) . Consequently, U is ω-Lipschitz with same constant Gρξ .

Proof. We have to show that the operatorU isω-Lipschitz with the same constantGρξ for every t ∈ [0,T ]
by using the assumption R(1),

U(Θ∗(t)) = S ϑ,$(t)(δ(0) +

M∑
ρ=1

CρΘ
∗(tρ) −M(0,Θ0) +M(t,Θ∗t )).

U(Θ∗∗(t)) = S ϑ,$(t)(δ(0) +

M∑
ρ=1

CρΘ
∗∗(tρ) −M(0,Θ0) +M(t,Θ∗∗t )).

‖U(Θ∗(t)) − U(Θ∗∗(t))‖Y = sup
t∈I

t(1−ϑ)(1−$)


∣∣∣∣∣∣∣S ϑ,$(t)(δ(0) +

M∑
ρ=1

CρΘ
∗(tρ) −M(0,Θ0)

+M(t,Θ∗t )) − S ϑ,$(t)(δ(0) +

M∑
ρ=1

CρΘ
∗∗(tρ) −M(0,Θ0)
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+M(t,Θ∗∗t ))
∣∣∣}

≤ sup
t∈I

t(1−ϑ)(1−$)
{
|S ϑ,$(t)| ×

∣∣∣∣∣∣∣
M∑
ρ=1

CρΘ
∗(tρ) −

M∑
ρ=1

CρΘ
∗∗(tρ)

∣∣∣∣∣∣∣
+|S ϑ,$(t)| × |M(t,Θ∗t ) +M(t,Θ∗∗t )|

}
≤

V(Cξ + B
ρ
ξ)

Γ(ϑ(1 −$) +$)
|Θ∗t − Θ∗∗t |

≤ G
ρ
ξ |Θ

∗
t − Θ∗∗t |, ρ = 1, 2, ...,M.

Therefore, U is Lipschitz with constantGρξ and by using proposition (2.3),we obtained U isω-Lipschitz
with the same constant Gρξ . �

Theorem 3.3. The operator P : C(I,Ξ)→ C(I,Ξ) is continuous. Moreover, P satisfies the following
condition,

‖P(Θ(t))‖Y ≤ µξ, ∀ t ∈ I and Θ ∈ C(I,Ξ). (3.2)

For brevity let us take

Zt =

∫ t

0
χ(t, s,Θs)ds,

Zν
t =

∫ t

0
χ(t, s,Θν

s
)ds,

µξ = sup
t∈I

t(1−ϑ)(1−$)
{∣∣∣∣∣∣

∫ t

0
HΨ$(t − s)M(s,Θs)ds

+

∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θs,

∫ s

0
χ(s,m,Θm)dm))ds

∣∣∣∣∣∣
}
.

Proof. From Eq (3.2) the operator P is uniformly bounded. Next, we have to show that, the operator
P is continuous for every t ∈ [0,T ]

P(Θν)(t) =

∫ t

0
HΨ$(t − s)M(s,Θν

s
)ds

+

∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θν

s
,Zν

s)ds.

P(Θ)(t) =

∫ t

0
HΨ$(t − s)M(s,Θs)ds

+

∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θs,Zs))ds.

Consider, ‖P(Θν)(t) −P(Θ)(t)‖Y = sup
t∈I

t(1−ϑ)(1−$)
{∣∣∣∣∣∣

∫ t

0
HΨ$(t − s)M(s,Θν

s
)ds

+

∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θν

s
,Zν

s))ds
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−

∫ t

0
HΨ$(t − s)M(s,Θs)ds

−

∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θs,Zs))ds

∣∣∣∣∣∣
}

≤ sup
t∈I

t(1−ϑ)(1−$)
{
(B1 + B2Lξ)

∫ t

0
|Ψ$(t − s)ds|

×|Θν(s) − Θ(s)| + Cξ

∫ t

0
|Ψ$(t − s)ds||H|

×|Θν(s) − Θ(s)|
}
.

Since as ν → ∞, Θν(s) → Θ(s), we obtained the operator ‖P(Θν)(t) − P(Θ(t))‖Y → 0 as ν → ∞ for
every t ∈ [0,T ]. From this we can say P(Θ(t)) is continuous. On the other hand, it is easy to see that
ξ(s,Θν

s
,Zν

s)→ ξ(s,Θs,Zs) as ν→ ∞ due to the continuity of ξ. �

Theorem 3.4. The operator P : C(I,Ξ) → C(I,Ξ) is compact. Consequently, P is ω−Lipschitz with
zero constant.

Proof. Let us consider the two arbitrary elements τ1, τ2 ∈ [0,T ], and the relation between τ1, τ2 is
τ1 < τ2. Then, we have to show that, the P : C(I,Ξ)→ C(I,Ξ) is equicontinuous on every t ∈ I,

‖P(Θ(τ2)) −P(Θ(τ1))‖Y = sup
t∈I

t(1−ϑ)(1−$)
{∣∣∣∣∣∫ τ2

0
HΨ$(τ2 − s)M(s,Θs)ds

+

∫ τ2

0
Ψ$(τ2 − s)(Pu(s) + ξ(s,Θs,Zs))ds

−

∫ τ1

0
HΨ$(τ1 − s)M(s,Θs)ds

−

∫ τ1

0
Ψ$(τ1 − s)(Pu(s) + ξ(s,Θs,Zs))ds

∣∣∣∣∣}
≤ sup

t∈I
t(1−ϑ)(1−$)

{( ∫ τ2

0
|HΨ$(τ2 − s)|ds −

∫ τ1

0
|HΨ$(τ1 − s)|ds

)
×|M(s,Θs)| +

( ∫ τ2

0
|Ψ$(τ2 − s)|ds −

∫ τ1

0
|Ψ$(τ1 − s)|ds

)
×|(Pu(s) + ξ(s,Θs,Zs)|ds

}
. (3.3)

As τ2 → τ1, we have ‖P(Θ(τ2)) − P(Θ(τ1))‖Y → 0, and from this we can say the operator P(Θ(t))
is equicontinuous on [0,T ]. Hence, P(Θ(t)) satisfies the hypothesis of the Arzela-Ascoli theorem and
then by using proposition (2.2), P is ω-Lipschitz with zero constant. �

Theorem 3.5. The set of solutions to the Hilfer fractional neutral functional integro-differential
equation with nonlocal condition (1.1) is bounded on C(I,Ξ), and there is at least one solution on
Θ ∈ C(I,Ξ).

Proof. From preceding Theorems 3.2–3.4, the operator U,P is continuous, equicontinuous, uniformly
bounded, and compact. We must exhibit that the set of solution of Eq (1.1) is bounded and has a
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solution on C(I,Ξ). Let R : C(I,Ξ) → C(I,Ξ) be an ω-condensing mapping and assume that the
specified set is defined as

W = {Θ ∈ C(I,Ξ) : ∃ Ω ∈ [0, 1] such that Θ(t) = ΩRΘ}. (3.4)

Initially, we want to demonstrate thatW is bounded for every t ∈ [0,T ],

‖Θ(t)‖Y = ‖ΩRΘ(t)‖Y
= sup

t∈I
t(1−ϑ)(1−$)|Ω(U(Θ(t)) +P(Θ(t)))|

= sup
t∈I

t(1−ϑ)(1−$)

Ω

∣∣∣∣∣∣∣S ϑ,$(t)(δ(0) −
M∑
ρ=1

CρΘ(tρ) −M(0,Θ0) +M(t,Θt))

+

∫ t

0
HΨ$(t − s)M(s,Θs)ds +

∫ t

0
Ψ$(t − s)(Pu(s) (3.5)

+ξ(s,Θs,

∫ s

0
χ(s,m,Θm)dm))ds

∣∣∣∣∣} .
By using Eq (2.1), we have obtained the following inequality:

‖Θ(t)‖Y ≤
ΩV

Γ(ϑ(1 −$) +$)
|(δ(0) −

M∑
ρ=1

CρΘ(tρ) −M(0,Θ0) +M(t,Θt)|

+ sup
t∈I

t(1−ϑ)(1−$)
{ ∫ t

0
|HΨ$(t − s)M(s,Θs)ds

+

∫ t

0
Ψ$(t − s)(Pu(s) + ξ(s,Θs,

∫ s

0
χ(s,m,Θm)dm))ds|

}
. (3.6)

By using Eqs (2.1) and (3.2), we have obtained the following:

‖Θ(t)‖Y ≤
ΩV

Γ(ϑ(1 −$) +$)
|(δ(0) −

M∑
ρ=1

CρΘ(tρ) −M(0,Θ0) +M(t,Θt)| + µξ (3.7)

≤
{ ΩV

Γ(ϑ(1 −$) +$)
σρ

}
+ µξ, (3.8)

where σρ = |(δ(0) −
∑M
ρ=1 CρΘ(tρ) −M(0,Θ0) +M(t,Θt)|. We can deduce from inequality (3.8) that the

solution Θ(t) is bounded for every t on C(I,Ξ). If this is not the case, we assume by contradiction,
N := ‖Θ‖ → ∞, dividing both sides of (3.8) by N , and we have

1 ≤ lim
N→∞

{
ΩV

Γ(ϑ(1−$)+$) × σρ

}
+ µξ

N
= 0. (3.9)

This is a contradiction. In this regard, we can conclude that R has at least one solution by using
Lemma 2.6. �

Theorem 3.6. Assume that R(1)(i),R(1)(ii), R(2)(i) and R(2)(ii) hold. Then, the Hilfer fractional
neutral functional integro-differential equation with nonlocal condition (1.1) have a unique solution
on C(I,Ξ).
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Proof. Let us take Θ∗(t) and Θ∗∗(t) as the two solutions of the Hilfer fractional neutral functional
integro-differential equation with nonlocal condition (1.1). Then, we have to examine the unique
solution for every t ∈ [0,T ] on C(I,Ξ).

‖Θ∗(t) − Θ∗∗(t)‖Y = sup
t∈I

t(1−ϑ)(1−$)


∣∣∣∣∣∣∣S ϑ,$(t)(δ(0) +

M∑
ρ=1

CρΘ
∗(tρ) −M(0,Θ0) +M(t,Θ∗t ))

+

∫ t

0
HΨ$(t − s)M(s,Θ∗s)ds +

∫ t

0
Ψ$(t − s)(Pu(s)

+M(t,Θ∗∗t )) +

∫ t

0
HΨ$(t − s)M(s,Θ∗∗s )ds +

∫ t

0
Ψ$(t − s)(Pu(s)

+ξ(s,Θ∗∗s ,
∫ s

0
χ(s,m,Θ∗∗

m
)dm))ds

∣∣∣∣∣}}
≤ sup

t∈I
t(1−ϑ)(1−$)


∣∣∣∣∣∣∣S ϑ,$(t)

 M∑
ρ=1

CρΘ
∗(tρ) −

M∑
ρ=1

CρΘ
∗∗(tρ)


∣∣∣∣∣∣∣

+|S ϑ,$(t)(M(t,Θ∗t ) −M(t,Θ∗∗t ))|

+

∫ t

0
|H||Ψ$(t − s)|ds × |M(s,Θ∗s) −M(s,Θ∗∗s )|

+

∫ t

0
|Ψ$(t − s)|ds × |ξ(s,Θ∗s,Z

∗
s) − ξ(s,Θ∗∗s ,Z

∗∗
s )|

}
≤

V

Γ(ϑ(1 −$) +$)

{
(Cξ + B

ρ
ξ)|Θ

∗(t) − Θ∗∗(t)|
}

+ sup
t∈I

t(1−ϑ)(1−$)
{ ∫ t

0
|H||Ψ$(t − s)| × Cξ |Θ∗(s) − Θ∗∗(s)|ds

+

∫ t

0
|Ψ$(t − s)| × (B1 + B2Lξ)|Θ∗(s) − Θ∗∗(s)|ds

}
.

From above inequality, for each t > 0 and let us consider an arbitrary element ζ > 0 such that

‖Θ∗(t) − Θ∗∗(t)‖Y ≤ ζ +
V(Cξ + B

ρ
ξ)

Γ(ϑ(1 −$) +$)
|Θ∗(s) − Θ∗∗(s)|

+
{
Cξ

∫ t

0
|H||Ψ$(t − s)|ds + (B1 + B2Lξ)

∫ t

0
|Ψ$(t − s)|ds

}
×|Θ∗(s) − Θ∗∗(s)|.

Applying Gronwall’s inequality yields,

‖Θ∗(t) − Θ∗∗(t)‖Y ≤ ζ × exp
{ V(Cξ + B

ρ
ξ)

Γ(ϑ(1 −$) +$)
|Θ∗(t) − Θ∗∗(t)|

+
{
Cξ

∫ t

0
|H||Ψ$(t − s)|ds + (B1 + B2Lξ)

∫ t

0
|Ψ$(t − s)|ds

}
×|Θ∗(s) − Θ∗∗(s)|

}
.

Let ζ → 0, and then ‖Θ∗(t) − Θ∗∗(t)‖Y = 0 =⇒ Θ∗(t) = Θ∗∗(t) for every t ∈ [0,T ]. �
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Remark 3.7. From the above theorems, one can observe that existence and uniqueness results are
attained without using strong conditions compared to other traditional methods. The results presented
in this paper give a simple explanation of the existence of a solution using our new assumptions R(1)
and R(2). The monographs [24, 25] demonstrate the no-flux boundary condition and the
multi-boundary value problem with the topological degree method. In [26] Luo et al. discussed a
novel result on the averaging principle of stochastic Hilfer type with a non-Lipschitz condition.
In [27], Ma et al. discussed the Hilfer fractional neutral differential systems in Hilbert spaces with
strong conditions. In [28], Ouaarabi et al. proved the existence of a weak solution to a class of
nonlinear parabolic problems using the topological degree method. Most recently, Shah et al. [29]
extended the degree theory for non-monotone-type fractional order delay differential equations. With
the motivation from the above works, we suggest the present new interpretation of the topological
degree method for the Hilfer fractional neutral functional integro-differential equation with the
nonlocal condition.

4. Numerical examples

Example 4.1. Consider the existence of a solution for the given Hilfer fractional neutral functional
integro-differential equation with a nonlocal condition defined in the form of

HD
1
4 ,

1
7 (Θ(t) −

8
7

cos(
π

2
+ t)) = HΘ(t) + Pu(t) +

1
9

∫ 5

0
(sin(

π

2
+ s))ds, t ∈ [0, 5],

I0.6428
0+ Θ(t) = δ(t) −

4∑
ρ=1

CρΘ(tρ), ρ = 1, 2, 3, 4, t ≤ 0. (4.1)

Let us consider the matrix of H=

[
0.874 1.093
0.572 2.344

]
, P=

[
0.916 0.200
1.414 0.110

]
and u(t)=

[
1
1

]
. Let us take

δ(0) = 0, m(0,Θ0) = 0, m(t,Θt)) = 8
7cos(π2 + t),

∫ 5

0
ψ 1

7
(5 − s)ds ≤ 1, V = 0.7 and

∑4
ρ=1 CρΘ(tρ) = 9.

Since
∑4
ρ=1 Cρ = 0.9 and

∑4
ρ=1 tρ = 10, the solution representation for Eq (4.1) for every t ∈ (0, 5] is

defined in the form of

‖Θ(t)‖Y = sup
t∈[0,5]

t(0.6428)
{ ∣∣∣∣∣S 1

4 ,
1
7
(t)(

8
7

cos(
π

2
+ t) + 9)

+

[
0.874 1.093
0.572 2.344

]
8
7

∫ 5

0
Ψ 1

7
(5 − s)cos(

π

2
+ s)ds

+

∫ 5

0
Ψ 1

7
(5 − s)

[
0.916 0.200
1.414 0.110

]
×

[
1
1

]
ds

+

∫ 5

0
Ψ 1

7
(5 − s) ×

1
9

∫ 5

0
{sin(

π

2
+ m)dm}ds

∣∣∣∣∣∣ }
≤ 0.2808 × 10.0959 − 5(1−1/4)(1−1/7) × {0.8187 − 1.8889 + 0.1065}
= 5.5969,

‖Θ(t)‖Y ≤ 5.5969.
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By using the Theorems (3.3) and (3.5) from this, we can say Eq (4.1) has a solution on C(I,Ξ).
Figures 1–4 represent the existence solutions for different parameters with a finite time interval for
Eq (4.1).
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̟=0.1
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Figure 1. Graphical representation of existence solutions of the Hilfer (ϑ = 0.2, $ = 0.1)
form.
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Figure 2. Graphical representation of existence solutions of the Hilfer (ϑ = 0.4, $ = 0.1)
form.
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Figure 3. Graphical representation of existence solutions of the Hilfer (ϑ = 0.2, $ = 0.3)
form.
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Interval 't'
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Figure 4. Graphical representation of existence solutions of the Hilfer (ϑ = 0.1, $ = 0.5)
form.

Example 4.2. Consider the unique solution for the given Hilfer fractional neutral functional integro-
differential equation with a nonlocal condition defined as the following form:

HD
1
2 ,

1
3 (Θ(t) −

4
7

cosΘ(π + t)) = HΘ(t) + Pu(t) +
2
7

cosec(π + t), t ∈ [0, 5],

I0.3333
0+ Θ(t) = δ(t) −

4∑
ρ=1

CρΘ(tρ), ρ = 1, 2, 3, 4 and t ≤ 0. (4.2)

Let us consider the matrix H=

[
0.589 0.276
0.729 0.913

]
, P=

[
3.21 2.17
6.11 8.72

]
and u(t)=

[
1
1

]
. Let us take δ(t) = 2,

M(0,Θ0) = 0, M(t,Θt) = 4
7cosΘ(π + t), V = 0.7, and

∑4
ρ=1 CρΘ(tρ) = 9, where

∑4
ρ=1 Cρ = 0.9 and∑4

ρ=1 tρ = 10.

‖Θ∗(t) − Θ∗∗(t)‖Y = sup
t∈[0,5]

t0.3333
{∣∣∣∣∣∣S 1

2 ,
1
3
(
4
7

(t)cos ρ∗(π + t)) +
4
7

∫ 5

0

[
0.589 0.276
0.729 0.913

]
× Ψ 1

3
(5 − s)cosΘ∗(π + s)ds +

∫ 5

0
Ψ 1

3
(5 − s)

[
3.21 2.17
6.11 8.72

] [
1
1

]
ds

+
2
7

∫ 5

0
Ψ 1

7
(5 − s)cosec(ρ∗(π + s))ds −

{
S 1

2 ,
1
3
(
4
7

cos ρ∗∗(π + t))

+
4
7

∫ 5

0

[
0.589 0.276
0.729 0.913

]
Ψ 1

3
(5 − s)cos Θ∗∗(π + s)ds

+

∫ 5

0
Ψ 1

3
(5 − s)

[
3.21 2.17
6.11 8.72

] [
1
1

]
ds

+
2
7

∫ 5

0
Ψ 1

3
(5 − s)cosec(ρ∗∗(π + s))ds

∣∣∣∣∣∣
}}

≤ 0.

By using Theorem 3.6, Lemma 2.7 and Note 2.8, we obtained
‖Θ∗(t) −Θ∗∗(t)‖Y = 0 =⇒ Θ∗(t) = Θ∗∗(t), ∀t ∈ [0, 5]. Eventually we acquired the uniqueness solution
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for the given problem (4.2). Figures 5–8 reflect the unique solutions of different parameters with finite
time interval for Eq (4.2).
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Figure 5. Graphical representation of unique solutions of the Hilfer (ϑ = 0.5, $ = 0.3) form.
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Figure 6. Graphical representation of unique solutions of the Hilfer (ϑ = 0.6, $ = 0.4) form.
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Figure 7. Graphical representation of unique solutions of the Hilfer (ϑ = 0.5, $ = 0.4) form.
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Interval 't'
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Figure 8. Graphical representation of unique solutions of the Hilfer (ϑ = 0.4, $ = 0.1) form.

5. Conclusions

In this study, we explored the existence and uniqueness of the Hilfer fractional neutral functional
integro-differential equation with a nonlocal condition. We obtained these results using the
topological degree method and Gronwall’s inequality. To illustrate and demonstrate the applicability
of the obtained results, two numerical computations with several graphical representations of different
parameters are provided.
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