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Abstract: Novel methods for multiple attribute decision-making problems are presented in this paper
using Type-II Fermatean normal numbers. Type-II Fermatean fuzzy sets are developed by further
generalizing Fermatean fuzzy sets and neutrosophic sets. The Type-1I Fermatean fuzzy sets with
basic aggregation operators are constructed. The concept of a Type-II Fermatean normal number is
compatible with both commutative and associative rules. This article presents a new proposal for Type-
II Fermatean normal weighted averaging, Type-II Fermatean normal weighted geometric averaging,
Type-II generalized Fermatean normal weighted averaging, and Type-II generalized Fermatean normal
weighted geometric averaging. Furthermore, these operators can be used to develop an algorithm
that solves MADM problems. Applications for the Euclidean distance and Hamming distances are
discussed. Finally, the sets that arise as a result of their connection to algebraic operations are
emphasized in our discourse. Examples of real-world applications of enhanced Hamming distances
are presented. A sensor robot’s most important components are computer science and machine tool
technology. Four factors can be used to evaluate the quality of a robotics system: resolution, sensitivity,
error and environment. The best alternative can be determined by comparing expert opinions with the
criteria. As a result, the proposed models’ outcomes are more precise and closer to integer number
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6. To demonstrate the applicability and validity of the models under consideration, several existing
models are compared with the ones that have been proposed.

Keywords: MADM; aggregating operator; Type-II FNWA; Type-I1 FNWG; Type-I1 GEFNWA; Type-II
GFNWG
Mathematics Subject Classification: 06D72, 03B52, 90B50

1. Introduction

Uncertainty can be present in nearly every aspect of contemporary problems. To deal with
the uncertainties, numerous uncertainty theories are available, including the fuzzy set (FS) [1], the
intuitionistic FS (IFS) [2], the Pythagorean FS (PFS) [3, 4], the neutrosophic set (NSS) [5], and
the Fermatean fuzzy set (FFS) [6]. An element of a fuzzy set (FS), introduced by Zadeh [1], has
a corresponding membership degree (MD). Later, Atanassov [2] introduced the concept of an IFS.
According to Yager [4], the concept of PFSs was originally established in 2014, and it is classified by
an MD and degree of non-membership (NMD) that satisfy the criterion, “that the sum of the squares
of its MD and NMD is less than 1”. Unfortunately, if the square sum of the MD and NMD of a certain
property exceeds 1, decision making (DM) becomes problematic. Senapati et al. [6] proposed the
concept of an FFS in 2019 and condition that the cubic total of the MD and NMD cannot exceed 1 .
Rahman et al. [7] utilized geometric AOs on interval-valued PFS (IVPFES) to approach DM problems
in various geometric AOs on IVPFS. Rahman et al. [8] developed a method for MAGDM employing
induced IVPES with Einstein AO.

The TOPSIS process requires obtaining a preference order that is prioritized by relative proximity,
calculating distances to the different ideal solutions, and combining these two distance measures. In
2018, Akram et al. [9] proposed the bipolar FS employing TOPSIS for group decision making (GDM).
Adeel et al. [10] proposed the m-polar fuzzy linguistic TOPSIS technique for MCGDM. In 2018,
Peng and Dai [11] generated the concept of single-valued neutrosophic set (NSS) using MABAC
and TOPSIS. Zhang and Xu [12] reported an extension of PFS using TOPSIS. Hwang et al. [13]
offered a practical explanation of the MADM concept. Jana et al. [14] discussed PFS using Dombi
aggregating operators (AOs) in 2019. Ullah et al. [15] talked about complex PFS and the usage of
pattern recognition in 2019. Jana et al. [16] for developed the Trapezoidal NSS using AOs and their
application to the MADM in 2020. Jana et al. [17] proposed the idea of the MCDM technique based on
SVTrN Dombi AOs. Yang et al. [18] described fuzzy c-numbers clustering algorithms for fuzzy data in
1996. Palanikumar et al. [19] investigated several algebraic structures and their applications in several
studies. NSS is a recent theory that is attributed to Smarandache [5]. The term neutrosophy is defined
as knowledge of the neutral mind and the neutrality that differentiates FS from IFS. Each element’s
of truth degree (TD), indeterminacy degree (ID) and false degree (FD) are represented by NSS, and
they range from O to 1. The NSS approach generalizes the FS and IVFS. Smarandache et al. [20]
established a new concept for Pythagorean neutrosophic sets with an interval-valued set. Using context
analysis [21] and the NSS, a medical diagnosis can be made using the single-valued NSS [22]. The
distances for IFSs, such as Hamming distance (HD), Euclidean distance (ED) normalized HD, and
normalized ED, were expanded by Ejegwa [23]. It has been demonstrated that a NSS generalizes
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a classical set, FS and IVFS. The Pythagorean neutrosophic interval-valued set (PyNSIVS) was
developed by Smarandache et al. [20]. The single-valued NSS is discussed using context analysis [21]
and medical diagnosis [22]. Ejegwa [23] extended the distance measures for IFSs, such as HD, ED
normalized HD and normalized ED. Recently, Palanikumar et al. [24] discussed the MADM using
spherical vague normal operators and their applications for the selection of farmers. Recently, Garg
et al. [25] discussed the new notion of confidence levels-based cubic Fermatean fuzzy AOs and their
application to MCDM problems. Chakraborty et al. [26] discussed the real life applications based on
Fermatean fuzzy Bonferroni mean AOs for selecting optimal health care waste treatment technology.
Zeb et al. [27] interacted with the Fermatean fuzzy soft AOs and their application in symptomatic
treatment of COVID-19. Khan et al. [28] discussed the concept of generalized neutrosophic cubic AOs
using MADM method.

In order to better understand Type-II Fermatean normal number (Type-II FNN) information, this
study will expand on the idea of Type-II Fermatean information. We can get Type-II FN data from
AOs. This paper consists of seven sections. In Section 2, you will find a concise overview of Type-
II Fermatean information. A Type-II FNN MADM is discussed in Section 3 for different AOs. For
various AOs, Type-II FNN MADM is discussed in Section 4. Section 5 presents an example, analysis,
and discussion of a method based on Type-II FNN. In Section 6, a conclusion is presented. In decision
making, we may have one problem

0 < (15(e))* + (15(e))* + (tL(e))* > 2.
So, we introduced the condition that

0 < (h(8))’ + (th(e))’ + (tL(e))’ = 2.
Consequently, this work makes the following contributions:

(1) It has been established that Type-II FNN satisfy some basic algebraic operations, such as
associative, distributive and idempotent laws.

(2) We introduced HD and ED for Type-II FNNs. In order to calculate the ED between two Type-I1
FNNs. Furthermore, there is a discussion regarding converting Type-II FNNs to NFNs.

(3) It is demonstrated numerically how MADMs and AOs are applied in Type-II FNN to real-world
scenarios. A Type-II FNN algorithm needs to be developed. We also need to determine a
normalized decision matrix using a Type-II FNN algorithm.

(4) In relation to Type-II FNWA, Type-II FNWG, Type-II GFNWA, and Type-II GFNWG. We
determined the ideal value of each concept.

(5) By using the Type-II FNWA, Type-1I FNWG, Type-II GFNWA, and Type-II GFNWG operators,
different ranking results of alternatives can be derived flexibly, so that a decision-maker may
select the ranking result according to his or her preferences. Due to its strong flexibility, the
method proposed in this paper is appealing. The results of the DM are based on integer 6.

2. Basic concepts
We discuss some common definitions in this section.
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Definition 2.1. [4] Let ©® be a universe. The PyFS Z in © is Z = { (ti(e), T_(s))|8 € @} where

T2 1 ® — [0,1] and T- : ® — [0, 1] denotes the MD and NMD of € € O to E, respectively, and

0= (Tts(e))2 + (7‘_(8))2 1. For convenience, & = <Tt5,‘l‘é> is called the Pythagorean fuzzy number

(PyFN).

Definition 2.2. [5] The NSS Z in © is E = {,(rL(e), e(e). TL())|e € ©}, where 74 : © — [0, 1],
. @ — [0,1] ana’ Tf ® — [0, 1] denotes the TD, ID and FD of € € O to Z, respectively and

0 <1.(e) + Tﬁ(a) + T (8) < 3. Here, 2 = (1L, T:, T_) represents a neutrosophic number (NSN).

Definition 2.3. [20] The Pythagorean NSS (PyNSS) 2in® is E = { (TL(e), 'ri_(a) Tf (8)>|8 € @}
where 72 : © — [0,1], 71 : © — [0, 1] andrf ® — [0, 1] denotes the TD, ID and FD of € € ©®

to B, respectively, and O < (tL(e))* + (tL(e)* + (‘ré(e))2 < 2. Here, & = (1L,71L, 3> represents a
Pythagorean neutrosophic number (PyNSN).

Definition 2.4. [6]AFFSZin®isE = { (ti(e), T-(s))|s € ®} where T2(g) and 71(8) denotes MD
and NMD of u respectively, where 7_ : ® — [0, 1] and TE 0 - [0,1]and 0 < (7'3(8))3 + (7‘2(8))3 <L
Here, E = (1L, ‘ré) represents a Fermatean fuzzy number (FFN).

Definition 2.5. /6] For any FFNs, Z = (7', 7/), B, = =(7],T f) and 2, = <TI2,T§>. Let v', 7/ denote MD
and NMD of u, respectively, and § is a positive integer. Then,

(1) B1 @5, = ({0 + @ — (@7 - (0. (] - 1)).
@ = 0. el + - )

(3)6-5= (m (rf‘)5)~

@2 =(wy,i-a-ayy )
Definition 2.6. [6] Let E = (t',7/) be a FFN. Then, S(Z) = (r')* — (t/)’, S(8) € [-1,1], is called
the score function, and H(Z) = (')} + (t/)?, H(E) € [0, 1], is called the accuracy function.
Definition 2.7. [18] Let M| = (vy, 1) and M, = (v, §») and then the distance between M, and M, is
My, Ma) = (w1 =02 + 451 = 62)2

—v 2
Definition 2.8. [I8] Let M(x) = e_(xT) ,(¢ > 0), be a fuzzy number (FN). It is said to be a normal
fuzzy number (NFN) if M = (v, ), and N.

3. Distance measure for Type-I1 FNN

We discuss the distance between two Type-II Fermatean normal numbers (Type-II FNNs) in this
section.
Definition 3.1. A Type-II Fermatean set Z in © is E = {8, (ti(e), TiE(S), T£(8)> |8 € @}, where TZ(&),
7L (€) and l L(g) are called TD, ID and FD of E, respectively. The mapping 7t : ® — [0,1], 75 : © —

[0, 1], T_ 0 — [0,1], and 0 < (1L(8))* + (1L(e))’ + (‘rf(g))3 < 2. Here, E = (7L, 7t ,‘ré) represents a
Type-11 Fermatean number (Type-11 FN).
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Definition 3.2. Let (v,5) € N, E = {(v,¢); 7,7, v/) is a Type-1I FNN, where its TD, ID and FD are
—U 3 . . X=v 3 X=v 3

defined as T’E = T’Ee_(%) , T = T’Ee_(T) and TJ::. =1-(1- Tf;)e_(T) , x € X, respectively, where X

is a non-empty set, =, 1L, TJ; €[0,1], and 0 < (T’E(x))3 + (T"E(x))3 + (7"::()6))3 <2

Definition 3.3. If =, = <(U1,§1);T11,Ti1,7'{> and B, = ((vz,gz);T;,Té,T§> are any two Type-II FNNs,
and ¢ is a positive integer. Then,

(01 + w2, 61 + 62 YTDP + (T — (T - (),
@+ @y - @y @l ) ]
(1 - 2,61+ 2); (T) - ), (/(T’i)‘S +(75)° — (T))° - (75,
@D + @ - @ (@ |
365 = (6 v0- 505 Y10 - @) @ )
4 2 = (Wh e, Y- -y )

(1) 2105, =

(2) B ®E, =

We now define the ensuing theorem in terms of the operator mentioned earlier.

Theorem 3.1. Let Z; = {(vy, gl);Ttl,Til,T{>, 5 = ((v2,62); 75, 75, T§> and 25 = {(v3, §3); Tg,Tg,T§> be
the Type-1I FNNs. Then,

(1) 2105, =5,08E,.

(2) (E105)058;=E, 0 (5, 0E;).

(3) E1®@=5, =5,®E&,.

(4) (E1@5E)@5;=Z,® (5, ®E;).
Proof. The proofs are straightforward.

Definition 3.4. Let E) = ((v1,61); 7}, 71, T{> and 2, = {(v2,$2); T, T, ‘rg) be the Type-II FNNs. Then,
the ED between 2| and =, is

. ) 3
@)+ (] 1T} +(r ()}
R — 3 3 vy — 3 (%)
Os(Er, Ey) =

; . 3°
+l LE HE ) 1) ) @)
3 3 S1 3 S2

The HD between =, and 2, is

L@+ @)’ =@’ 1+ @)+ @) - @)
3 vi 3 v2
L+ @+ @ - @) 1+ @)+ @) - (@)
3 s17 3

Ox(E1,5,) =
+

Y]

(SN

Theorem 3.2. Let Z; = ((v1,6)); 7}, 7, 71 ), By = (02, 62); Th, Th, 74 and 25 = {(v3, 63); 74, 74, T,) be
any three Type-1I FNNs. Then,

(1) Og(Ey,2) =0ifand only if £, = E,.
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(2) Oe(E1,E3) 2 Ug(Er, Er) + Ug(Es, E3).

Proof. We will prove (2). Now,

1+ +(r) P -] )? 1+(T))* +(7h)} ()} ’
3 UL — 3 L)

—

+_
(Ug(E1,5) + B (82,E3))° = 3

. . . 3
(@ P+ =] 1+ +() =())?
3 S1— 3 2

1+(rh)* +(75) ()} e e
3 U — - U3

3

] . 3
L apray-aly ey el
3 3 2 3 S

(((I)1U1 - D) + 3(Pi51 — (1)25‘2)3) + (((Dzvz - D303)° + 3(Dr52 — ‘1)35‘3)3)
= [+3 (i/[@wl - 0n)® + 3(Di6y - Dy62)3]" x i/(q)zvz - D303)° + 3(D25, — D363)° )

+3 (i/(q)lvl - D)} + $( @161 — D262)% X i/[(‘bzvz - D303)} + H(Dog - D363)%) )

((‘Dlvl - D)} + LDy - ‘D25‘2)3) + ((‘Dzvz - D303)* + H( Do, - ‘D3S‘3)3)
_ +4Jm@m—@wm+a®m—@gﬂﬂx@%w—%mﬁ+5%g—%gm)
+%Jme—%mﬁ+aﬁg—@mmbdmmm—%wﬁ+a%g—®wmfﬂ

((®1U1 - On)° + $(Di6y - <D2§‘2)3) + ((q)zvz - D303)° + $(Dog, — <D3S‘3)3)

3 3 3
o |13 [\/((‘Dlvl - Drn)? - (Dov - c1)3113)) + ((q)ls‘l - 026)* - (D262 — ‘D3S‘3)) ]
3 3 3
+3 [\/((‘Dﬂn = Orv) - (P - (D3U3)2) + ((‘1)15’1 = D262) - (D262 - q’3§3)2) ]
(((DIUI - Oy)* + §(D@i61 - @25‘2)3) + (((Dzvz - 0303)° + §(Da62 - ®3§3)3)
> |+3 ((((Dlvl — Qo)) - (D202 — q)3v3)) + %((@19 — 0265)” - (D262 — ‘D3§3)))

+3(((@1v1 = Dyva) - (Dav — D303)?) + (@161 — Dag) - (Pag2 — D363)?) )
(@1v1 — D1)* + 1( @161 — D262)° + (Pov — P313)° + 1(D2657 — D363)°

= +3((‘D1U1 = Do) - (Drv2 — (D3U3)) + ((‘1315“1 - ®67)” - (262 — q)s§3))
+3(( @121 = Davn) - (Dav — D303)%) + (@161 — D) - (D26 — D3s3)?)
((‘Dlvl — Oyuy + Dyvy — D3v3) + (@161 — Dagy + Doy — ¢’3§3)3>

(@1v1 - D303)° + L(@161 - D363)?)

= =3
Us(E1L E3)".

1+ (@ (=] 1T+ (1) (1))

Here, ®, = 3 , 0y = 3
Thus, Ug(E1, E3) < Ue(E1, Ey) + Us(Bs, E3).

1@+ =)

and @5 = 3

Theorem 3.3. For any three Type-II FNNs Z; = <(U1,§‘1);Tt1,7'i1,7'{>, =2 = <(U2,§2);TZZ,T£,T£> and
Es = {(v3,63); T4, 75, 70,

(1) O p(E,2) =0ifand only if £, = E,.

(2) Br(Er,E2) = Upr(Er, Ey).

(3) Onr(E1,E3) 2 Op(Er, Er) + U (&2, Es).
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Remark 3.1. Since &, = <Tt1,T'i,T{> = (1,1,0), E, = (15,75, TJ;) = (1,1,0). Then, the distance
between Type-1I FNN is transformed to the distance between NFN.

4. Aggregation operators for Type-II FNN

We introduced the new AOs for Type-II FNN in this section.

4.1. Type-1I FN weighted averaging (Type-1I FNWA) operator

Definition 4.1. Let Z, = (), s)); ™, T;, T,’;) be the Type-1I FNNs, where p = 1,2, ...,n, &, be a weight
of Epand &, > 0, 37 &, = 1. Then, Type-Il FNWA(E,, By, ..., B,) = Y- £,E).

Theorem 4.1. Let E, = (v, $)); T;), T;, T};) be Type-II FNNs, where p = 1,2, ...,n. Then,

n

p=1

d - a)

Type — Il FNWA(E,,5,, ..., B,) =

p=1

Proof. The mathematical induction method yields the proof.
Ifn= 2, Tpr-II FNWA(El, 52) = 5151 @ 5252, where,

[ @vnae 1-(1-ap¥)
{/1 — (1= ) e

E1E

and

Evnéasr): 11— (1- @),

{'/ 1= (1- @) @

6HE

Using Definition 3.3, we get

(&1vy + Eu2, 6161 + 662);
3# (1 _ (1 _ (Tfl)36)§1) + (1 _ (1 _ (Tt2)35)§2)

_(1 _ (1 _ (Tt1)35)§1) ) (1 -(1- (T’2)35)§2),
| ==+ (1= - @)

(1= =) (1= - @),
(TJI‘ )t - (7{ )

EEI06HE, =

AIMS Mathematics Volume 8, Issue 7, 16252-16277.
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Using induction, n > 3,

Type — IFNWA(E,, E,

2

p=1

2
4 =TT - ) e
1

p=

(51 &pvp Tt 6060 ); J =TT -a»)

k

(ny:l EpUp, 2. p= lfpgp ) J 1—[

p=1

p=1

Ifn=k+1,
Type — I IFNWA(E,, Ey, ..., E, Egr1)
(Zl;;:l é:pvp + Epr1Vkr1s ZI;):I fpgp + §k+1§k+1) ;
k
2o (= (1= )+ (1= (1= ™)™
6| p=l
k
L= (= (=) ™)
= p: g Sk
2 (= (=) )+ (1= (1= @) ™)
5 p=1
k
VL0 ) (- ™),
D=
k
l_I(T£ ) - (Ti;l)fkﬂ
p=1
(255 £pvps Zh2Y £56,) 5
k
3§ 1- 1_! (1 - (Ttp)%)fp : ( ( k+1)36)& B
p=
— k
- k+1
[ lahe
p=1
AIMS Mathematics

Volume 8, Issue 7, 16252-16277.
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k+1
(ZI;H] fp s f;;ll pgp); 3§ 1 - n (1 - (T;)3é)§p’
— p=1
B k+1 k+1
Ji=[ -y ﬂww

p=1
It holds for any k.

Theorem 4.2. If Z, = ((v,, gp);T 7! Tp> are Type-II FNNs, and E, = E, then Type-1I FNWA
(B, 5y, ..., 8,) = &, where p= 1,2, ...

Tf) = (Tt,Ti,Tf), fol‘p = 1,2,...,7’1 and 2’;721 'fp = 1. By

Proof. Given that, (v,,s,) = (v,¢), (T Tp, »

using Definition 3.3, we get,

Type — IIFNWA(E,, Es, ..., E,)

n

(ZZ:[ fpvpa 22:1 'fpgp) ; &# 1- ( - (Tt)3d)§p,

p=1

dl— ]_[ - @)’ ﬂ(rf)fv

p=1

N

(U Z’;:l 'fp’ §ZZ=1 gp) ; v1 - (1 - (T;)35)2’,1;=1 Sp’
V“O—wﬂM@wﬂﬁﬂv

(w01 1= (1-@*). i -(1-@r).@)

((v, ¢): T, T, Tf)

4.2. Type-1I FN weighted geometric (Type-1l FNWG) operator
We define the Type-II FN weighted geometric operator (Type-II FNWG) in this section.

Definition 4.2. Let £, = ((v,,6,); T}, T i ) be the Type-II FNNs and &, be a weight of E,. Then
Type-1l FNWG (B, E,, ...,E,) = ]_[;’7 1 _p , where p=12,.

Theorem 4.3. IfE, = ((v,, s)); 7, Tp> are Type-II FNNs where p = 1,2, ...,n, then

ﬂwf] H@W
Type - IIFNWG(E,, E,,...,5,) = - y
d = (1-@)”. J =[]0 - ey

p=1 p=1

Proof. The mathematical induction method yields the proof.

AIMS Mathematics Volume 8, Issue 7, 16252-16277.
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If n =2, Type-ll FNWG(&,, &) = E"fl ® Egz, where,

ﬁ:@ﬁﬁﬂﬂaJFO—hﬂ&VPﬁ—HWf)

5 = ((u2 &) (T2, \/1—(1—( 00), ﬁ/l—(l—(r{)”)& )
By using Definition 3.3, we get,
(i - v, g‘fl LGE) @ (e,
(1= (=) )+ (1= (- ))
-1 ( <ﬂ>5)5) (1-(-@)).
1
(

=&l o mé2

f)36 & (1_(1 (r )35)52)
-a@))- (1= (1-@)¥))

)
(8 - v 6T - 62 ) () - (e,

1= (=) - (1- @),

Y- (- (-

1
<=

Hence,
2 2 2
( 1—[ Uip, 1_[ gip) H(T;)fp
Type — Il FNWG(E,, E») = e
d =[](-r)" =T 1= )
p=1 p=1
Forn =k > 3,
k k k
([ 1w ] [s9):] |
Type — Il FNWG(E,, 2, ...,E) = & = = = k
J l—[ 1 B (T;’)é)fp w1 _ n( (Tf)%)f/
p=1 p=1

Ifn=k+1,

AIMS Mathematics Volume 8, Issue 7, 16252-16277.
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Type 11 FNWG(:l, ceey Ek, Ek+1)

k Ep o Gkl o kel
( [Tp=1 vy - vy Hp 1Sp " Sk+1 )
k

l_l(q-;)fp . (T§{+1)§k+l’
p=1
(1= (1= @)")+ (1 = (1 = o)™ )
(1 _ (1 _ (T;)é)fp) . (1 B (1 : (Ti+1)6)§k+l)
1
(1 _ (1 _ (T£)3‘5)§”) N (1 3 (1 3 (T£+1)35)§k+1)
{100 @)Y (1= (1= )P
k+1

k+1 & k 1
(Hpil vppa p+1 gp 1_[(7- )fp

k
o R (R R (R

M~

<,
hS]

—.

ingle
=~ 4 5

S
Il
—_

p=1
k
- T10-e 1)
p=1
k+1

fp k+1 fp l_I(T ){-'p

k+1
(le vy, 1 p=1Sp

- (Tﬁ; )36 )‘—'CP

]

- k+1 p k+1
41— (1=, %1—]—[(1

p=1 p=1

Corollary 4.1. Let £, = ((vp, Sp)sThs T Tf;} be Type-1I FNNs, and all are equal with 2, = Z. Then

Type-1l FNWG(&,, &,, ...,E,) = E.
4.3. Type-1I generalized FNWA (Type-II GFNWA) operator

We define the Type-II generalized FNWA operator in this section.

Tf> be Type-II FNNs and &, be a weight of E, for p =

P Tp

1/6
1.2, ....n. Then, Type-Il GENWA(E1, By, .... E,) = (2., £,55) .

Definition 4.3. Let =, = ((v,,6,): 7). T,
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Theorem 4.4. Let E, = (v, $)); ™, T;, T£> be the Type-II FNNs. Then,

(< X fpvg)l/d’ ( X1 51’92)]/6);
n 1/6
(3&1— —!(1—((72)‘5)36)§”) ,
=
Type — Il GFNWA(E,, 2,,...,5,) = n 1/6
(il— :[(1—((71',)5)6)5") :
n[j_ N ~ ¢ 36\ 1/6
*‘dl—(l—(ﬁ(‘ 1= (1= @) ) ) )
p=1

Proof. The mathematical induction procedure leads to the proof. Let us first demonstrate that

n . (( me fpvi)’(ZZﬂ fpg,f)); 341— ﬁ( ((T )5) )fp

p=1

=1 a s i 66§p - 35 6 o
: dr=T1(0- (@) ’n[\/l_(l_(T£)36) )
p=1 p=1
If n = 2, then
&
(&8, &160); ?/1 - ()]
i - * :
\/1—( (@) ) (\/1— 1-(#)36)]
and

p (§2U2’§2§2 \/ 1— (7'2)) )
o {/1—( ((72)6))§ [\/1—(1—(4)36)] |

By using Definition 3.3, we get,
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(flv‘ls + fzv‘é,f]g‘f + 525‘3),

[Tt 4T

V! \/1 ()] (Bi/l‘(l—(<r;>5)35)fl )

o 5 \/1 () (i/l‘(l—(«;f)é)& )

\ (\/1 i 6)& ) (\a/l‘(l—(u;)")&)& )
( \/1 ~(1- ) ) ( s</1 “o- (73‘)36)5}&

(Zizl gpvi’zi lfp g) 36 1— l—li 1(1 _ ((T;)5)36)§p

{/1—11 (1— (ey )fp fl[f/l- (1= ) )

.

In general,

(Z” 1 €0t Zp 1€ p) \/1 - Hk (1 —((Tt)a)%)f”

J1- 1T, 1(1— (i )51 ﬁ[Vl— 1—(7,’2)35) )
1

k
> 6 - ‘|
=1

p

k —_ — k+1
Ifn==k+ l,zpzlfl,:‘; + & B, = Z;lfpu
Hence,

—3 —_3 —_3 —_3 —d =0
pr:p +&nEy = 6B 06HE; 0. O &E, O 1By,
=

&p
(e st e Y- i (1= (o))

k+1 &p
1T (1 - ((T"])‘S)é)fp, 1—[( f/l -(1- (72)36)6)

p=1
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and

(zem) " (i) )

(=TT )
Z ( pEi) = ( kel

L0 )
({0 )

This theorem holds for any k € N.
Remark 4.1. If 6 = 1, then the Type-1l GFNWA is converted to the Type-1I FNWA.

Corollary 4.2. Let E, = ((v),$)); Tfp, T;T£>, where p = 1,2, ...,n, be Type-1l FNNs, and all are equal
with E. Prove that Type-Il GFNWA (B, E,, ...,E,) = E.

4.4. Type-1I Generalized FNWG (Type-11 GFNWG) operator
We define the Type-II generalized FNWG operator in this section.
Definition 4.4. Let E, = ((vp,gp);T;,,Tfp,T;) be Type-1I FNNs and &, be a weight of E,, where p =
1.2, ....n. Then, Type-Il GENWG(E}, 5, ... 5,) = &( ]_[(55,,)@%).
p=1

Theorem 4.5. Let 2, = (U, §p)s Ty Ths T£> be a collection of Type-II FNNs. Then,

((ls Zzl(évp)fp’% ;:1(59'17)5");

dl_(l _(1_ (?/1 - (1 _(T;)%)(s)fp )3‘5)1/(5, .

p=1
L[ (1 - ((Té)é)é)&) )1/5,

Type — Il GFNWG(E,, 5, ...,E,) =
-
p=1

(=TI )

p=1

Proof. Mathematical induction leads to the proof. Let us first demonstrate that

n {F
n (H';:lva)fm Hzﬁ(csg,,)fv); ﬂ( 3{/1 ~(1- (szpa)j ,

p=1

[ o= = ; " ; —
S R T e (R A (e

p=1 p=1
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If n = 2, then
£
(0w, <6s*1>fl>;( Vi-(- ]
(62" = : ( ! ) '
. 1 . 136\8!
Jr-(-@) i)
and
5 &1
(60" <6§z>&);[ Vi--@) ) ,
(622)® =

Jr=(- o)) 3= (- ()

By using Definition 3.3, we get

(G - (Bu), (B61)F" - (662)2);

(f/1—(1—(ff)36)6)§1 -(3{/1—(1—(73)36)6)&,
o) (e )
\ (\/1 (@Y -({/1—(1—(@3)5)6)& )6’
\/ - (1 (e )5)35)& ) +( 3{/1 S Tg)&)gé)gl )35

(OZ1) © (65)°

30

2 &p
ﬂ(av o, ﬂ(agp)ff) ﬂ[“ﬁ/1 (1—(1;,)36)6] ,
1

= p=

J1- 1 (1= ) ) -1 (1= @) )

Ifn =k,

If n = k+ 1, then
k+1

]—[(6~ - (5 )t = ]—[<5~ ).
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Now,

k
[ o= - 0=y

p=1
(021" @ (0Z2)? @ ... ® (65 @ (0841 )

k k
(l—[((gvp)é'p (SUgey H(égp)é-'p ) (5§k+1)§k+1);
p=1 p=1
k
[T 0wy (1= 0=t
p=1
k ‘ £ Pl 1 5
({1107 (-
5 p=
= k . & 5 ‘ | ] 6’
\ _(J L1 (@)) ) (\/1 (1))
k 36 35
ki 1- l_[ (1 - ((T£)6)35)5p ) + ( ‘“”{/1 - (1 - ((TIQI)&)M)& )
36 p=1
: k &\% T\
\ —( 3d 1- g (1 - ((T‘}f)‘s)%) ) . ( 3{/1 _ (1 _ ((Tl,;l)é)aa)f )
k+1 k+1 k+1 ) &
~ (H(évp)‘fn’ l:!((sgp)é:”)’ H ( &{/1 - (1 - (T;)35)6) ’
i1 l—[/;;l1 (1 _ ((Til)(;)d)fp’ wly l_[,;ll (1 B ((T{)é)%)&

k+1

k+1
(g( [ o). o ﬂ(agpfp));
p=1 p=1

N i AR

p=1

1
5( l—[(égl’)fp) - k1 1/
=0 )

[ (@)

p=1

(-t )

p=1

Remark 4.2. If 6 = 1, the Type-1l GFNWG is converted to the Type-1l FNWG.
Corollary 4.3. Let E, = ((v),$)); T;,T;T’;) be a finite collection of Type-1I FNNs, and all are equal.
Prove that Type-1l GFNWG (&, &, ...,E,) = E.
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5. MADM based on Type-I1 FN

Let © = {D,0,,...,0,} be the set of n alternatives, A = {k, k>, ..., Km} represents a set of m
attributes, w = {&), &2, ..., €,) represents weights, and O;; = ((v;), Sij); ‘r , T T ) is the Type-II FNN of

alternative O, in attribute x,. We consider 7/, TU, T €[0,1]and 0 < (7! (s))3 +(7! (8))3 + (Tf ()’ <2,

i=1,2,...,nand p = 1,2, ..., m. Here, the dec1s10n matrlx 0= (E),j)nx,,,

5.1. Algorithm

This section contains the algorithm for Type-II FN information. The best option is chosen according
to this algorithm.
Step 1: Enter the decision values for Type-II FN.

—

Step 2: Construct a normalized decision matrix. Here, O = (O;;)uxn is normalized into U =

T ~ _ w o~ _ s Si To_ 4 G _ i f__f
(Dlj)nxm’ pUt Dl/ <(Ulj7 gtj) T,j Tij and Utj - SUP](Ui_/')’ glj - SUPj(S‘ij) Uij’ T,‘j - Tij’ T,‘j - T,’ja% - Tij'

—_—

Step 3: F(ir\ each attribute e; in O;, O;; = <(13,7j, g"?j);rlf.j,rﬁj,rf» is aggregated into O; =
(@t 7,7,
Step 4: Calculate the optimal values using both positive and negative Type-1I FNN.

E/): = < sup v,j, 1nf glj,l 1 O>

1<izn

and -
D :< inf 7y, sup §;;,0,0, 1>

1<i<n 1<i<n

Step S5: Calculate the HDs using two ideal values with each choice.
U7 = U(05,07): U] = U(0,07)

Step 6: Ranking the choices based on relative closeness values.

U
U= ——.
Uj+Uj

Step 7: In order to find the best solution to the problem, the output yields are determined by sup U.

5.2. Selection of robot sensors

Sensors on robots are used to monitor a robot’s condition and environmental conditions by passing
these signals to a controller. In robots, sensors are based on the sensory organs of humans. It is
imperative that robots have extensive knowledge of their environment in order to function properly. It
is possible to measure a physical quantity with a sensor. These inputs can be converted into electrical
signals to be recorded and monitored. In order to choose the right sensor, one must consider the robot’s
use and the environment in which it is operating. Sensor that measure the same input can differ in
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accuracy, precision, and sensitivity. It is important to keep this in mind when designing robots. There
is a wide array of inputs that sensors can measure. Among these are the environment, force, speed,
pressure, temperature, vibration, rotation, imaging, light, biometrics, acceleration, current, orientation,
gravity and speech. Automation of robotics requires sensors. It is not possible for a robot to function
without them. As a robot interacts with its environment through sensors, it overcomes obstacles and
obtains information from the environment. A sensor can be selected according to its characteristics,
and the characteristics of a sensor determine the type of sensor to be used for a given application.

(1) Light sensor (01): The light sensor is a transducer that detects light and creates a voltage
difference that reflects the intensity of light falling on it. Generally, robots use photovoltaic cells
and photo resistors as light sensors. There are a few other kinds of light sensors in use, such as
photo transistors and photo tubes. In robotics, the following types of light sensors are used: A
photo resistor is a type of resistor that detects light. The resistance of a photo-resistor changes with
the intensity of light. As the resistance of a photo resistor increases, a current passing through it
decreases. A photo resistor can also be known as a light dependent resistor (LDR). A photovoltaic
cell is a device that converts solar radiation into electricity. It is used for building solar robots.
Photovoltaic cells are considered energy sources by themselves; however, they can be converted
to sensors when combined with capacitors and transistors.

(2) Proximity sensor (2): A proximity sensor detects nearby objects without physical contact.
Proximity sensors are simple devices. Electromagnetic radiation is transmitted by a proximity
sensor, and a return signal is received and analyzed for interruptions by the receiver. Therefore,
the amount of light a receiver receives from its surroundings can be used to detect nearby objects.
In robotics, proximity sensors are used in the following ways: A transceiver transmits infrared
(IR) light via LEDs, but if it encounters an obstacle, the beam of IR light is reflected back, which
is captured by a receiver. In ultrasonic sensors, high frequency sound waves are sent out by a
transmitter, and the received echo pulse indicates that an object has been interrupted. In robotic
systems, ultrasonic sensors are used to measure distance.

(3) Acceleration sensor (03): The acceleration sensor measures acceleration as well as tilt. Using
an accelerometer, you can measure acceleration. An accelerometer is affected by two types of
forces: An object’s frictional force is called static force. It is possible to determine how much tilt
the robot is experiencing by measuring the gravitational force. In this measurement, robots are
able to balance themselves, or determine whether they are driving flat or uphill. Dynamic force
can be measured using an accelerometer to determine robot velocity and speed.

(4) Temperature sensor (04): Temperature sensors measure the temperature change around them.
According to theory, a change in voltage will provide the equivalent temperature value of a change
in temperature. The following are some commonly used temperature sensor ICs: LM34, LM35,
TMP35, TMP37 etc.

(5) Sound sensor (05): It is generally a microphone that detects sound and returns a voltage
corresponding to the sound level. Using sound sensors, a simple robot can navigate by listening
to sounds. Unlike light sensors, sound sensors generate a very small voltage difference which will
be amplified to produce measurable voltage changes.

A set of selection criteria for sensors is given. In order to compare the sensors, you should consider
the following factors:
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(1) Resolution (e;): The smallest change that can be detected by the sensor. There is no guarantee
that high is always positive. It would pick up even very minute fluctuations, requiring additional
processing if it is too high.

(2) Sensitivity (e;): An indicator of the ratio of change in output to change in input. Sensitivity that
is too high can be problematic. It is also true that in most cases, the higher the sensitivities are the
higher the costs.

(3) Error (e3): The difference between the true value and the measured value. You want this value to
be as low as possible. Is that margin of error allowed in your application?

(4) Environment (e4): Extreme conditions are one of the most significant parameters since not every
sensor can withstand them. It is possible for sensors to be affected by conditions that are not ideal
(such as temperature, humidity, etc.) and may result in an insufficient measure of output.

A sensor is scored according to the following attributes: A = {k; : Resolution, «,: Sensitivity,
k3 : Error, k4 : Environment} and their corresponding weights are w = {0.35,0.27,0.23,0.15}. The
following are the DM details:

Step 1: Table 1 is created using the DM data.

Table 1. Decision values.

€1 (%) es éy

D1 ((0.85,0.5);0.88,0.8,0.8)  ((0.55,0.5);0.85,0.7,0.9)  ((0.65,0.6);0.8,0.8,0.85)  ((0.6,0.55);0.7,0.85,0.9)
D, ((0.7,0.65);0.75,0.95,0.75) ((0.65,0.45);0.85,0.65,0.95) ((0.5,0.4);0.7,0.85,0.9) ((0.8,0.65);0.85,0.95,0.65)
D3 ((0.75,0.6);0.8,0.7,0.85)  ((0.75,0.7);0.9,0.85,0.8)  ((0.65,0.5);0.75,0.9,0.8)  ((0.65,0.5);0.8,0.7,0.95)
D4 ((0.5,0.4);0.7,0.85,0.9)  ((0.6,0.5);0.95,0.75,0.75) ((0.75,0.55);0.8,0.95,0.7) ((0.75,0.7);0.75,0.85,0.85)
D5 ((0.65,0.55);0.9,0.75,0.85)  ((0.7,0.6);0.75,0.9,0.8)  ((0.7,0.65);0.9,0.75,0.85)  ((0.7,0.5);0.85,0.9,0.7)

Step 2: A normalized decision matrix is shown in Table 2.

Table 2. Normalized decision matrix.

€1 (%) %] €4
O ((1,0.4525); ((0.7333,0.6494); ((0.8667,0.8521); ((0.75,0.7202);
0.88,0.8,0.8) 0.85,0.7,0.9) 0.8,0.8,0.85) 0.7,0.85,0.9)
) ((0.8235,0.9286); ((0.8667,0.4451); ((0.6667,0.4923); ((1,0.7545);
0.75,0.95,0.75) 0.85,0.65,0.95) 0.7,0.85,0.9) 0.85,0.95,0.65)
O3 ((0.8824,0.7385); ((1,0.9333); ((0.8667,0.5917); ((0.8125,0.5495);
0.8,0.7,0.85) 0.9,0.85,0.8) 0.75,0.9,0.8) 0.8,0.7,0.95)
Oy ((0.5882,0.4923); ((0.8,0.5952); ((1,0.6205); ((0.9375,0.9333);
0.7,0.85,0.9) 0.95,0.75,0.75) 0.8,0.95,0.7) 0.75,0.85,0.85)
Os ((0.7647,0.716); ((0.9333,0.7347); (0.9333,0.9286); ((0.875,0.5102);
0.9,0.75,0.85) 0.75,0.9,0.8) 0.9,0.75,0.85) 0.85,0.9,0.7)

Step 3: Each alternative’s data with Type-II FNWA operators is summarized in Table 3.
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Table 3. Type-1I FNWA values.

Type — I IFNWA operator (6 = 1)

O ((0.8598,0.6377);0.8375,0.7863, 0.8524)
D, ((0.8256,0.6716);0.7924,0.8911, 0.8160)
5; ((0.9000, 0.7290); 0.8277,0.8068, 0.8385)
O, ((0.7925,0.6157);0.8441,0.8663,0.8017)
5\5 ((0.8656,0.7391); 0.8660, 0.8299, 0.8122)

Step 4: Both ideal values are listed as follows:

OF = ((0.9,0.6157), 1, 1,0),

0~ =((0.7925,0.7391), 0,0, 1).

Step 5: To calculate the HD between each option with ideal values, we use the values in Tables 4
and 5.

Table 4. Positive ideal values.
O7 G; (0N Oy O:
0.1954 0.1746 0.1776 0.1759 0.1602

Table 5. Negative ideal values.
(O G; (O (o) 05
0.1733 0.1938 0.1908 0.1925 0.2082

Step 6: We calculate each option’s relative closeness value (see Table 6).

Table 6. Relative closeness value.
(O} 0} G; (O3 (o)
0.4704 0.5260 0.5180 0.5224 0.5651

Step 7: The ranking of alternatives is Os > O, > D4 > D3 > 0. Consequently, selecting the most
suitable sound sensor s is a great solution.

5.3. Comparison of suggested and existing models

In this subsection, we give a comparison between the proposed models and some of the existing
models, demonstrating their applicability and advantages. We used Type-II FNWA, Type-II FNWG,
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Type-II GFNWA and Type-II GFNWG approaches based on HD. The different distances are shown in

Table 7.
Table 7. Comparison table.
0=1 Type — 11 Type — 11 Type — 11 Type — 11
FNWA FNWG GFNWA GFNWG
TOPSIS — HD Os > 0Oy > Iy Os > 03 = Os > Oy = Iy Ds > O3 = O
(proposed) 03 > 0y D4 > 0y O3 > 0 D4 > D)
TOPSIS — HD Ds > D = 3 Ds > Dy = I3 Ds > Iy = I3 Ds > Iy = I3
[19] Dy > Oy D4 > O) Dy = Oy Dy = Oy
TOPSIS — HD Ds > 0 = I3 Os > 01 = D3 Os > 01 = O3 Os > 0 = I3
[24] Dy = ) Dy = ) Dy > ) Dy > )

On the basis of these four aggregating operators, the HDs of proposed strategies and existing

techniques are shown in Figure 1.

Hamming distance for existing and proposad methods

PyNSHIVIWA{2022)
05

Proposed: Typell /

Proposed: Typell - ~0,

GFNWG

GFNWA

GPy MSMIWA[2022)

Al ternative-|

Al ternative-|1
Alternative-111

A ternative-1V

s il tErNAtvE-W

Proposed: Type-l,. -,
FHWG -

Proposed: Type-l|
FRWA

T ~apynsnnwe| 2022)

Figure 1. The TOPSIS model is based on a Type-II FNWA technique.

By altering various values of ¢, we can obtain Table 8.
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Table 8. Relative closeness values.

o (O} G; U; U, U; Order
6=2 0.4730  0.5311 0.5226  0.5316  0.5687 Os5> 04>y >3 >0,
6=3 0.4756  0.5362 0.5276  0.5406 0.5724 Os5> 04> 0 > O3 > 0
6=4 0.478 0.5412  0.5328 0.5487 0.5759 Os5> 04> 0, > 03 >0,
0=5 0.4804  0.5459 0.538 0.5559  0.5792 Os5> 04> 0, > 03 > 0
0=6 0.4825 0.5502 0.5432 05622 0.5823 Os5> 04>y >3 >0,
6=17 0.4845 0.5541 0.5483  0.5677 0.5853 Os5>04>0;>03 >0,
0=28 0.4864  0.5576  0.5531 0.5726 0.588 Os > 04 > 0Dy = 03 = O
0=9 0.4881 0.5608 0.5576  0.5769  0.5906 Os5> 04 >0, >03 >0,
0=10 04897 05636 0.5617 0.5807 0.593 Os > 04 >0y > D3 > 0
o=11 0.4912 0.5661 0.5656  0.5841 0.5952 Os5>04>0;, >3 >0,
0=12 04926 05683 05692 0.5872 0.5974 Os5>04>0;>03>0;
0=13 04939 05704 05725 0.5901 0.5994 Os5>04>03>0, >0
0=14 04952 05722 05756 0.5928 0.6013 Os5> 04> 03> 0 > 0
0=15 04964 05739 0.5784  0.5952 0.603 Os > 04 =03 = Dy = O
0=16 04975 0.5754 0.581 0.5975 0.6047 Os5> 04> 03> 0, > O
0=17 04985 05768 0.5834  0.5997 0.6063 Os5>04>03>0, >0,
60=18 04996 0.5781 0.5856 0.6017 0.6078 Os5> 04> 3> ) > 0
0=19 05005 0.5793 05877 0.6036 0.6092 Os5>o04>03>0, >0
0=20 0.5014 05804 0.5896 0.6054 0.6105 ©Os5>04>03>0, >0
0=21 05023 05815 05915 0.6071 0.6118 Os5>04>03 >0, >0
60=22 05031 05824 05931 0.6087 0.613 Os > 04 =03 = Dy = 0
0=23 05039 0.5834 05947 0.6102 0.6141 Os > 04 > 03 = Dy = O
0=24 05047 05842 05962 0.6116 0.6151 Os > 04 > 03 > Dy > O
60=25 0.5055 0.585 0.5976 0.613 0.60161 Os > 04 >3 > D) > 0
60=26 05062 05858 0.5989 0.6143 0.617 Os > 04 =03 = Dy = O
60=27 05069 05865 0.6002 0.6156 0.6179 Os5>04>03>0; >0,
60=28 05075 05871 0.6013 0.6168 0.6188 Os5>04>03 >0, >0,
60=29 0.5082 0.5878  0.6025 0.618 0.6195 Os5>04>03 >0, >0
6=30 0.5088 0.5884 0.6035 0.6191 0.6203 Os5> 04> 03> 0, >0
0 =31 0.5094 0.589 0.6045  0.6201 0.621 Os > 04 > 03 = Dy = O
0=32 05099 05895 0.6055 0.6211 0.6217 Os5>04>03 >0, >0
60=33 0.5105 0.59 0.6064  0.6221  0.6223 Os5> 4 > O3 > Dy > D
60=34 05111 05905 0.6073 0.623 0.6229 O4>05> 03> D) = O

A graph of the different values for the Type-II FNWA operator is presented in Figure 2.
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Type-1l FNWA approach

ot
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H D3*
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Different values

Figure 2. The TOPSIS model in Figure 2 is based on a Type-II FNWA technique.

A graph of the different values for the Type-II FNWA operator is presented in Figure 3.
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Figure 3. The TOPSIS model in Figure 3 is based on a Type-1I FNWA technique.

5.4. Sensitivity analysis

The aforementioned analysis demonstrates that, the ranking of the alternatives is ©5 > 04 > 02 >
03 > o1 when 2 < ¢ < 12. In the event when 13 < ¢ < 33, the ordering of the alternatives becomes
Os > Dy > D3 > D, > D1. The ranking of the alternatives, in a new order, is O4 > Os > O3 > O, > O
when ¢ = 34. As a result, the preferred option was changed from o5 to O4. The basis of the alternate
rankings is similarly composed of Type-II FNWG, Type-II GFNWA and Type-II GFNWG operators
with values of 6.
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5.5. Advantages

This paper proposes a method that offers the following benefits, as shown by the above analysis.
In the article, NFN and neutrosophic number are combined to introduce the concept of Type-II FNN.
A Type-II FNN interprets human behavior and natural phenomena that have a normal distribution in
nature and describes ambiguous information. Therefore, type-II FNN information is characterized
more broadly and is more in line with how humans think. The decision-maker may use parameter
0 to select the decision result according to their preferences. In this paper, the mode of ranking
alternatives will be discussed in terms of Type-II FNWAs, Type-II FNWGs, Type-II GFNWAs and
Type-11 GFNWGs.

6. Conclusions

We used HD for Type-1I FNNs, whose algebraic accessibility provides an added benefit. The HD
of Type-II Fermatean sets has a wide range of practical applications in data analysis. Using persuasive
statistical examples, the benefits of the HD are demonstrated. Many illustrations of Type-II FNWA,
Type-I1 FNWG, Type-II GFNWA and Type-II GFNWG with AOs were shown, and for the first time,
models were proposed. The Type-II FNS method can assist persons in selecting the best alternative
from a selection of choices. We have proposed changes for the Type-II FNWA, Type-II FNWG, Type-
II GFNWA, and Type-II GFNWG AOs to the MADM problem on ¢. The distinct ranking of options
may be found for the Type-II FNWA, Type-II FNWG, Type-II GFNWA, and Type-II GFNWG AOs on
0. The results demonstrated that the generalized values of ¢ have the most impact on the ranking of
options at the last stage. The DM may set the values of ¢ in accordance with the present parameters
and then proceed to make appropriate decisions in order to attain the best reasonable ranking. As a
result, the values of ¢ can provide guidance to the decision-maker in arriving at the outcome. Since this
is a wide open field, the ideas presented here will be useful to future academics with an interest in the
subject. Ideas require a great deal of work because of their applicability to real-world issues. Graphs
of Fermatean fuzzy sets and aggregation operators on these sets are some directions that will help us
address a variety of real-world problems.
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