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tensor and cartesian products of graphs and will obtain the omega invariant of them. After that we will
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1. Introduction and preliminaries

Let G = (V, E) be a finite, simple and undirected graph (molecular graph) with vertex set |V(G)| = n
and edge set |E(G)| = m. The degree degG(v) of a vertex v of G is the number of vertices adjacent to v.
We denote by δ and ∆ the minimum and maximum degrees of vertices of G, respectively. The degree
sequence of G, DS (G) = {1(a1), 2(a2), 3(a3), . . . ,∆(a∆)}, is a sequence of degrees of vertices of G. We may
suggest the book [13] for some unmentioned terminology in here.

Let Pn, Kn, Cn, S n, Km,n be path, complete, cycle, star, complete bipartite graphs, respectively. (See
Figure 1 for examples of them).
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Figure 1. K2,3,K5, P4, S 9,C6.

The number of vertices, edges and degree sequences of these well known graph classes are presented
in Table 1.

By considering the degree sequence, it has been introduced a new graph invariant

Ω(G) =

∆∑
i=1

(i − 2)ai (1.1)

under the name of omega index Ω(G) (see [4]). Clearly Ω(G) can also be written as a3 +2a4 +3a5 + · · ·+

(∆ − 2)a∆ − a1. This invariant presented direct information on the realizability, number of realizations,
connectedness, being acyclic or cyclic, number of components, chords, loops, pendant edges, faces
and bridges etc. Besides, the significant difference of Ω(G) from other graph invariant is that it is an
index defined over only a given degree sequence. According to [5], omega indices of above indicated
well-known graph classes having n vertices are

Ω(Cn) = 0, Ω(Pn) = −2 = Ω(S n),
Ω(Kn) = n(n − 3), Ω(Kr,s) = 2[rs − (r + s)].

To have a brief look on the different results of omega index, one may read [1, 5–7].

Table 1. Sample degree sequences.
G Vertices Edges Degree sequence
Pn n (n − 1) {12, 2n−2}

Kn n n(n − 1)/2 {(n − 1)n}

Cn n n {2n}

S n n (n − 1) {1n−1, (n − 1)1}

Km,n m + n mn {mn, nm}
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It is well known that one of the aim to study on graph operations is to produce some new graphs
from initial ones. So far, although several studies on different graph operations have been studied (see,
for instance, [22, 27]), it still takes interest because of the aim indicated just in the previous sentence.
We refer to [12] for a recent survey on graph operations. In fact the tensor and cartesian products are
well known operations among the others.

The tensor product of two graphs G1 and G2 is the graph G1 ⊗G2 with the vertex set V(G1 ⊗G2) =

V(G1) × V(G2), and any two vertices (u1, v1) and (u2, v2) are adjacent whenever u1 is adjacent to u2 in
G1 and v1 is adjacent to v2 in G2. On the other hand, the cartesian product G1 × G2 of two graphs
G1 and G2 is the graph with the vertex set V(G1) × V(G2) and any two vertices (u1, u2) and (v1, v2) are
adjacent if and only if u1 = v1 ∈ V(G1) and u2v2 ∈ E(G2) or u2 = v2 ∈ V(G2) and u1v1 ∈ E(G1). These
two products have been studied to expose some results on graph colorings, decompositions of graphs,
graph embeddings and topological indices; see [17–19, 23, 28].

This paper is structured as follows. In Section 2, we calculate the degree sequence of tensor products
of two graphs (Theorem 2.1) and present the general degree sequence formula of G1 ⊗ G2 ⊗ · · · ⊗ Gn

(Theorem 2.2). In the same section, we count the omega invariant of the tensor product of any two
graphs (Theorem 2.4) and then state with proofs some consequences (Corollarys 2.6 and 2.7) of this
last theorem. The other key point of this section is investigating the algebraic properties (Theorem 2.8)
over tensor products via the degree sequence obtained in Theorem 2.1 and Theorem 2.2. In Section 3,
by applying same approximation and transferring the similar ideas from the previous section, we obtain
important results (Theorems 3.1, 3.3, Corollary 3.5 and Teorem 3.6) over cartesian products of graphs.
Finally, in the light of Theorem 3.6, we pay attention to distributive law over tensor and cartesian
products (see Theorem 3.7) in which we believe that it would be useful for future studies.

2. Results on tensor products

We may remind some other studies mentioned in the first sections over tensor products of graphs
as in the following: In [23], the author obtained a characterization and some properties of G ⊗ K2,
and in [29], the author studied the connectedness of the tensor product of two graphs. Furthermore,
in [28], it has been obtained the Randic, geometric-arithmetic, first and second Zagreb indices, first
and second Zagreb coindices of tensor product of two graphs. Additionally, in [2], the authors have
been recently introduced four new tensor products of graphs and studied the first and second Zagreb
indices and coindices of the resulting graphs and their complements.

Despite so many studies, the tensor product of graphs over degree sequences has not been studied
in the literature. In fact degree sequences on graph operations considered only in the paper [1] in terms
of join and corona products of two simple connected graphs. Therefore the studies and their results in
this and next sections are quite original and interesting in the literature.

2.1. Degree sequence for tensor product of graphs

In this section, we focus on how to obtain the degree sequence of the tensor product of two graphs.
We firstly start to find the degree sequence on the case G1 ⊗G2 and then present a general formula for
DS (G1 ⊗G2 ⊗ · · · ⊗Gn).

The proof of the following result will be omitted since it is quite clear by considering the definition
of tensor products over graphs and then applying the meaning of degree sequence on these graphs
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obtained by tensor products.

Theorem 2.1. Suppose that the degree sequences of two connected graphs G1 and G2 are defined by
DS (G1) = {da1

1 , d
a2
2 , . . . , d

an
n } and DS (G2) = {eb1

1 , e
b2
2 , . . . , e

bm
m }, respectively. Then

DS (G1 ⊗G2) = {(d1e1)a1b1 , (d1e2)a1b2 , . . . , (d1em)a1bm , (d2e1)a2b1 , (d2e2)a2b2 ,

. . . , (d2em)a2bm , . . . , (dnem)anbm}.

As an example of the above result, let us consider the degree sequences DS (Pn) = {12, 2n−2} and
DS (Cm) = {2m} of Pn and Cm, respectively. Thus the degree sequence of the tensor product (see
Figure 2 for a simple numerical plotting) is defined by DS (Pn ⊗Cm) = {22m, 4nm−2m}.

Figure 2. P3 ⊗C3.

Now, by taking into account the tensor product of n simple connected graphs G1,G2, . . . ,Gn, where
n ≥ 2, we can state and prove a generalization of Theorem 2.1 as in the following.

Theorem 2.2. Consider n simple connected graphs G1,G2, . . . ,Gn with the degree sequence of each
Gi is DS (Gi) = {dai1

i1 , . . . , d
aik
ik } for i = 1, 2, . . . , n and 1 ≤ k ≤ n. Then the degree sequence DS (G1 ⊗

G2 ⊗ · · · ⊗ Gn) consists of all terms with the form (dαsαtdβsβt)
aαsαt aβsβt , where αs, βs = 1, 2, . . . , n and

1 ≤ αt, βt ≤ n.

Proof. For arbitrary the degree sequences DS (G1) = {da1
1 , d

a2
2 , . . . , d

an
n } and DS (G2) = {eb1

1 , e
b2
2 , . . . , e

bm
m },

if we apply Theorem 2.1, then we obtain

DS (G1 ⊗G2) = {(d1e1)a1b1 , (d1e2)a1b2 , . . . , (d1em)a1bm , (d2e1)a2b1 , (d2e2)a2b2 ,

. . . , (d2em)a2bm , . . . , (dnem)anbm}.

Let us take into account an another arbitrary degree sequence DS (G3) = {xy1
1 , x

y2
2 , . . . , x

yt
t }.

DS (G1 ⊗G2 ⊗G3) = {(d1e1)a1b1 , (d1e2)a1b2 , . . . , (d1em)a1bm , (d2e1)a2b1 , (d2e2)a2b2 ,

. . . , (d2em)a2bm , . . . , (dnem)anbm} ⊗ {xy1
1 , x

y2
2 , . . . , x

yt
t }

= {(d1e1x1)a1b1y1 , . . . , (d1e1xt)a1b1yt , . . . , (dnemx1)anbmy1 ,

. . . , (dnemxt)anbmyt}

Then, by applying a similar approach n times, the form of the element of degree sequences DS (G1⊗

G2 ⊗ · · · ⊗Gn) is (dαsαtdβsβt)
aαsαt aβsβt , as required. �
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Table 2. Some degree sequences and omega indices on tensor products.

G1 G2 G1 ⊗G2 Ω(G1 ⊗G2)
Pr Ps

{
14, 2(2s−4), 2(2r−4), 2(r − 2)(s − 2) − 4
4(r−2)(s−2)

}
Pr Ks {(s−1)(2s), (2s−2)(rs−2s)} (s − 3)2s + (2s − 4)(rs − 2s)
Pr Cs {2(2s), 4(rs−2s)} 2(rs − 2s)
Pr S s

{
1(2s−2), (s − 1)2, (s−3)2+(2s−4)(r−2)−(2s−2)
2(r−2)(s−1), (2s − 2)(r−2)

}
Pr Ks,t

{
s(2t), t(2s), (2s)(rt−2t), (s− 2)2t + (t − 2)2s + (2s− 2)

(2t)(rs−2s)
}

(rt − 2t) + (2t − 2)(rs − 2s)
Kr Ps {(r−1)(2r), (2r−2)(rs−2r)} (r − 3)2r + (2r − 4)(rs − 2r)
Kr Ks {((r − 1)(s − 1))(rs)} (rs − r − s − 1)rs
Kr Cs {(2r − 2)(rs)} (2r − 4)rs
Kr S s {(r− 1)(rs−r), ((r− 1)(s−

1))r}

(r−3)(rs−r)+ (rs−r− s−1)r

Kr Ks,t {(rs − s)(rt), (rt − t)(rs)} (rs − s − 2)rt + (rt − t − 2)rs
Cr Ps {2(2r), 4(rs−2r)} 2(rs − 2r)
Cr Ks {(2s − 2)(rs)} (2s − 4)rs
Cr Cs {4(rs)} 2rs
Cr S s {2(rs−r), (2s − 2)r} (2s − 4)r
Cr Ks,t {(2s)(rt), (2t)(rs)} (2s − 2)rt + (2t − 2)rs
S r Ps {1(2r−2), 2(r−1)(s−2), (r −

1)2, (2r − 2)(s−2)}

(r−3)2+(2r−4)(s−2)−2r+2

S r Ks {(s− 1)(rs−s), ((r− 1)(s−
1))s}

(s − 3)(rs − s) + ((r − 1)(s −
1) − 2)s

S r Cs {2(rs−s), (2r − 2)s} (2r − 4)s
S r S s

{
1((r−1)(s−1)), (s − 1)(r−1), (s− 3)(r− 1) + (r− 3)(s− 1)+
(r − 1)(s−1), (r − 1)(s − 1)

}
((r−1)(s−1)−2)−(r−1)(s−1)

S r Ks,t

{
s(rt−t), t(rs−s), (s−2)(rt− t) + (t−2)(rs− s)+

(rs − s)t, (rt − t)s} (rs − s − 2)t + (rt − t − 2)s
Kr,s Pt {r(2s), (2r)(st−2s), s(2r), } (r − 2)2s + (2r − 2)(st − 2s)+

{(2s)(rt−2r)} (s − 2)2r + (2s − 2)(rt − 2r)
Kr,s Kt {(rt − r)(st), (st − s)(rt)} (rt − r − 2)st + (st − s − 2)rt
Kr,s Ct {(2r)(st), (2s)(rt)} (2r − 2)st + (2s − 2)rt
Kr,s S t {r(st−s), (rt −

r)s, s(rt−r), (st − s)r}

(r − 2)(st− s) + (rt− r − 2)s +

(s − 2)(rt − r) + (st − s − 2)r
Kr,s Kt,m

{
(rt)(sm), (rm)(st), (st)(rm), (rt − 2)sm + (rm − 2)st+
(sm)(rt)

}
+(st − 2)rm + (sm − 2)rt
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Example 2.3. Assume that n = 3 in Theorem 2.2. Then we obtain the degree sequence

DS (P4 ⊗C3 ⊗ P3) = {12, 22} ⊗ {23} ⊗ {12, 2} = {26, 46} ⊗ {12, 2}
= {212, 46, 412, 86}

for special path and cycle graphs.

2.2. Omega invariant of tensor product of graphs

The degree sequence of a graph is one of the oldest notions in graph theory. Its applications are
legion; they range from computing science to real-world networks such as social contact networks
where degree distributions play an important role in the analysis of the network. On the other hand the
concept of degree sequence is closely related to computable. It is an open problem to determine that
which DSs are realizable and there are several algorithms to determine that. Omega invariant, many
properties of its have been obtained [5] , directly say whether the given degree sequence is realizable
(see [4]). So this invariant is essential. There are several graph operations used in calculating some
chemical invariants of graphs. In [1], the authors studied omega invariant of union and corona product
of two graphs. This section emphasizes on the omega invariant for the tensor product of two graph.

Firstly we calculate the degree sequence and omega invariant of the tensor product of two special
graphs such as path, complete, cycle, star and complete bipartite graphs. (See Table 2).

Now, we give the omega invariant of the tensor product of any two graphs in general.

Theorem 2.4. For any two connected graphs G1 and G2 having n1 vertices, m1 edges and n2 vertices,
m2 edges, respectively, the omega index of their tensor product is

Ω(G1 ⊗G2) = 4m1m2 − 2n1n2.

Proof. Let us suppose that the degree sequences of these graphs are defined by
DS (G1) = {da1

1 , d
a2
2 , . . . ,∆

a∆1
1 } and DS (G2) = {eb1

1 , e
b2
2 , . . . ,∆

b∆2
2 }, respectively. So, by the definition of

omega invariant given in Eq. (1.1), we obtain

Ω(G1 ⊗G2) = (d1e1 − 2)a1b1 + (d1e2 − 2)a1b2 + (d1e3 − 2)a1b3 + · · ·

+(d1∆2 − 2)a1b∆2 + (d2e1 − 2)a2b1 + (d2e2 − 2)a2b2 + · · ·

+(d2∆2 − 2)a2b∆2 + · · · + (∆1e1 − 2)a∆1b1

+(∆1e2 − 2)a∆1b2 + · · · + (∆1∆2 − 2)a∆1b∆2

= d1a1(e1b1 + e2b2 + · · · + ∆2b∆2)
+d2a2(e1b1 + e2b2 + · · · + ∆2b∆2) + · · ·

+∆1a∆1(e1b1 + e2b2 + · · · + ∆2b∆2)
−2(a1b1 + · · · + a1b∆2 + a2b1 + · · · + a2b∆2 + · · · )

= (e1b1 + e2b2 + · · · + ∆2b∆2)(d1a1 + d2a2 + · · · + ∆1a∆1)
−2(b1 + · · · + b∆2)(a1 + · · · + a∆1)

= 2m22m1 − 2n2n1 = 4m1m2 − 2n1n2,

as required. �
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Example 2.5. Note that DS (S r ⊗Ks,t) = {s(rt−t), t(rs−s), (rs− s)t, (rt− t)s}. For example, DS (S 3⊗K3,4) =

{38, 46, 64, 83} and Ω(S 3 ⊗ K3,4) = 1 × 8 + 2 × 6 + 4 × 4 + 6 × 3 = 54. On the other hand S 3

and K3,4 have 3 vertices, 2 edges and 7 vertices, 12 edges, respectively. Accordingly Theorem 2.4,
Ω(S 3 ⊗ K3,4) = 4 × 2 × 12 − 2 × 3 × 7 = 54 approving the truth of it.

As a consequence of Theorem 2.4, we can restate the omega invariant of the tensor product of two
graphs in terms of the omega index of only one of the graphs.

Corollary 2.6. Ω(G1 ⊗G2) = 2m2Ω(G1) + 4m2n1 − 2n1n2.

Proof. We clearly have

Ω(G1 ⊗G2) = (e1b1 + e2b2 + · · · + ∆2b∆2)(d1a1 + d2a2 + · · · + ∆1a∆1)
−2(b1 + · · · + b∆2)(a1 + · · · + a∆1)

= 2m2(Ω(G1) + 2n1) − 2n1n2 = 2m2Ω(G1) + 4m2n1 − 2n1n2

which completes the proof. �

With a similar approach as in the proof of Corollary 2.6, one may obtain the following another
consequence of Theorem 2.4.

Corollary 2.7. Ω(G1 ⊗G2) = 2m1Ω(G2) + 4m1n2 − 2n1n2.

2.3. Algebraic structure of tensor product of graphs in terms of degree sequence

Havel in 1955 [14], Erdos and Gallai in 1960 [8, 21], Hakimi in 1962 [11], Knuth in 2008 [16],
Tripathi et al. in 2010 [25] proposed a method to decide, whether a sequence of nonnegative integers
can be the degree sequence of a simple graph. Sierksma and Hoogeven in 1991 [24] compared seven
known methods. These studies are about whether a graph can be drawn over the degree sequence. On
the other hand, in [20], the authors studied some algebraic properties of the join and corona product
of two graphs. In this section, we obtain new result regarding algebraic structure of the set of graphs
accorging to tensor product operation.

Theorem 2.8. Let G be the set of all simple connected graphs. Then G defines an abelian semigroup
under the operation of tensor products.

Proof. Let us consider any three graphs G1, G2 and G3 from the set G having degree sequences

DS (G1) = {da1
1 , d

a2
2 , . . . , d

an
n },DS (G2) = {eb1

1 , e
b2
2 , . . . , e

bm
m } and DS (G3) = {xy1

1 , x
y2
2 , . . . , x

yt
t },

respectively. Now our aim is to show thatG satisfies closure, associativity and commutativity properties
under the operation of the tensor product.

First of all, the tensor product of two simple connected graph is another graph, so G is closed. For
associativity,

(G1 ⊗G2) ⊗G3 = {(d1e1)a1b1 , . . . , (d1em)a1bm , . . . , (dne1)anb1 , . . . , (dnem)anbm}

⊗ {xy1
1 , x

y2
2 , . . . , x

yt
t }

= {(d1e1x1)a1b1y1 , . . . , (d1e1xt)a1b1yt , (d1emx1)a1bmy1 ,
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. . . , (d1emxt)a1bmyt , (dne1x1)anb1y1 , . . . , (dnemxt)anbmyt}

and

G1 ⊗ (G2 ⊗G3) = {da1
1 , d

a2
2 , . . . , d

an
n } ⊗ {(e1x1)b1y1 ,

. . . , (e1xt)b1yt , . . . , (emx1)bmy1 , . . . , (emxt)bmyt}

= {(d1e1x1)a1b1y1 , . . . , (d1e1xt)a1b1yt , (d1emx1)a1bmy1 ,

. . . , (d1emxt)a1bmyt , (dne1x1)anb1y1 , . . . , (dnemxt)anbmyt}.

In addition, since the property

G1 ⊗G2 = {(d1e1)a1b1 , . . . , (d1em)a1bm , . . . , (dne1)anb1 , . . . , (dnem)anbm}

= {(e1d1)b1a1 , . . . , (e1dn)b1an , . . . , (emd1)bma1 , . . . , (emdn)bman}

= G2 ⊗G1

holds, the operation ⊗ is commutative on G.
Clearly, to identify the identity element (if there exists), we need to find a graph I with the property

G1 ⊗ I = G1 and I ⊗G1 = G1. Assume that the degree sequence of the graph I is defined by DS (I) =

{kt1
1 , k

t2
2 , ..., k

tn
n }. Then

G1 ⊗ I = {(d1k1)a1t1 , (d1k2)a1t2 , . . . , (d1kn)a1tn , (d2k1)a2t1 , . . . , (d2kn)a2tn ,

. . . , (dnk1)ant1 , . . . , (dnkn)antn}

= {da1
1 , d

a2
2 , . . . , d

an
n }.

However to be held of this equality, the degree sequence must the form of DS (I) = {11}. But there is
no such a graph since the degree sequence {11} is not realizable. This implies that the identity element
does not exist.

Hence the result. �

3. Results on Cartesian products

Research into the extension of graphs is essential in applied sciences. So, there are many studies
on the Cartesian product which is a graph extension. In [3], the authors gave sufficient conditions
for the Cartesian product of two graphs to be maximum edge-connected, maximum point-connected,
super edge-connected. The researchers in [9, 10] estimated the Wiener index of the Cartesian product
of graphs and in [15] the authors calculated the Szeged index of the Cartesian product of graphs.
Very recently, in [26], the author computed Sombor index over the tensor and Cartesian products of
a monogenic semigroup graph. In this section we scrutinize the cartesian products of graphs via its
degree sequence.

3.1. Degree sequence for cartesian product of graphs

Now, we consider degree sequence of the cartesian product of two graphs. Firstly we give the
degree sequence of cartesian product of two graphs G1,G2, then we obtain general formula for degree
sequence of G1 ×G2 × · · · ×Gn.

AIMS Mathematics Volume 8, Issue 7, 16618–16632.
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With completely the same reason as mentioned for Theorem 2.1, proof of the following result will
be omitted.

Theorem 3.1. Suppose that two connected graphs G1 and G2 have the degree sequences DS (G1) =

{da1
1 , d

a2
2 , . . . , d

an
n } and DS (G2) = {eb1

1 , e
b2
2 , . . . , e

bm
m }, respectively. Then

DS (G1 ×G2) = {(d1 + e1)a1b1 , (d1 + e2)a1b2 , . . . , (d1 + em)a1bm , (d2 + e1)a2b1 ,

(d2 + e2)a2b2 , . . . , (d2 + em)a2bm , . . . , (dn + em)anbm}.

A simple example for Theorem 3.1 can be presented by considering the cartesian product of C3 and
P4 (see Figure 3). In fact, since DS (P4) = {12, 22} and DS (C3) = {23}, we obtain DS (P4 × C3) =

{(2 + 1)2×3, (2 + 2)2×3}.

Figure 3. P4 ×C3.

In the following, as a generalization of Theorem 3.1, we take into account the cartesian product of
n simple connected graphs G1,G2, · · · ,Gn, where n ≥ 2.

Theorem 3.2. Let G1,G2, · · · ,Gn be n simple connected graphs, and let the degree sequence of each
Gi be DS (Gi) = {dai1

i1 , . . . , d
aik
ik } for i = 1, 2, . . . , n and 1 ≤ k ≤ n. Then DS (G1 ×G2 × · · · ×Gn) consists

of all terms with the form
(dα1α2 + dβ1β2)

aα1α2 aβ1β2 ,

where α1, β1 = 1, 2, . . . , n and 1 ≤ α2, β2 ≤ n.

Proof. We will follow a similar way as in the proof of Theorem 2.2. For the degree sequences

DS (G1) = {da1
1 , d

a2
2 , . . . , d

an
n },DS (G2) = {eb1

1 , e
b2
2 , . . . , e

bm
m } and DS (G3) = {xy1

1 , x
y2
2 , . . . , x

yt
t },

if we apply Theorem 3.1, then we obtain

DS (G1 ×G2 ×G3) = {(d1 + e1)a1b1 , (d1 + e2)a1b2 , . . . , (d1 + em)a1bm , (d2 + e1)a2b1 ,

(d2 + e2)a2b2 , . . . , (d2 + em)a2bm , . . . ,

(dn + em)anbm} × {xy1
1 , x

y2
2 , . . . , x

yt
t }

= {(d1 + e1 + x1)a1b1y1 , . . . , (d1 + e1 + xt)a1b1yt , . . . ,
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(dn + em + x1)anbmy1 , . . . , (dn + em + xt)anbmyt}.

To achieve the truthfulness of Theorem, it is enough to process n times. Thus, it is clear that the
form of the element of degree sequences DS (G1 ×G2 × · · · ×Gn) is (dα1α2 + dβ1β2)

aα1α2 aβ1β2 . �

With a similar manner and using the same graphs as in Example 2.3, by considering Theorem 3.2,
the degree sequence of the cartesian product is

DS (P4 ×C3 × P3) = {12, 22} × {23} × {12, 2} = {36, 46} × {12, 2}
= {412, 56, 512, 66} = {412, 518, 66}.

3.2. Omega invariant of cartesian product of graphs

In this section we give the degree sequence and omega invariant of the cartesian product of two
special graphs such as path, complete, cycle, star and complete bipartite graphs (See Table 3).

Now, we give the omega invariant of the cartesian product of any two graphs in general.

Theorem 3.3. Let G1 and G2 be a connected graphs with n1 vertices, m1 edges, and n2 vertices, m2

edges, respectively. Then
Ω(G1 ×G2) = 2(m1n2 + m2n1 − n1n2).

Proof. Assume DS (G1) = {da1
1 , d

a2
2 , . . . , d

an
n } and DS (G2) = {eb1

1 , e
b2
2 , . . . , e

bm
m }. By Eq. (1.1), we have

Ω(G1 ×G2) = (d1 + e1 − 2)a1b1 + (d1 + e2 − 2)a1b2 + (d1 + e3 − 2)a1b3 + . . . +

(d1 + em − 2)a1bm + (d2 + e1 − 2)a2b1 + (d2 + e2 − 2)a2b2 +

. . . +(d2 + em − 2)a2bm + . . . + (dn + e1 − 2)anb1

+(dn + e2 − 2)anb2 + . . . + (dn + em − 2)anbm

= d1a1(b1 + b2 + . . . + bm) + d2a2(b1 + b2 + . . . + bm) + . . .

+dnan(b1 + b2 + . . . + bm) + a1(e1b1 + e2b2 + . . . + embm)
+a2(e1b1 + e2b2 + . . . + embm) + . . . + an(e1b1 + e2b2 + . . .

+embm) − 2(a1b1 + . . . + a1bm + a2b1 + . . . + a2bm + . . .)
= (b1 + b2 + . . . + bm)(d1a1 + d2a2 + . . . + dnan)

+(a1 + a2 + . . . + an)(e1b1 + . . . + embm)
−2(b1 + . . . + bm)(a1 + . . . + an)

= n22m1 + n12m2 − 2n1n2 = 2(m1n2 + m2n1 − n1n2),

as required. �

Example 3.4. Let us consider DS (Cr × S s) = {3(rs−r), (s + 1)r}. In particular, we choose C3 and
S 4. We have DS (C3 × S 4) = {39, 53} and Ω(C3 × S 4) = (3 − 2) × 9 + (5 − 2) × 3 = 18. Indeed,
C3 and S 4 have 3 vertices, 3 edges and 4 vertices, 3 edges, respectively. Accordingly Theorem 3.3,
Ω(C3 × S 4) = 2(3 × 4 + 3 × 3 − 3 × 4) = 18 approving the truth of it.

As a result of Theorem 3.3, we can present the omega invariant of the cartesian product of two
graphs by the omega index of graphs.
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Table 3. Some degree sequences and omega indices on cartesian products.

G1 G2 G1 ×G2 Ω(G1 ×G2)

Pr Ps

{
24, 3(2s−4), 3(2r−4), (2s − 8 + 2r) + 2((r − 2)(s − 2))

4(r−2)(s−2)
}

Pr Ks {s(2s), (s + 1)(rs−2s)} (s − 2)2s + (s − 1)(rs − 2s)
Pr Cs {3(2s), 4(rs−2s)} 2s + 2(rs − 2s)
Pr S s

{
2(2s−2), s2, 3(r−2)(s−1), (s − 2)2 + (s − 1)(r − 2)−

(s + 1)(r−2)
}

(s − 1)(r − 2)

Pr Ks,t {(1 + s)(2t), (1 + t)(2s), (2 +

s)(rt−2t), (2 + t)(rs−2s)}

(s − 1)2t + (t − 1)2s + s(rt − 2t) +

t(rs − 2s)
Kr Ps {(r)(2r), (r + 1)(rs−2r)} (r − 2)2r + (r − 1)(rs − 2r)
Kr Ks {(r + s − 2)(rs)} (r + s − 4)rs

Kr Cs {(r + 1)(rs)} (r − 1)rs

Kr S s {(r)(rs−r), (r + s − 2)r} (r − 2)(rs − r) + (r + s − 4)r
Kr Ks,t {(r + s − 1)(rt), (r + t − 1)(rs)} (r + s − 3)(rt) + (r + t − 3)(rs)
Cr Ps {3(2r), 4(rs−2r)} 2r + 2(rs − 2r)
Cr Ks {(s + 1)(rs)} (s − 1)rs

Cr Cs {4(rs)} 2rs

Cr S s {3(rs−r), (s + 1)r} (rs − r) + (s − 1)r
Cr Ks,t {(2 + s)(rt), (2 + t)(rs)} 2srt

S r Ps

{
2(2r−2), 3(r−1)(s−2), r2, (r − 1)(s − 2) + (r − 2)2+

(r + 1)(s−2)
}

(r − 1)(s − 2)

S r Ks {s(rs−s), (r + s − 2)s} (s − 2)(rs − s) + (r + s − 4)s

S r Cs {3(rs−s), (r + 1)s} (rs − s) + (r − 1)s

S r S s

{
2((r−1)(s−1)), s(r−1), (s − 2)(r − 1) + (r − 2)(s − 1)+

r(s−1), (r + s − 2)
}

(r + s − 4)

S r Ks,t {(1 + s)(rt−t), (1 + t)(rs−s), (r +

s − 1)t, (r + t − 1)s}

(s− 1)(rt − t) + (t − 1)(rs− s) + (r +

s − 3)t + (r + t − 3)s

Kr,s Pt {(r + 1)(2s), (2 + r)(st−2s), (s +

1)(2r), (2 + s)(rt−2r)}

(r−1)(2s)+ r(st−2s)+ (s−1)(2r)+

s(rt − 2r)
Kr,s Kt {(r + t − 1)(st), (s + t − 1)(rt)} (r + t − 3)(st) + (s + t − 3)(rt)
Kr,s Ct {(2 + r)(st), (2 + s)(rt)} 2rst

Kr,s S t {(r + 1)(st−s), (r + t − 1)s, (s +

1)(rt−r), (s + t − 1)r}

(r − 1)(st − s) + (r + t − 3)s + (s −

1)(rt − r) + (s + t − 3)r
Kr,s Kt,m {(r + t)(sm), (r + m)(st), (s +

t)(rm), (s + m)(rt)}

(r + t−2)(sm)+ (r +m−2)(st)+ (s+

t − 2)(rm) + (s + m − 2)(rt)

Corollary 3.5. Ω(G1 ×G2) = n2Ω(G1) + n1Ω(G2) + 2n1n2.

Proof. Suppose that G1 and G2 have the same degree sequences as in the proof of Theorem 2.8. In this
case, we get

Ω(G1 ×G2) = (b1 + b2 + . . . + b∆2)(d1a1 + d2a2 + . . . + ∆1a∆1)
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+(a1 + a2 + . . . + a∆1)(e1b1 + . . . + ∆2b∆2)
−2(b1 + . . . + b∆2)(a1 + . . . + a∆1)

= n2(Ω(G1) + 2n1) + n1(Ω(G2) + 2n2) − 2n1n2

= n2Ω(G1) + n1Ω(G2) + 2n1n2,

as required. �

3.3. Algebraic structure of cartesian product of graphs in terms of degree sequence

With a different manner from above topics (Sections 3.1 and 3.2), in this section, we will state and
prove some theoretical results. Firstly we consider algebraic structure of set of connected graphs by
using cartesian product operation.

Theorem 3.6. Let G be the set of all simple connected graphs. Thus G is an abelian monoid under the
cartesian product.

Proof. Consider three graphs from the family G having degree sequences DS (G1) = {da1
1 , d

a2
2 , . . . , d

an
n },

DS (G2) = {eb1
1 , e

b2
2 , . . . , e

bm
m } and DS (G3) = {xy1

1 , x
y2
2 , . . . , x

yt
t }. Aim is to show that G is closed,

associative, commutative and having an identity element under the cartesian product.
By the definition, since the cartesian product of any two simple connected graphs is another simple

connected graph in G, we achieve that G is closed.
For associativity,

(G1 ×G2) ×G3 =
{
(d1 + e1)a1b1 , . . . , (d1 + em)a1bm , . . . , (dn + e1)anb1 , . . . ,

(dn + em)anbm
}
× {xy1

1 , x
y2
2 , . . . , x

yt
t }

=
{
(d1 + e1 + x1)a1b1y1 , . . . , (d1 + e1 + xt)a1b1yt ,

(d1 + em + x1)a1bmy1 , . . . , (d1 + em + xt)a1bmyt ,

(dn + e1 + x1)anb1y1 , . . . , (dn + em + xt)anbmyt
}

and

G1 × (G2 ×G3) = {da1
1 , d

a2
2 , . . . , d

an
n } ×

{
(e1 + x1)b1y1 , . . . , (e1 + xt)b1yt , . . . ,

(em + x1)bmy1 , . . . , (em + xt)bmyt
}

=
{
(d1 + e1 + x1)a1b1y1 , . . . , (d1 + e1 + xt)a1b1yt ,

(d1 + em + x1)a1bmy1 , . . . , (d1 + em + xt)a1bmyt ,

(dn + e1 + x1)anb1y1 , . . . , (dn + em + xt)anbmyt
}
.

So G is associative. Moreover, for any two graphs G1,G2 ∈ G, a simple calculation shows that
G1 ×G2 = G2 ×G1 which implies the commutativity of G.

To the identity element, we need to find a suitable graph I ∈ G such that the equality G × I = G =

I ×G holds for every G ∈ G. Let us reconsider G1 ∈ G and assume that DS (I) = {kt1
1 , k

t2
2 , . . . , k

tn
n }.

G1 × I = {(d1 + k1)a1t1 , (d1 + k2)a1t2 , ..., (d1 + kn)a1tn , (d2 + k1)a2t1 , . . . ,
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(d2 + kn)a2tn , . . . , (dn + k1)ant1 , . . . , (dn + kn)antn} = {da1
1 , d

a2
2 , . . . , d

an
n }

To have this equality, we must have DS (I) = {01}. This implies that k1 = k2 = · · · = kn = 0 and
t1 = t2 = · · · = tn = 1 and so this graph is order-zero graph, and the unique graph having no vertices
(hence its order is zero). Since we have identity element, the cartesian product operation is monoid.
Eventually, we consider the inverse element of the graph DS (G1) = {da1

1 , d
a2
2 , . . . , d

an
n }. Let us denote

the inverse element with {cx1
1 , c

x2
2 , . . . , c

xn
n } . Then we have

{da1
1 , d

a2
2 , . . . , d

an
n } × {c

x1
1 , c

x2
2 , . . . , c

xn
n } = {01}

{(d1 + c1)a1 x1 , . . . , (d1 + cn)a1 xn , . . . , (d2 + cn)a2 xn , . . . , (dn + c1)an x1 , . . . ,

(dn + cn)an xn} = {01}.

In this case, this equation cannot be hold and so there is no inverse element of G. Therefore G is
abelian monoid with the cartesian product operation. �

Now, we consider distributive law related to tensor and cartesian product operation.

Theorem 3.7. Tensor and cartesian products do not provide the distributive law over each other. In
other words,

G1 ⊗ (G2 ×G3) , (G1 ⊗G2) × (G1 ⊗G3) and

G1 × (G2 ⊗G3) , (G1 ×G2) ⊗ (G1 ×G3).

Proof. Let us take
DS (G1) = {da1

1 , d
a2
2 , . . . , d

an
n },DS (G2) = {eb1

1 , e
b2
2 , . . . , e

bm
m },DS (G3) = {xy1

1 , x
y2
2 , . . . , x

yt
t }. Now, we handle

the first case.

G1 ⊗ (G2 ×G3) = {da1
1 , . . . , d

an
n } ⊗

{
(e1 + x1)b1y1 , . . . , (e1 + xt)b1yt , . . . ,

(em + x1)bmy1 , . . . , (em + xt)bmyt
}

=
{
(d1(e1 + x1))a1b1y1 , . . . , (d1(e1 + xt))a1b1yt , . . . ,

(d1(em + x1))a1bmy1 , . . . , (d1(em + xt))a1bmyt , . . . ,

(dn(e1 + x1))anb1y1 , . . . , (dn(e1 + xt))anb1yt , . . . ,

(dn(em + x1))anbmy1 , . . . , (dn(em + xt))anbmyt
}
.

On the other hand, the mixed product (G1 ⊗G2) × (G1 ⊗G3) is equal to{
(d1e1)a1b1 , . . . , (d1em)a1bm , . . . , (dne1)anb1 , . . . , (dnem)anbm

}
× {(d1x1)a1y1 , . . . ,

(d1xt)a1yt , . . . , (dnx1)any1 , . . . , (dnxt)anyt}

=
{
((d1e1) + (d1x1))(a1)2b1y1 , . . . , ((d1e1) + (dnxt))a1b1anyt , . . . ,

((dnem) + (d1x1))anbma1y1 , . . . , ((dnem) + (dnxt))(an)2bmyt
}
.

So this result is required. Second claim follow after following calculations:

G1 × (G2 ⊗G3) = {da1
1 , . . . , d

an
n } ×

{
(e1x1)b1y1 , . . . , (e1xt)b1yt , . . . , (emx1)bmy1 ,
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. . . , (emxt)bmyt
}

=
{
(d1 + (e1x1))a1b1y1 , . . . , (d1 + (e1xt))a1b1yt , . . . ,

(d1 + (emx1))a1bmy1 , . . . , (d1 + (emxt))a1bmyt , . . . ,

(dn + (e1x1))anb1y1 , . . . , (dn + (e1xt))anb1yt , . . . ,

(dn + (emx1))anbmy1 , . . . , (dn + (emxt))anbmyt
}

and the mixed product (G1 ×G2) ⊗ (G1 ×G3) is equal to{
(d1 + e1)a1b1 , . . . , (d1 + em)a1bm , . . . , (dn + e1)anb1 , . . . , (dn + em)anbm

}
⊗

{(d1 + x1)a1y1 , . . . , (d1 + xt)a1yt , . . . , (dn + x1)any1 , . . . , (dn + xt)anyt}

= {((d1 + e1)(d1 + x1))(a1)2b1y1 , . . . , ((d1 + e1)(dn + xt))a1b1anyt , . . . ,

((dn + em)(d1 + x1))anbma1y1 , . . . , ((dn + em)(dn + xt))(an)2bmyt}.
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characterization of graphic lists, Discrete Math., 310 (2010), 843–844.
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