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1. Introduction

The complexity of the social and economic environment makes decision-making (DM) increasingly
difficult for people in this continuously changing world. A small decision specialist will have a harder
time coming to a clear conclusion in these circumstances. In fact, using group DM models requires
merging the viewpoints of a few seasoned authors in order to attain more realistic and desirable
goals. In order to produce more rational and sensible DM outcomes, multi-attribute group decision
making (MAGDM) considers and assesses a wide range of different attributes across all DM domains.
Making decisions is challenging and time-consuming due to the complexity of such a reality, about
which DM scenarios have frequently revealed amazing amounts of knowledge.

Zadeh [52] addressed this issue, creating a brand-new kind of fuzzy set that can deal with false data.
The fuzzy set information is used to characterize a membership degree (MD), and its value is limited
to the adjacent range [0, 1]. Atanassov [1] investigated the concept of intuitionistic fuzzy sets (IFS)
using the MD and non-membership degree (NMD) functions. The MD and NMD value range for an
IFS is [0, 1]. Since the inception of IFS, scholars have studied the hybrid effect in great detail, and
it is now recognized as a leading area of study. The IFWA (intuitionistic fuzzy weighted average)
aggregation operator (AO) was developed by Xu [42]. Intuitionistic fuzzy weighted geometric (IFWG)
operators are discussed by Xu and Yager in [41]. Ali et al. [2] presented statistical methods for scoring
function and classification accuracy. Averaging aggregation operators based on intuitionistic fuzzy
sets were defined by He et al. [19]. He et al. [17] determined by the average factor of the geometric
operator and suggested applying it to DM. Zhao et al. [54] established the definitions of the generalized
IFWA, IFOWA, and IFHA operators. Wang and Liu describe a variety of averaging and geometric
AOs. Seikh and Mandal introduced the idea of intuitionistic fuzzy for the first time in [38]. Dombi
enhanced its weighted average and geometric operators and fixed a number of application-specific
issues. Huang provided a number of AOs based on the Hamacher t-norm and Hamacher t-conorm
in [18]. Xia et al. [43] proposed a variety of AOs based on t-norm and t-conorm.

The Pythagorean fuzzy set (PFS) is another useful technique for illustrating ambiguity in the
MADM issues. The PFS model, as opposed to IFS, is better equipped to control the unpredictable parts
in the DM problem since it satisfies the conditions d%(x) + ﬁ%(x) < 1. The MG and NMG, whose sum
of squares are equal to or fewer than 1, are also used for categories PFS. As a result, the PFS is a bigger
system than IFS. The PFS is capable of resolving issues that the IFS cannot. As a result, the PFSs is
more inclusive and all IFS are seen as being a part of the Pythagorean fuzzy degree. Zhang and Xu [55]
invented the Pythagorean fuzzy number (PFN) idea. Additionally, they recommended the PFS detailed
mathematical form, the Pythagorean fuzzy TOPSIS methodology, and an order preference strategy that
was comparable to the optimal outcome. This strategy was applied within PFNs to address the MCDM
issue. Peng and Yang [27] proposed a Pythagorean fuzzy maximum and minimum approach to address
the MAGDM problem utilizing PFNs. Additionally, they recommended that PFNs use the division and
subtraction procedures. Ren et al. [33] employed the TODIM technique to fix the MCDM problem.
Garg [16] were proposed new generalized Pythagorean fuzzy aggregation operators using Einstein’s
operation.

Ghorabaee et al. [21] were the first to examine the EDAS method for resolving DM issues. This
strategy works well in DM situations, especially if there are more conflict criteria present than in
MCDM situations. The two most widely used methods for determining separation from PIS and NIS
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are TOPSIS [47], which are similar to conventional DM procedures. The choice should have been
the one that was farthest from the NIS and closest to the PIS. The IFOWA distance and its main
characteristics were established and discussed by Zeng and Xiao using the TOPSIS technique in [56].
Wei put out the Grey Relationship Analysis (GRA) approach for MCDM with IFNs data in [36].
Therefore, the ideal applicant ought to have a greater PDAS and a lower NDAS. Ghorabaee et al. [14]
used intuitionistic fuzzy data and the EDAS method to choose suppliers.

As d%(x) + Li%,(x) < 1, the sum of the qth powers of MG and NMG is less than or equal to 1.
Yager [48] developed the g-rung orthopair fuzzy sets (q-ROFSs) to represent more decision information
in spite of this. PFSs are IFS-specific, while qg-ROFS have a wider range of applications. The g-
ROF weighted averaging/geometric operators were created by Liu and Wang [24]. Wei et al. [39]
defined a number of g-ROF Heronian mean operators. Yang and Pang [50] used g-ROF data. New
partitioned Bonferroni mean (BM) operator proposed. Liu and Liu [25] furnished the BM operator with
linguistic g-ROF data. Xu et al. [44] created some g-rung dual hesitant orthopair fuzzy Heronian mean
operators. An approach for MCDM with g-rung interval-valued orthopair fuzzy information for green
supplier selection was presented by Lei and Xu [23] defined a MADM strategy based on Archimedean
Bonferroni operators of g-rung orthopair fuzzy numbers was proposed by Liu and Wang.

Shahzaib et al. [3] first proposed the concept of the spherical fuzzy set (SFS) to address the issue
that the picture fuzzy set cannot solve. Then they found a tonne of spherical fuzzy information-based
aggregating techniques. Unlike PFSs, where all membership degrees must satisfy the requirement
dy(x) + ity(x) + ér(x) < 1, SFSs require @2.(x) + iiZ.(x) + &2(x) < 1. Ashraf et al. [5], described a
few spherical fuzzy aggregation operators and examined their potential use in the Dombi approach to
decision-making. Additionally, they looked at how spherical fuzzy t-norm and t-conorm are shown
in [4]. Kutlu et al. [22] defined SFSs and the Spherical fuzzy TOPSIS technique were created.
Rafiq et al. [34] defined cosine similarity measurements of SFSs and their uses in decision-making.
Deli and Agman [11] proposed the concept of spherical fuzzy numbers and an MCDM method using
spherical fuzzy set data. Qiyas et al. [29,30] defined spherical fuzzy AOs with sine trigonometry and its
use in decision support systems. According to Qiyas et al. [31] Hamacher AOs for Spherical uncertain
linguistics were defined, and their use in attaining consistent opinion fusion in group decision-making
was examined.

The fuzzy-rough computing model is an important granular computing model that has attracted a
lot of attention. Dubois and Prade [10] proposed the fuzzy rough set (FRS) model by combining the
advantages of fuzzy sets and rough sets for the first time. Sun et al. [35] defined feature selection with
missing labels using multi-label fuzzy neighborhood rough sets and maximum relevance minimum
redundancy. Wang et al. [40] developed fuzzy rough set-based attribute reduction using distance
measures. Yuan et al. [S1] proposed an attribute reduction method in fuzzy rough set theory: an
overview, comparative experiments, and new directions. An et al. [7] defined a probability granular
distance-based fuzzy rough set model. Hadrani et al. [20] suggested a fuzzy rough set: survey and
proposal of an enhanced knowledge representation model based on automatic noisy sample detection.
Ahmed and Dai [6] defined the concept of picture fuzzy rough set and rough picture fuzzy set on two
different universes and their applications.

The primary objectives of the work are listed as follows:

(1) To construct a new notion of Spherical fuzzy rough sets and analyze their basic operational laws.
(2) The concept of SFRS has been utilized to express the uncertainties in the data.
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(3) To develop several weighted aggregation operators to aggregate the collective information.

(4) Some special cases of the proposed operators are deduced under the existing environment.

(5) To establish an MCGDM method based on the proposed operators to solve the problems.

(6) To show the significance and superiority of proposed aggregation operators over existing
aggregation operators numerically.

The remainder of the manuscript is organized as follows: Several related definitions are provided in
Section 2. By defining a score function and an accuracy function for SFRNs, we have expanded on the
idea of SFRS in Section 3. For the suggested technique, some basic SFRN-based operations are offered.
Section 4 then examines the idea of average AOs, including SFRHWA, SFRHOWA, and SFRHHA,
and their characteristics. In Section 5, the characteristics of geometric AOs including aggregation
operators SFRHWG, SFRHOWG, and SFRHHG are comprehensively discussed. Using the provided
methodology, a model for MCGDM and the associated step wise algorithm are presented in Section 6.
The worth and dependability of the suggested possibilities are demonstrated in Section 7 using the
example of selecting the best alternative. The analyzed model is superior to prior possibilities in
terms of efficacy and value, as proven by a thorough comparison of the produced models with recent
aggregation data in Section 8. The outcomes of our study are then shown.

2. Preliminaries

In this section, which is related to our work, we’ve provided some fundamental definitions and
descriptions of those terms.

Definition 2.1. [52] A fuzzy set U on a fixed set R is given as
U = {(ray ()lr € R}, @.1)

where dg(r) : R — [0, 1] is MD of a fuzzy set U.
Definition 2.2. [1] An IFS U on a fixed set R is given as

U = {(r,ay (r) ity (lr € R}, (2.2)

where dg, (r) , iig(r) : R — [0, 1] are membership and non-membership functions for every element
r € R to the set ‘R with the condition 0 < it (r) + dg (r) < 1 for every r € R. (&g/] , i/i(’/]) denotes the
intuitionistic fuzzy value (IFV).

Definition 2.3. [24] A g-ROFS U on a fixed set R is given as
U = {(r.iig () iig(lr € R}, (2.3)

where dy, (r),iig(r) : R — [0, 1] are the membership degree and non-membership degree functions
satisfied the condition 0 < i’%(r) + uf] (r) < 1forevery r € R. (df]l , ng,l) denotes the q-ROF number (q-
ROEN).
Definition 2.4. [53] Let R be a fixed set and U € (R x R) represent a crisp relation. Then, the
following properties are hold:

(i) U is reflexive if (¢, ¢) € U, forall U € R;

(i1) U is symmetric if Vg, c € U, (g,0) € U. Then, (c,8) € U,
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(iii) U is transitive if Vg, ¢,d € U, (g,¢) € U and (¢,d) € U. Then, (3,d) € U.
Definition 2.5. [53] Let R a fixed set and U € R x R be any arbitrary relation on set R. Then, a
mapping U* : R — U(R) is defined as

U'(r)={eeR|(ne)e U} forreR. (2.4)

The crisp approximation space is denoted by the pair (%, U ), and the successor neighborhood of

the object r under U is denoted by U*(r). For every N8 C ‘R, the lower and higher approximations of N
are defined as follows with regard to the approximation space (‘R, U ):

U® ={reR|0"MCR), UM =|reR|T" ()8 = ¢). (2.5)

And (g N) ,E(N)) is called rough set and Q (N) ,_IOJ(N) - U (R) — U (R) are lower approximation

operator and upper approximation operator.
3. Spherical fuzzy rough set

In order to accomplish the concept of spherical fuzzy rough sets, we provide a hybrid notion of
rough sets and spherical fuzzy set (SFRSs).
Definition 3.1. A spherical fuzzy relation U € SFS (R x R) is stated to exist for any subset of the
fixed set R, and the pair (‘R, U ) is referred to as the spherical fuzzy approximation space. The upper
and lower approximations of N in relation 8§ C SFS (R) to the spherical fuzzy approximation space

(‘R, U ) are now two SFSs, denoted by U (N) and J (N), and are defined as

U®) = (g ().t (0,85, (r € R), 3.1)
U®) = {(rage (), iige (1), ége Dlr € R}
As
g () = g (R Vax @),
g (1) = Ay (n8) A (O}
e = A 1e(nd) e @),
g () = A g (ne) Nas @),
g () = C;/%{uu(r,é)vux(é)},
oo () =V {ey &)V éx (o).
AsOSé%(N)(r)+ﬁ% (r)+efj (r)<1andO<aU(N)(r)+uU(x)(r)+eU(x)(r)S1,_10](2*() and U (N) are

SFSs and Q ), E(N) U (R) —» U (R) are lower and upper approximation operator. Then,

(0 0 o C ).

22
a= (r), r),é= (r
L DT (.2 ()

U(N) = (Q ®) ,_ff(x)) - reR (3.2)
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is called SFRS. And U (X) can be written ((g, i, é) , (5, i, 2)) and called SFRN.

Definition 3.2. Let U (R)), U (R,), U (N3) is three SFRSs and v,A > 0. Then, the SFRH operations
are given as follows:

aj+az -y —(1-y)aja; iy
2.2
1-(1-y)dia; Vy+(1 y)(u +u2—u “2)

elez
. . \/}/+(1—y)(g1 +ez—e e%)
(D URDSU XY = \/afmﬁ-af&i—(l—y)afai i ;
=22 ’ ’
1=(=y)dyd, \/y+(1—y>("u?+ﬁi—3?ﬁ§)

=232
€16

=2 =232
Jrran(Ea-ag)

a az u +L¢2—u u2 (1- y)u “2
\/y+(1 y)(a +a —a i ) 1=(1- 7)“ “ ’

e +ez—e ez—(l y)e ez

-

y ° 1-(1-y)&}&;
(2) U(Nl) ® U(xz) = =22 2 =2 22 2 ;
a9 ity +iiy =it ity —(1—y)it, it
—2-=2 H)
\/7+(1 7)(a1+55 a%a%) 1=(1—y)iiy i,

2 32 3232 =22
é1+é,—¢é16,—(1—y)é|é,
1-(1-y)¢\,

(1+0-na3)' -(1-a)" V(i)'
(1+0-0@) +o-0(1-2) " firg-n(1-2) +0-n@@)"
.\

W(El)
Vi+0-D(1-2) +o-1)(&)’
o 1 Y \A
(3) AU (Ny) = (1+(y—1)af) —(1—&?) W(uf) ;
_n\ A4 o\ )
(1+(7—1)iz'%) +(7—1)(1—é?) \/1+(y—1)(1—ﬁ%)A+(y—1)(5?)A

@l
\/ 1+()’—1)(1—E?)A+(y—l)(??)ﬂ
V(@) \/ (1+0-ni)'-(1-i)"

Ji+o-v(-2ywo-n@)" Y (o) +o-n(1-i)"”
(1+0-1&)"-(1-8)"
(1+0-0&) +0-n(1-8)"
V(@) (L+o-Din)"-(1-i)’
\/ 1+(7—1)(1—‘a7'%)ﬁ+(7—1)(3?)/1 "N (ro-ni) +o-n(1-i)"
(1+0-0&)'-(1-2})"
(1+6-D22) +-D(1-2)"

4) U®R)' =

Definition 3.3. Let U N) = (Q N) ,E(N)) = ((Q, il, g) , (a_‘, il, 5)) be a SFRN. Then, the score function
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S(ZOJ (N)) is given as
S0 (N)) = [(gz £ T iR - —Ez)/3], (3.3)
where S (U (X)) € [-1,1].
Definition 3.4. Let U N) = (Q N), _lo](N)) = ((Q, i, g) , (5, i, 5)) be an SFRN. The accuracy function
H(U (N)) is given as
HWU N)) = [(g2 A IR P+ 52) /31,
where H(U (R)) € [0, 1].
Definition 3.5. Let U/ (N,) = (_f] X1) ,_fj(x])), and U (N,) = (_f] (X2) ,_z"J(xz)) are two SFRNs. Then,
the comparison rules are defined as
DSU M) <SU W) = U®) < UM,
i1) S(U (NX,)) = S(U (NXy)), and

a) H(U (8)) < HU (8) = U ®y) < U,
b) HU (82) = HU 8) = U®y) = UN)).

4. Spherical fuzzy rough Hamacher averaging aggregation operators

Here, we define the spherical fuzzy rough Hamacher aggregation operators and go through some of
its fundamental features.

4.1. Spherical fuzzy rough Hamacher weighted averaging operator

Definition 4.1. Let U (N,) = (g (N), 5(&)) (i =1,...,n) be a collection of SFRNs with weight vector
w = (wy, ...,o,), and >, @; =1and @; € [0, 1]. Then, the SFRHWA operator is described as

SFRHWA (U (R),...UR,)) = @ U N, 4.1)
i=1
where the weight vector of U (N)) are @ = (wy, ..., @,)!, with @; € [0, 1] and Y wi = 1.

Theorem 4.1. Let U (N;) = (Q X)), U (N,-)) (i =1, ...,n) be a collection of SFRNs. Then, aggregated
value utilizing SFRHWA operator is again a SFRN, and

SFRHWA (U (X)), ... U(R,)) (4.2)

[é WiQ (X)), é wi_lo] (Ni)]
i=1 i=1

(1 -0a2) - (1) \/ (1003 g, (1)
\/H:?1(1+(y—1)ai2)mi+(y—l)l'[f (1=a)7’ n;;,(1+(y-1)a"f)w[+(y—1)nyzl(1—Ef)mi ’
= WHLI(EI' )wi Ty (j)w’ = °
VI G 0( ) oo, @) | \/“?=1(1+<7‘1)(1‘3?) oo (i)
vt (z)” v, ()"
\/H:?:] (I+(y-D(1-22) " +(y-DIT_ (&2)" \/ I, (1 +(y—1)(1 —?f)mi+(y—1)ﬂ;’:1 (Ez)m
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Proof. We’ll use mathematical induction to prove this theorem.
(i) When n = 1, we have

S FRHWA (U (N))
\/ 1+(y-Da2—(1-) V(i)

-0 +o-D(1-2°)" AfixG-D(1=i2 )+(y-Dii?
Vi(2)
Vi+o-D(1-8)+(-D&

= 1+(y—1)52—(1—22) NO)
1+(y=1)a +(y-1)(1-7) \/H(y_l)(l_fuz)ﬂy_l),ﬁz
Vi(?)
\/ 1+(y—1)(1—§2)+(y—1)52

)

Thus, forn = 1, Eq (4.2) is hold.
(ii) Let n = k, Eq (4.2) be hold, then from Eq (4.2),

SFRHWA(U (). ... U ()

= é Wilo/ (R)
i=1

—2\Zi —=2\Zi
n§=1(1+(y—1)ai) —n{;l(l—ai)

g, (1+o-Da}) ™ -1f, (1-a7)"™ —2\7i =2\7i?
\/nf=1(1+(y—1>a%)’”f+(y—1>n§=l(1—'a,-2)’”" ’ e (1+- 1) t(y;_l)nil(l_””)
_ VI, (i)™ V7t )
VI a+G-D(1=2 )i, @) | \/ e (40017 oo (i)
\/mle(gi) ' Wnﬁl(gf)wi

VI (+G=D(1-8 )i+ (= DI (27)™

@i

\/H{'Czl(“(7‘1)(1-?,»2))”i+(y—1)nf:1(gf)
Now, for n = k + 1, we have

SFRHWA (U (R1).... U (o), U (Re)

k
@ @ U (R) @ @i U (Rey1)
i=1

nt(1+0-0g )" -t (1-27)”
L, (1+o-Da) " - (1-a7)™ —2\@i —2\@1 >
\/ e, (1+G-0@) 7+~ DI (1-22) 7 = (“(7‘””"2 oDy (1)
_ T ()" L0
VI (G- 0(i2) o0, @) | \/nlk:l(1+(y—1)(1—ﬁf)wi+(y—1)H§=1(Ef)w’
k 5 i — .
= A C) VAT, ()"
T (1+(-D(1-2) " +(-DIE_(2) = —
L U+-D(1-82) " +(y-DITE (&2) \/Hf:1(1+(7—1)(1—??) +(7—1)Hf:1(é?)
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(1+G-bag,, )" -(1-az,,) " \/ (1+<y_12)a§;1k)+1k”—(1—51,3“2) k:m,
(1+(7—1)éi+1)w"”+<7—1>(1—Q20k+1)%' ; (H(y_l)ﬁ"“)ﬁ +g<:11)(1_&k+1)
® V()" Vo) ,
V- D02, G- D@, )Pk ’ \/1+<v—1>(1—ﬁi+1) =D )7
‘f(Jm) ! W(Ekﬂ)mkH
Vi+o-D(1-8, ) +0-D@, )71 \/ 1+(y- 1)(1751, )mk” +Hy=1)(@p, )Tkt

2\@i

K+ 2\ ki
\/ M (- 02)” 1 ()" \/ e (1400 1)2_) ) (1-2))

; | =2\ ke1f1_z2
Hi-:rll(l"'()’—l)ﬂ ] ) +(y_1)ni_(=+ll(l_gi)w, ’ H[:l (1+(V l)ll ) +(y— I)szl (1 a:)

)

— Hk+l (u )w, , Hl(”') —,
Vo g e || oo so-om (@)
NLBOK VI ()
AT (1 G- 1)(1 =)+ (y- DI (&2) \/Hfj,1(1+(7—1)(1—é1) +(7_1)Hffll(g;2)wi

Thus, step (i) and (ii) shows that (4.2) is holds for all values of n.

Effect of parameter y on SFRHWA operator

When the parameter y has the values 1 or 2, there are two special cases in which the SFRHWA
operator is implemented.

Case 1. The SFRHWA operator’s structure is reduced to the SFRWA operator if y = 1.

SFRWA (L"J N, ..U (xn)) (4.3)
(Vr-ma-adm e @) @)).

i (\/ L=, = ) T (i) I (Ef)wi)

Case 2. The SFRHWA operator’s structure is reduced to the spherical fuzzy rough Einstein weighted
averaging (SFREWA) operator if y = 2.

L, (1+a?)™ -1y (1-a7)™ V2 (ii,) ™!
., (147 )™+ (1-a7) ™ \/Hn | @=i)7i+TrL (ii2)™ ’
Vi ()" ’
\/Hizl Q-&))7i+IT (Q‘Z)W[
SFREWA, (U N),...U (N,,)) = n;le(1+Ef)mi—nyzl(1—5f)wi i (@)” . 44
(12 et (150) o) en
v, ()"
\/ ()", (&)

Based on the Theorem 4.1, the SFRHWA operator has the following characteristics.
Proposition 4.1. Let U (N,) = ( U®R),U (Ni)) (i = 1,...,n) be a set of SFRNs with the weights are @ =

(@1, ..., @,)", with >, @; = 1 and @w; > 0. Here are some examples of properties.
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Idempotency: For all U(N) = (g (NJ,E(&)) (i=1,...,n)are equal, i.e., U (R) = U (N, then,

SFRHWAW(IOJ(Nl),..., ("J(xn)) =UN). (4.5)

Proof. Since U (R;) = U(N), i.e., d, = &, & = &, it, = ii, & = &,

—l

SFRHWA, (U (8)).... U K,))

n;’:l(1+(y—1)Ef)wi—ny:1(1—af)mi
1, (L+=Dag) ™ -1 (1-a7)™ . o\ I
I, (1+(y-1a2)“ +(y-DIr (1-a2) " nf=1(1+(7_])af) J:(y;l)niﬂ(l_a")
T (8)" VTt ()
VI G o-0(-2)7+G-om, @) | \/n;z: (=013 ) " o- o (&)
\/m?:l(éi) ' Wnlr_tzl(ﬁi)”f
I (1+(y=D(1-82) T +(y-DIT_ (£2)™ —\o; -
VI (1 G=D(1-8) - DI () \/n;;1(1+(y—1>(1-é,.2) =i, (%)

@i

1+ (1-4) V(i)
L+o=D@+-D(1-2°)" A[Te(-D(1-22 )+ (-2
Vi(?)
Vi+o-D(1-8)+(-D&
L+(=DE ~(1-7) V(i)
L@ +-1(1-7) \/1+(y_1>(1-52)+(y—1>52
V(i)
\/ 1+(y—1)(1—52)+(y—1)52

= ((a.we).(a.2)= UM,

b

proved.
Boundedness: Let UN) = (Q (N) ,_l7 (Ni)) (i=1,..,n) are the set of SFRNs,
and U N)* = ((max a;, max 5,-) , (min it;, min E,) , (min ¢,,min g,-)), U (N)” =

((min a;, min Ez,-) , (max it;, max ﬁ,) , (max ¢,, max Ei))_ Then,
UR) < SFRHWA, (U (R)....UR,)) < U®)*. (4.6)

Monotonicity: Let U (N*) = ((gj,g;‘,gj),(a_'f,'_uf,éf)) (i = 1,..,n), be a set of SFRNs, if &, <

as, il >, e >é., a4; <a;, i; >it;, é; > é; forall i. Then,
—l —l —1 —1 —1 l l I

SFRHWA, (U (R1),... U (,)) < SFRHWAG (U (X)), ... U(R;)). 4.7)
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Proof.
., (L+-Dap) ™ -1 (1-a7)™
L, (1 D2) G DI (1-2)
VL (i)™
VI, =D 0—) T+ G- DIt (i)
VL (€)™
VI, (+6-D(1-8) " +o- DIt (22)™
SFRHWA, (U (R)),...U(®K,)) = e (1+0-0a ) (1-27)”
n;;l(l +(y—1)5f)wi+(y—1)n7= 1(1 —E,.z)wi ’
VIl ()"
\/H;?:](1+(y—1)(1—ﬁf)w'+(y—1)H7:1(Ef)m'
VI (@)
\/n;; 1 (1+(y—1)(1—5f)wi +y-DII (Ef)wi
as
ML (1+ - ha)” -, (1-a)™ (4.8)
N, (1+-na@)" + -, (1-a)™ '
) e (1+ (- 1)%72) —m, (1-a) _
N, (1+ - na)" + -, (1-a)”
VoL, (i)™
VI (= D T =29+ (y = DT, @)=
§ VoL, (i)
VI (U + G = D (1= 2)7 + (v = DIT @)
VL, (&)
VI (U + = D1 =87+ (= DT, @)=
§ VL, (&)
(1 + (= D(1= &)= + (y = DI (@)
., (1 +(y— 1)51.2*) 1, (1 - Ef*) l
—= — (4.9)
\1 (1+ =03 +o-nm, (1-7)
H?:l (1 + ()’ - 1)51'2) l - H?:l (1 - 51'2) |
< 2\ @i 2\@i’
\1L, (14 0= D&) +o-nm, (1-7)
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\/H;Ll(l +o-D(1-7 )wi +(y = DI @)™

\%

Jra o= (-7 s o - @ e
WH?:I (Ei)m
\/H;.gl(l Fy-1) (1 - Ef))wz F - DI, @)™

Vi n(i-2) o - v

Now, from Egs (4.8) and (4.9), we get

e, (1+=Da2) -1, (1-a2) 7 . (L+G-ag) % -y (1-a2)"
L, (1+-1a) ™ +o-DIL, (1-a2) I (1+O=Da ) ™+ o- DI, (1-a;) ™
VAL, (i) VL (i)™ ’
T, (+0-D(1=2)P=O-Di @)=t | VI (=D (=) P =D (@)
WHL(Q) ' WH?:l(g?) '
VI (+(=D(1-2,))7i+(y- DI (&) VI (A+G-D(1=82)Zi+(-DIt ()7
H7:1(1+(y—1)5?)mi—1'[7:1(I—El-z)m < H:-’:](H(yfl)ﬁfz*) 171'11’.':1(1—5,-2*) : ’
Hf’zl(1+(7—1)3f)mi+(7—1)H7:] (1—Ef)wi ’ H7:1(1+(y—1)5f*)mi+(y—1)H;’:l(l—af*)wi ’
VI (i)™ i, (i)™
\/H;-;l<1+<y—1)(1—ﬁf)>wl'+<y—1>n,."=l(ﬁf)w’ \/ny=l<1+<y—1)(1-ﬁf* | oo, (@)
VL (@)™ T ()™
| T Jrto e T
1.e.,
SFRHWA, (U (R1),... U (R,)) < SFRHWA (U (R}). ... U(R;)).
Proved.

4.2. Spherical fuzzy rough Hamacher ordered weighted averaging operator

Here, we’ve discuss the SFRHOWA operator and its key characteristics, including idempotency,
boundedness and monotonicity.

Definition 4.2. Let U W) = (Q (N,-),_lo](N,-)) (i=1,...,n) be a set of SFRNs with weight vector w =
(@1, ...,@,), such as >, @; =1and @; € [0, 1]. Then, SFRHOWA operator is described as

SFRHOWA (U (R)) ... U (R) = D @0 (R (4.10)
i=1
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Theorem 4.2. Let U (N,) = (g (NJ,E(&)) (i=1,...,n) be a collection of SFRNs. Then, aggregated

value utilizing SFRHOWA operator is again a SFRN, and

SFRHOWA (U () ,.... U (R,))

(@ @0 (Now) , P @0 (No(o)J
i=1 i=1
o (1-a2

n -2 \Zi 2 \Ti
(0 i2,,)” ) Hi:l(1+(7—l)a(,g) I (1T |
e (1+(7 a2, ) =D (1-22,,)"" H?:1(1+(y—1)5i(i)) l+(y—1)ni:1(1_a0(0)
VL (i)™ VI ()™
I =122, )7 =D (2, )7 \/H?‘:l(H(y—l)(l—ﬁi«))w"ﬂy—1>H?:1(ﬁim)
L ACH S VL, o)™

" (1+(-D(1-22, )7 +(y—-DIT i 2 \@i 2 \7i
L A+o=D(1-2 )+ o-DI () \/H;.‘: 1(1+(y—1)(1—e(r(l-)) l+(y—1)l_l;‘=l(ea(l-))l

(4.11)

G}

)
@i

Effect of parametern y on SFRHOWA operator

Here, we looked at two specific cases of the SFRHOWA operator using various values of the
parameter 7.
Case 1. SFRHOWA operator reduced to the SFROWA operator if y = 1.

SFROWA(U (X)), ...,UK,))

n ) n n @
(\/1 -1, (1 4, )) Iy 1_0(1)’ IT.,é 1_0(1)) ’

- " =2 \7 ., o n T
(\/1 - I, (1 - “a(i)) I gy Hi=le<7(i))

Case 2. The SFRHOWA operator’s structure is reduced to the spherical fuzzy rough Einstein ordered
weighted averaging (SFREOWA) operator if y = 2.

(4.12)

SFREOWA(U (N)), ...

LUR)

(1 +Qo—<z))wi_n (1 ﬁo(o)mi

Vi

(Hl l(w(t))w

@iy

(”“ <)) +II (1 —a (z>) ' o
V2L (2,) ™

\/ T Qi )i+

1(‘U(i))ml ’ \/H:"—l(z_e v l(;r(t))wi

— w; @
" (1+a§(i)) o (1- af,(,)) '

V211 1(”#(»)

2 \@io
H (1+a¢(,)) +(7_1)Hi:1( —a(r(,-))

V21, (%)™

(4.13)

n =2 wi’ n 52 @i n 52 @i
Hi:l((z_uff(l)) +I (am) Hi:l((z_ev'(f)) +Hi=l(eﬂ'(i))

Proposition 4.2. Let U (R,) = (_f] (N,-),_lo](&-))(i —1,..,n) be a set of SFRNs in & and the weight

vector of U (X,) be @ = (w7, ...,
below are established.

w,)’, with Yy @; = 1 and @; € [0, 1]. Then, the properties listed
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Idempotency: If all UN) = (g (N,-),E(Ni)) (i=1,...,n) are equal, i.e., UN) = U(N), then

SFRHOWA([OJ(NI),..., z"J(x,,)) =UN). (4.14)

Boundedness: Let U(X) = (U(Ni) ,E(Ni))(i =1...n) be a set of SFRNs,

and U N)* = (max a, (Z),maxgg(,-)) (mln it (1),min'_ucr(,-)) (mln e(r(l),mingcr(,-)), U N)” =

(max a, ;> max 50(,-)) (rmn it ;) M0 ug(,)) , (mm &,;)> min E(T(,-)). Then,

U(X)” < SFRHOWA(U (R)....U®,) < UN)". (4.15)

Monotonicity: Let U (N*) = (_O_(l), ";(l), 0_([)) (_Z(l),_:(l), (,(,)) (i = 1 ..,1), be a group of SFRNs,
ifa_ o < Q(m), _a(t) 2 i, € _(r(l) 2 €, Goti) < gy Uy 2 ug(l), Eoii) = (,(i) for all i. Then,

SFRHOWA (U (8)),....U (R,)) < SFRHOWA (U (R}).... U (R;})). (4.16)

4.3. Spherical fuzzy rough Hamacher hybrid averaging operator

In this section, we define the SFRHHA operator and look at its characteristics.
Definition 4.3. Let U N) = (Q (N,-),F](N,-)) (i=1,...,n) be a set of SFRNs with weight vector @ =
(@1, ...,@,), such as >, @; =1and @; € [0, 1]. Then, SFRHHA is operator defined as

(4.17)

SFRHHA (U (R), ... U(R,)) = @ @0 (X))

where U (N/ (i 1)) U (N/ ) The SFRHHA operator change into the following form by induction
on the fundamental SFRH operational laws of SFRNs. Here, U (N/ (;)) is the i biggest value of the
weighted SFRNs. Also, w = (wy, ..., w,)T is the weight of U (N), withw; € [0,1]and X7, w; = 1, i.e.,

/ N = = .
(Na(l)) nw; U(NU(,)) = ((_G(l), iy ), € (T(l)) (acr(,-), iy (i) e(,(i))) (i=1,..,n),

iy A
B e i
=/ (1 +y-1) a"fr(i))"w" _ (1 B a_,i(i))nWi
e \(1+(y—1)a“j(i))"w'+(y_l)( i(l)),lw,.,
i, - (1+ &= Diiy )" = (1= ity )"

(1 +(y—Dii (l)) Yy - 1)( —zo(i))nw
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(1 N (y B l)ﬂfj{r(i))nw _ (1 _ i,io_(l-))HWi

-

T U D)+ - D (1)
b (1 + (- l)ea(z))nm B (1 B éa(i))nm

- (1+ & -De,) "+ -D(1 _é(r(z'))mw
gc/r(i) = (1 to-D effrrm)m - (1 B g"@)m

(1 + (’)/ - l)g(,—(i))nm + ()/ - 1) (1 — E(r(i))nWi .

The SFRHWA and SFRHOWA operators are referred to as a particular case of the SFRHH averaging
operator, when @ = (1/n, ..., 1/n)T.

Theorem 4.3. Let U (R;) = (_ff X)) ,_ff(x,-))(i —1,..
utilizing SFRHHWA operator is again a SFRN , and

,n) be a set of SFRNs. Then, aggregated value

SFRHHA((oj(N]) LUK, ))

(@w’ W() EBW’ a(z)]

(4.18)

=/2

e (1D - (1-d)

%oi)

2 )wi

V=

(1+0- 1)%)) +y-DIT (1

VI ()™

A2
Hr(t)

)"

N

1+(7 1)1 H(/)il )() +(7 I)Ht l(ﬂr(t))wi

Z)”
40'1

b

N

(1+(-D(1- e/2

=o (i)

) +o- I)Hl l(ﬂr(l))m

Effect of parameter y on SFRHHA operator

=2 \7i
n;=1(1+(y—1)aa(,.)) I (

1- =l ()

F

\/H:-;l

A\
(1+(y—l)a(r(i)) +(y—1)n,.=1(1—aﬁ,-))
n =2 i
VI (u(m))

Wi 9

\/n;?:l(n(y—l)(l—ﬁﬁ,))) +(=DIT. ((rm)m’

@i

Wni-ll(%m)

\/ ;1:1(1+(y71)(175,’,2(,>)) +y-DITL ((f(,))mi

Here, we looked at two specific cases of the SFRHHA operator using various values of the

parameter .

Case 1. The SFRHHA operator reduced to the SFRHHA operator if y = 1.

SFRHAU (Xy),.

U (R))

(\/1—H" (1-27 )m I ("(ro)) T (:W))m)

i [\/1—H7:1(1—a

=/2

o(i)

R A e
) ’Hizl(utf(i)) lia (v(z)) )

(4.19)

Case 2. The SFRHHA operator’s structure is reduced to the spherical fuzzy rough Einstein hybrid
averaging (SFREHA) operator if y = 2.

AIMS Mathematics
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SFREHA(U (N)), ..., U(K,)) (4.20)
\/ L (“ﬂr(z))w -1 (1 jrm)wi

. (1+al? )7 (1-al )7

=o (i) 40'(1)

(H:' 1(“ )wl \FHI l(ﬂr(z))wi ’

Yty

/2 = zzr /2 @; . @i
\/ i (2 E(7(1) +Hln 1 ~(T(l) \/H - g‘r(l) +H:l l(w(l))
= )"
Hi:1(1+u(,(,-)) _H (1 aO’(I))
=/2 \@i 12\
1'[;;1(1 +a(,(,~)) +Hy=DIE, (1 _a(r(i))
V211, I(Eu'(i))mi V2 1(gv(f))mi

@’ @
N N N N TR R iy

Proposition 4.3. Let U, = (Q (N, _IOJ(NI-)) (i=1,..,n)be asetof SFRNs and @ = (@, ..., @,)! be
the weight vector of N;, with I, @; = 1 and @; € [0, 1]. Then, the below characteristics are defined.
Idempotency: If all UN) = (Q N), 0(&)) (i=1,...,n) are equal, i.e., U(N) = U(N), then,

SFRHHA (U (R)....U(R)) = U (). (4.21)
Boundedness:  Let U(R) = (Q (N ,E(Ni))(i —1,..n) be a set of SFRNs,
and UN)" = ((max al (> TN u/(), min e/()) (max Efr(i), min E(/T(,.), min gﬁ,@)), UMW) =
.=/ ./ ./ =/ =/ Th
min d,;, max i, ,,max €, |, {min aU(rm max it ), max &, ||. Then,
U®)” < SFRHHA(UR)), ... UR)) < U®)". (4.22)

Monotonicity: Suppose U (N*) = ((g{;‘(i),g/*. é/*‘),(zﬁi),ﬁgi),gf;))) (G = 1,..,n) be a set of

o (i)’ =o (i)

—_ —/% —/ — /% —

Lk e ../ o/ . = = = = " =/* .
SERNS, if ) < iy, ity <l 2 < & oy Sl liy 2l Ee 2 Eog for all i
Then,

SFRHHA (U (R), ... U (R,)) < SFRHHA (U (X)), ... U (8})). (4.23)

5. Spherical fuzzy rough Hamacher geometric aggregation operators

This section, introduces several spherical fuzzy rough Hamacher geometric aggregation operators
and describes some of their characteristics.

5.1. Spherical fuzzy rough Hamacher weighted geometric operator

Definition 5.1. Let I/ (N,) = (_ff (xi),_ff(xi)) (i = 1,..,n) be a set of SFRNs with weight vector @ =
(w4, ..., @,)", such as Y, w; = 1and @; € [0, 1]. Then, SFRHWG operator is described as

SFRHWG(f](Nl),..., l°](t~<n)) = ®wil°](&), (5.1)
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where the weights of U N)G=1,..n)bew = (w, ..., T, , with Y w; =1and @; € [0, 1].
Theorem 5.1. Let U N) = (Q N, U (Ni)) (i=1,...,n) be a set of SFRNs. Then, aggregated value
utilizing SFRHWG operator is again a SFRN, and

SFRHWG (U (X)), ... U (X)) (5.2)
n n — wi
o wi o t
=[§§@ww),gxumﬂ)
i=1 i=1
. W, @)
Y (&) 2\@i o\’
\/—I'I21 2 —, \/n?=1(1+(y—1)(1—a,.2) +(y—1)l'll’.’=1(aiz)
VI (G- D(1-2) "+ DIt (a7)™
—2\@i =2\i
3 L (o= hi) ™ -1, (1) H,-”=1(1+(7—1)“i) _Hi=l(1_uf)
B T (1 (=i ) ™ +(=DIL (1) ™| H?:n(1+(7—l)ﬁf)m+(7—1>H?=1(1‘5?)m,
Iy (1+0-02) " 11, (1-8)" e (o-ve) (1)
n L2\T| n ONT; i=1 i i=1 1
Hi=1(1+(7_1)€i) +(7_1)Hi=1(1_€i) G A
L (1+0-18 )+ =D (1-8))

Effect of parameter y on SFRHWG operator

Here, we looked at two specific cases of the SFRHWG operator using various values of the
parameter 7.
Case 1. The SFRHWG operator reduced to the SFRWG operator if y = 1.

SFRWG((OJ(Nl) L U®RY) (5.3)
( 4 \/1_ l—u “ \/1_ 1_6)“")’
A e A

Case 2. The SFRHWG operator’s structure is reduced to the spherical fuzzy rough Einstein weighted
geometric (SFREWG) operator if y = 2.

SFRWG,, (17 R),..U (xn)) (5.4)
VA ()" lwmm@“wﬁﬁﬁ

Vi, (-a) " @)™ N I (i) ™, (1) ™
L, (1+27) ™I (1-8)™
I (1+27) 7, (1-8) ™

) vai (3)” Jm@ﬂim@%ﬁ
Ve @) @) () ()
(14", (1-27)
(14 )", (1-27)
Based on the Theorem 5.1 we have discuses basic properties of SFRHWG operator.

Proposition 5.1. Let UN) = (Q (N,-),E(N,-)) (i=1,...,n) be a set of SFRNs and weight vector of

U (N)) be @ = (w, ..., w,)", with >, @; = 1 and @; > 0. Then, the subsequent characteristics hold.
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Idempotency: For all U(N) = (g (NJ,E(&)) (i=1,...,n)are equal, i.e., U N, = U(N), then,

SFRHWG (U (R),...U X)) = U(N). (5.5)
Boundedness: Let U (N) = ( Q N) E (Ni)) (i=1,..,n) be a set of SFRNs,
and U N)" = (max @, min i, min gl.) , (max 4;, min ii;, min Ei), U (N)~ =

(min a;, max i, max gi) , (min d;, max it;, max é,-). Then,

U®R) < SFRHWG(f](Nl) s z"J(xn)) <U®)". (5.6)

R TR T

Monotonicity: Let U (N*) = ((a. ii}. ;). (d;. ;. ¢;)) (i = 1,....n) be a set of SFRNs, if & < &, ii; >

_ ~ =\ .
i, & > &, 4; < da;, il; > ii;, & > ¢; forall i. Then,

- 4

SFRHWG (U (X)), .. U(8,)) < SFRHWG (U (8}). ... U (). (5.7)

5.2. Spherical fuzzy rough Hamacher ordered weighted geometric operator

In this section, we examined two specific cases of the SFRHOWG operator with regard to various
parameter y values.

Definition 5.2. Let I/ (N,) = (_l°] (Nl-),_f](&-)) (i = 1,..,n) be a set of SFRNs with weight vector @ =
(w4, ..., w,)", with the Y, @; =1 and @; € [0, 1]. Then, SFRHOWG operator is defined as

SFRHOWG (U (K1), ... U (R,) = (X) @il (Rois) (5.8)
i=1

where the weight vector of U N) (@G =1,..n) be @w = (@, ..., @, , with >, w; = 1and w; € [0, 1],
loj (N(r(i—l)) 2> IOJ(NU(,-)), for all i.

Theorem 5.2. Let U N) = (Q (N) ,_IOJ(NI-))(i =1,...,n) be a set of SFRNs. Then, aggregated value
utilizing SFRHOWG operator is again a SFRN, and

SFRHOWG (("J R)),..U (Nn)) (5.9)

(@) R T

i=1 i=1

AIT - w;
n (s @i L ;l:l(a(r(i))
Wnizl(gtr(i)) N 2 \@i W (2 \Fi
" 2 \o o (2 (7 \/H,-=1(1+(7‘1)(1‘“v<f)) +(7‘1)Hi=1(“v(f>)
\/Hi=1(1+(7_1)(1_%(i)) +(7_1)Hf=1(%<f))

. - n Y ,)”"_ n (_ﬁz _)w"
_ \/ L (LoD, ) -1 (1, )™ \/ M, (140~ D) 1L (1

. @ . @ -2 \%i -2 \%i»
., (1+G-Di2 )7+~ (12, )7 H7:1(1+(y—1)uo_(,-)) +y=DIT 1(1—%@)

—o(i)

a2 Tl _2 \%i _ w; _ w;
\/ L (4 0-D&,) " -1, (1-8,) » \/ ny=1(1+(y_1)éj(i)) ’_H[’_‘=l(1—éi(i))[

™ (1+(y-1e2,. ) +-DIr (1-¢2,. )7 — —
l—l( 40'(1)) [—1( 40'(1)) H;l:] (l+(’)/—l)éi_(l-)) l+(’y—l)H?:1 (l—éi_«-))

@i
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Effect of parameter y on SFRHOWG operator

Here, we looked at two specific cases of the SFRHOWG operator using various values of the

parameter 7.
Case 1. The SFRHOWG operator reduced to the SFROWG operator if y = 1.

I (4 \/ - lam)m”]
\/ - cr(z)) |

SFROWG(U (Ry), ... U(N))) = - (a() \/1 m (1 - )m,- : (5.10)
i o (i) s - )

2

— Uy

n 2 \7

Case 2. The SFRHOWG operator’s structure is reduced to the spherical fuzzy rough Einstein ordered
weighted geometric (SFREOWG) operator if y = 2.

SFREOWG(U (N)), ... U,)) (5.11)
\FH 1(40))

i=

\/H (2-22,,) +H;l(2)
=

\/H (1+”(r<z)) I (1 ;,(,)) \/Hnl(He(r(l)) (l_éfzr(»)wi ’
@, - o]

m (1+um)) +I17 (1 an) i (1+e0_(1)) L (1—@3(1.)) i

= V2L ()™

b
@; o
- 2 \Ti
\/ §’:1(2*aa(z>) +I ((rm)
n =2 i n =2 i n 52 i n 52 @i
I, 1+"rr<i>) _Hi:I(l_u(T(i)) Hi:l(1+e!7'(i)) —IL (140
N 2\ ; - @ n 2 \% ; 2 \%
H,‘:](l+u(r(i)) +(y—l)H’,:|(l—u,,(,-)) Hi:|(l+e(r(i)) +('y—l)H’,:|(l—e{,(i))

Proposition 5.3. Let U N) = (Q (N) ,_lof(Ni)) (i=1,...,n) be a set of SFRNs and the weight vector

of U (N,) be @ = (wy, ..., ,)", with @; € [0, 1] and >, @; = 1. Then, the below characteristics are
established. -
Idempotency: If all U/ (N,) = (Q X).U (x,-)) G=1,...n) are equal, i.c., U (N;) = U (N), then,

SFRHOWG((?(NI),..., i’/(xn)) = U(N). (5.12)

Boundedness: Let U(R) = (Q (N ,E(Ni))(i —1,..n) be a set of SFRNs,

and UN)” = (minti (i MAX i ()maxe ()) (mingcr(i),maxﬂ(,(i),maxga(i)), U®R)* =
(max d,qpmini . miné . ,(max (i, MIN il (), MIN ea(,)) Then,

U (R)” < SFRHOWG (U N)),...UR)) < UN)". (5.13)

Monotonicity: Let U (N = ((Q(*r(l),_fr(l), (r(l)) (_Z(l),'_:;(l), U(,))) (i=1,...,,n), be a set of SFRNS, if

By 2 By Ty 2l 4y 2 B By 2 Bt Ty 2 Tlggys 8o 2 8 for all i Then,

SFRHOWG (U (Ry). ... U(R,)) < SFRHOWG (U (K})..... U (8})). (5.14)
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5.3. Spherical fuzzy rough Hamacher hybrid geometric operator

In this section, we describe the SFRHHG operator and examined at its fundamental characteristics,
1.e., the boundedness, monotonicity, and idempotency properties.

Definition 5.3. Let U/ (N,) = (_ff (Ni),_lof(&-)) (i = 1,..,n) be a set of SFRNs with weight vector @ =
(w4, ..., @,)", such that Y, @; = 1and @; € [0, 1]. Then, SFRHHG operator is described as

o))’

SFRHHG (U (N)), ... UR)) = X @il (V) (5.15)
i=1
where @ = (w1, ..., w,) be the weight vector of IOJ(N,-) (i=1,..n),with 3, @w; = 1 and @; € [0, 1].
(R (R
And U(N) )2 U(XL,)-
Using the g-ROFRHHG operator and induction on n based on the fundamental spherical fuzzy laws,
the following structure can be produced. Here, U (N(/T (i)) be the i largest value of the weighted SFRNGs.
Also, w = (wy, ..., w,)T is the weight vector of U (N, with 37, w; = 1 and w; € [0, 1], i.e.,

o ° nwi .. .. = =/ .
U(N) = (U ®e)) " = ((eru)’i/r(i))’ (@) ”a(z‘)))(l =1....n),

d/ = (1 + (’)/ - l)%v(vl))nw, B (1 3 Q(T(i)>nw,- nw-’
Loy (1 +(y - l)é(,(i)) 4 (y - 1)(1 _chm) ;
o (oA (1w
" (1 +(y - 1)517(1'))"% +(y-1 (1 _ Eg(i))nW,
it = (1 to- l)z(zrm)nm B (1 - erw)nm

= \ (1 + (')’ - l)ég-(i))mvi + (7 - 1) (1 - Ei(,’))nwj ,

) nwi ) nwi
u()’(i) - i nw; >

\ (1 +(y - Dﬁi(i))m +(y - 1)(1 _.—u(zr(i))
/ (1 + (- Déi(i))nw - (1 - é%ro‘))m

0 \ (1+ (- l)ﬁé(»)m +y=D(1- ég(i))nw

_2 nwi _2 nwi
(1 +(y—- 1)e0(,.)) - (1 —eg(,.))
€y = : T

\ (1 F (- 1)2@)”’ - 1) (1 - Eim)

When @ = (1/n,...,1/n)?, the balancing coefficient n keeps the balance in the position. The
SFRHWG and SFRHOWG operators are therefore thought of as a specific case of the SFRHHG
operators.
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Theorem 5.4. Let lol(Nl-) = (g (N) ,_ﬁ(Ni))(i =1,...,n) be a set of SFRNs. Then, aggregated value

utilizing SFRHHWG operator is again a SFRN , and

SFRHHG (i’f R)),..U (x,,)) (5.16)

i=1

i=1

(@) Q)

VL ()

\/Hﬁi (1+6-D(1-it7,)) " +o-DIL ](‘(T(l))mi’

I (l+(y Di <,>) -t (1-ilz,)™

5

@i

VI 1( u—<z))

\/H?:1(1+(771)(1*5'a<z>)) +y=DI (”(”)wi,

=/ /2 \i
H;’:1<1+(y—1)u”(i)) - (1 u(r(l))

\/Hzf_l

- _ /2 \@i» ’ — ; o,

(1+(7 Dii (1)) +(y 1>H,~:1( ﬂrm) (1+(y—1)u{,2(1.)) ’+(y—1)ni (1—u(,(,-)) v
=
- 512 )i =2 \7i 52 \7i
J Hn (1+(’}’ e (1)) Hzr'l: (1 ‘0’(1)) H;lzl(l‘*'()’_l)en—(i)) —Hn (1 eg—(,))
=

1+(y—-1 +(y=DIT ) ) —/2 \Zi =/2 \¥i

( = )e(r(t)) (62 ),:1( ﬁr(z)) . l(l+(7—l)e(,.(,~)) +(y—l)l'[l.=1(l—ea.(,~))

Effect of parameter y on SFRHHG operator

Here, we looked at two specific cases of the SFRHHG operator using various values of the

parameter 7.
Case 1. The SFRHHG operator reduced to the SFRHG operator if y = 1.

- —0'(1) \/1 - 1 - Zcr(z)) ’
SFRHG(U (N)),...UN,)) = 0 (= " —/2 \%@i (5.17)
I, (a ( a'(t)) Y Lt 1 O (1 - ”cr(i)) ’

n =/2 \¥

Case 2. The SFRHHG operator’s structure is reduced to the spherical fuzzy rough Einstein hybrid
geometric (SFREHG) operator if y = 2.

SFREHG(U (8)), ..., U(N,) (5.18)
\/71_11 l(w(t)) i

@
I, - ”rr(:))w”m (wu))

=/2 \7i /2 \7i
H?:l(“’”tr(i)) —IT. (1 u(r(l))

12 \@i —n Wi’\/ n
\/H (2 aa_(,)) +H;‘:l(a(,(i)) e

E)

=/2 \@i =
(1+u(r(i)) +(y-DITL, (l—u(r(,-))

=2

—/2 \@i @i
Hlf’zl(1+e(r(,~)) -IT. (1 e(,(,))

\/H:;l

=/2 \@i
(1 +e(,_(i)) +(y—

@i

)
DIL, (1—%@)

Proposition 5.4. Let U7 (X;) = (_ff (X)) ,_ff(x,-))(i —1,...n) be SFRNs and @ = (@1, ....w,)" be the

weight vector of U (N;) with 37, @; = 1 and @; € [0, 1]. Then, the below characteristics are defined.
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Idempotency: If all UN) = (g (N,-),E(Ni)) (i=1,...,n) are equal, i.e., UN) = U(N), then

SFRHHG (U (R))....U®)) = U®). (5.19)
Boundedness:  Let U(®R) = (Q () ,E(Ni)) (=1,..,n) be SFRNs, and
U (N)” = ((mm al (i Max it/ it ;, Max g{r(i)) , (min Eé(i), max ﬁ(/r(i), max E(/,(i))), U N)* =
((max Qém, min g(/r (> Min g(/r(l)) (max éi(/,(i), min '_ng(i), min g(/r(i))). Then,
0®) < SFRHHG(U®N)),...UR)) < UN)". (5.20)
Monotonicity: Let U/ (8°) = ({21, ). (Ef,j,),ﬁff(l),‘f;))) (i = 1,...,n) be a set of SFRNs, if
e .. .. Ny Je = =/ =/ =/* = /
oy 2 s oy 2 s €0 2 € Aoy S gy Uy 2 gy €0y 2 €4 for all i. Then,
SFRHHG (U (R),....U(8,)) < SFRHHG (U (X)), ... U(X;)). (5.21)

6. An approach for MCGDM problem using SFRH aggregation operators

In this section, a MCGDM problem is solved using proposed operators. Suppose n alternatives
= {Ry,...,R,} and m criteria Z = {Z,, ..., Z,,} are evaluated with weight vector @ = (@, ..., @,)",
such as @; € [0, 1] and Z?:l w; = 1. To assess the accomplishment on the basis of criteria Z; of the
alternatives R;, the experts give the data about the alternative R;, satisfy the criteria and also about the
alternative R;, not satisfying the criteria Z;. Let that rating of alternatives R; on attribute Z; is given

by experts in the form of SFRNs as; R : ZOJ(NJ-) = (_IOJ(Nj),_loJ(Nj))(j =1,...,m). Where _lof(N) =

{(r,a(r) + a(r) + &()lr € Ry and UR) = ((r,a(r) + i(r) + ér)lr € R}. Let C;; shows the grade
of alternative R; satisfying the criteria Z;; and cj; show the grade of alternative R; not satisfying the

criteria Zj, such as C;; = E(N]) and lej = Q(Nj) have the condition 0 < & (r) + ii(r) + é(r) < 1 and

0 <a(r)+i(r) + é(r) < 1, U(N) and U (N) are SFRNs and U (R), U (N) : U(R) — U(R) are lower
approximation operator and upper approximation operator. This method involved the following steps.
Step 1. Construct decision matrix based on spherical fuzzy rough information.

D = (U (8;)hwan = (U (%), O(RE)) (= 1umii=1,..m). 6.1)

Step 2. Normalize the given decision matrix using the following normalization formula.

n o o B f](N,) ((a u L8, ) (al TI )) for benefit type,
D' = (xi '))"X’" B { U(Né) = ((Eij’ﬂij"li ) (elj, ulj,a;)) for cost type. ©2)

As U (N?j) is the complement of U (Ni j). As a result, we were able to obtain a normalized decision
matrix.

D' =(U(R),0(N)  (G=1um;i=1,..,n).
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Step 3. Using the defined aggregation operator to find the SFRNs UN) G=1,...,
R; (i = 1, ..., n), using expert weight vector w = (wy, ..., w,)".

Step 4. Using the defined aggregation operator to find the SFRNs U (8) (i = 1, ...,
R; (i = 1,...,n), using criteria weight vector @ = (@1, ..., @,)’.

Step 5. Using the score equation, find S (ﬁ N)) (G =
1,...,n).

Step 6. Select the best option after ranking the alternatives R; (i = 1, ..., n).

n), for alternatives
n), for alternatives

1,...,n), for ranking the alternatives R; (i =

7. Illustrative example

Using a numerical example to choose the best railway train for service out of four options, the
proposed MCGDM method is illustrated (adapted from [32]).

To develop the service quality of domestic railway trains, the Ministry of Railways (MOR) of the
government of Pakistan needs to know which railways train is the most excellent in Pakistan. After
initial information, four main domestic railway trains which are represented by R; (i = 1,...,4) are
reminded on the applicant record. They are: R; : Allama Igbal Express, R, : Badar Express, Rj3 :
Hazara Express, Ry : Jinnah Express. To select the most excellent alternatives,four main domestic
railway trains are evaluated from four major characteristics (attributes): Z;: ticketing and booking
service; Z,: better and poor condition; Zs: cabin service; Z4: responsiveness; assume that decision-
makers provide the rating values by utilizing SFRNs, and the SFR decision matrix is presented in
Table 1-3.

We used a group of three experts with weight vectors of w = (0.2,0.3,0.5)7 to apply and validate
our own proposed methods. Using the suggested aggregation operators, we also have a criteria
weight vector with the notation @ = (0.26,0.24,0.28,0.22)". Additionally, in order to select the
best option from all of the available options, we will use the score and accuracy functions, respectively.
Additionally, the specifics of the criteria and alternatives were discussed above, and in this case, the
only aggregation operators that can produce the best results are those that have been suggested.

Table 1. Spherical fuzzy information given by expert one.

Z] Z3 Z4

R (0.8,0.4,0.2), 0.5, O 6 0.4), ) (0.8,0.4,0.4), (0.5,0.7,0.5),
! (0.3,0.9,0.1) (0.6,0.3,0.7) (0.5,0.7,0.3) (0.8,0.4,0.3)
R (0.7,0.6,0.3), (0.7,0.3,0.5), ) (0.5,0.6,0.4), (0.7,0.5,0.4),
2 (0.5,0.8,0.2) (0.6,0.6,0.2) (0.8,0.3,0.3) (0.5,0.8,0.1)
R (0.7,0.5,0.5), (0.6,0.4,0.5), ) (0.5,0.4,0.6), (0.6,0.7,0.3),
3 (0.5,0.6,0.4) (0.8,0.3,0.4) (0.6,0.2,0.7) (0.5,0.8,0.2)
(0.7,0.3,0.4), (0.6,0.3,0.5), (0.8,0.3,0.2), (0.5,0.4,0.6),

Ry (0.6,0.5,0.5) (0.5,0.8,0.2) ) (0.9,0.2,0.3) (0.7,0.5,0.4)
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Table 2. Spherical fuzzy information given by expert two.

Zl Z3 Z4
R, (0.5,0.3,0.4), (0.6, O 5 0.3), ) (0.6,0.7,0.3), ( (0.5,.6,0.6), )
(0.6,0.4,0.5) (0.5,0.7,0.4) (0.6,0.4,0.5) (0.4,.8,0.3)
R (0.6,0.7,0.2), (0.6,0.7,0.1), ) (0.5,0.7,0.4), (0.7,0.5,0.4),
z (0.5,0.2,0.6) (0.7,0.4,0.2) (0.8,0.3,0.5) (0.5,0.7,0.3)
R (0.8,0.4,0.3), (0.6,0.5,0.5), ) (0.6,0.3,0.6), (0.5,0.4,0.6),
3 (0.7,0.6,0.2) (0.7,0.4,0.3) (0.4,0.9,0.1) (0.6,0.5,0.6)
R, (0.6,0.5,0.1), (0.7,0.4,0.5), ) (0.8,0.5,0.2), (0.5,0.5,0.5),
(0.7,0.6,0.3) (0.6,0.2,0.5) (0.3,0.9,0.3) (0.7,0.4,0.2)
Table 3. Spherical fuzzy information given by expert three.
Zy L3 Ly
R, (0.6,0.5,0.4), (0.7, O 4 0.5), ) (0.5,0.8,0.2), (0.5,0.6,0.5),
(0.7,0.6,0.3) (0.6,0.5,0.6) (0.6,0.4,0.5) (0.4,0.9,0.2)
R (0.5,0.5,0.6), (0.5,0.4,0.7), ) (0.5,0.3,0.7), (0.6,0.5,0.3),
2 (0.7,0.4,0.5) (0.6,0.5,0.4) (0.8,0.4,0.3) (0.5,0.7,0.4)
R (0.6,0.7,0.2), (0.8,0.4,0.3), ) (0.7,0.1,0.6) , (0.6,0.5,0.3),
. (0.6,0.4,0.4) (0.7,0.6,0.2) (0.4,0.6,0.3) (0.7,0.4,0.5)
R, (0.7,0.5,0.3), (0.6,0.3,0.7), ) (0.6,0.3,0.5), (0.8,0.5,0.3),
(0.5,0.7,0.5) (0.7,0.4,0.5) (0.4,0.9,0.2) (0.3,0.2,0.9)

Step 1. Construct decision matrix based on spherical fuzzy rough information in Table 1-3.
Step 2. There is no need to normalize the data in Table 1-3, because every criteria are a similar benefit

criteria.

Step 3. Lety = 2 and w = (0.2,0.3,0.5)" as weights of experts. Then, using SFRHWA operator, and
data from Tables 1-3. The aggregated data given in Table 4.

Table 4. Aggregated values using SFRHWA operator.

23

Ly

(0.64, 030 0.28),
(0.57,0.32,0.33)
(0.58,0.30,0.28),
(0.62,0.31,0.23)
(0.71,0.29,0.27),
(0.72,0.30,0.22)
(0.63,0.27,0.31),
(0.64,0.39,0.28)

|
|
|
|

(0.61,0.39,0.22),

(0.58,0.29,0.30)

(0.51,0.30,0.33),

(0.80,0.25,0.26)

(0.64,0.18,0.35),

(0.44,0.36,0.22)

(0.71,0.33,0.24) ,

(0.53,0.28,0.29)

(0.50,0.36,0.32),
(0.51,0.44,0.21)
(0.65,0.31,0.25),
(0.50,0.41,0.23)
(0.57,0.32,0.26),
(0.64,0.31,0.29)
(0.67,0.34,0.28),
(0.53,0.25,0.21)

Z,

. [ €062.0.27.0.25).

1 (0.61,0.35,0.22)

g [ (058.034,027),

2\ (0.61,0.27,0.29)

. [ €069.0.34,0.22).

> 1 (0.61,0.31,0.24)
(0.67,0.30,0.20),

R4 (0.58,0.36,0.28)
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Step 4. Using SFRHOWA operator, y = 2 and the aggregated value of Table 4, with the weight vector
@ = (0.26,0.24,0.28,0.22)7. The total values of the alternatives R; (i = 1, ...,4) is given in Table 5.

Table 5. Total values of the alternatives using SFRHOWA operator.

Alternatives Aggregated values

R, ((0.5978,0.1744,0.1545) ,(0.5710,0.1788, 0.1547))
R, ((0.5779,0.1637,0.1449) ,(0.6565,0.1794,0.1621))
R;3 ({0.5673,0.1726,0.1509) ,(0.6051,0.1654,0.1871))
Ry ((0.6726,0.1943,0.1389),(0.5711,0.1842,0.2201))

Step S. Determine the score S (R;) of alternatives R; (i = 1, ...,4) as
S(R;) =0.1691, S(Ry) =0.1947, S(R3) = 0.1655, S(Ry) = 0.1687.

Step 6. Ranking the alternatives based on their score values as follows:

Ry, > R; > Ry > Rs.

Comparative analysis

In order to demonstrate the superiority of our investigated approach, a comparison study was
undertaken in the context of a few current methods [3, 22,29, 34]. The precision of operators is very
great when it comes to actual manipulation. We contrasted our plan with those that are already in use.
Table 6 presents the results of the comparison. The best alternative generated by the suggested strategy
i1s compatible with the existing methods, according to the assessment of Table 6. As a result, while
resolving problems with spherical fuzzy information, our suggested emergency, alternative selection
methodology based on the suggested operators is more adaptable and successful than other existing
techniques.

Table 6. Ranking of the alternatives using different methods.

Methods Ranking

Ashraf et al. [3] R, >R >Ry >Rj
Qiyas et al. [29] R, >Ry >Ry >Ry
Rafiq et al. [34] Ry >Ry >R3> R;
Kutlu et al. [22] Ry>R;y >Ry >Ry

It is evident from the study above that the researched operator and the current operators provide the
same ranking values, with R, being the best. Additionally, it is evident that the approaches suggested
in this paper are more versatile than SFSs. As a result, the strategies suggested in this paper are better
suited to solving MCGDM problems. Therefore, the multiple attribute group decision-making models
developed in this study are more generalization and adaptable than the existing multiple attribute group
decision-making models under a spherical fuzzy rough environment, making them applicable in a
wider range of settings where the multi-criteria group decision-making (MCDM) procedure is used.
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8. Conclusions

According to the concept of the spherical fuzzy rough set (SFRS) and the Hamacher aggregation
operator, we extended the Hamacher operations to the spherical fuzzy rough set information in this
study. In order to completely analyse the applications of smart grading systems and handle the
uncertainty problem, a novel MCGDM approach based on SFRS was developed in this study, which
is both innovative and significant. A helpful tool for handling ambiguous data is the SFS. Since, SFSs
can express information more freely and represent a larger span of space. We present an innovative
method for average and geometric aggregation operators based on SFS data in this research. We
started by creating the SFRHS operational laws. Moreover, the notions of SFRHWA, SFRHOWA,
SFRHHA and SFRHWG, SFRHOWG and SFRHHG aggregation operators are proposed. The main
essential attributes of the evolved operator are covered in detail. For the suggested operators, new
score and accuracy functions have been defined. Therefore, a unique approach for MCGDM in the
Spherical fuzzy rough environment was proposed based on the described operators. For the purpose
of demonstrating the efficacy and use of the specified method, a real-world example is given. The
final step is to perform a comparison analysis of the suggested method and the existing approaches.
The method described in this study may contribute a new approach to resolving MCGDM issues. The
Hamacher aggregation operators based on the spherical fuzzy rough set are a significant addition to
related research.

In the future, we will use this method could involve fractional orthotriple fuzzy operators,
Maclaurin’s symmetric mean operators, Dombi operations, and power aggregation operators. The
application of the proposed methods in different fields such as data mining, decision making,
construction of anomaly detection models and pattern recognition is also a potential research topic.
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