Mathematics

Research article

Completely independent spanning trees in some Cartesian product graphs

Xia Hong ${ }^{1, *}$ and Wei Feng ${ }^{2}$
${ }^{1}$ Department of mathematics, Luoyang Normal University, Luoyang 471022, China
${ }^{2}$ College of mathematics and Physics, Inner Mongolia Minzu University, Tongliao 028000, China
* Correspondence: Email: 05shumenghongxia@163.com.

Abstract

Let $T_{1}, T_{2}, \ldots, T_{k}$ be spanning trees of a graph G. For any two vertices u, v of G, if the paths from u to v in these k trees are pairwise openly disjoint, then we say that $T_{1}, T_{2}, \ldots, T_{k}$ are completely independent. Hasunuma showed that there are two completely independent spanning trees in any 4 -connected maximal planar graph, and that given a graph G, the problem of deciding whether there exist two completely independent spanning trees in G is NP-complete. In this paper, we consider the number of completely independent spanning trees in some Cartesian product graphs such as $W_{m} \square P_{n}, W_{m} \square C_{n}, K_{m, n} \square P_{r}, K_{m, n} \square C_{r}, K_{m, n, r} \square P_{s}, K_{m, n, r} \square C_{s}$.

Keywords: completely independent spanning tree; Cartesian product graph; path; cycle; wheel; complete bipartite graph; complete tripartite graph
Mathematics Subject Classification: 05C05

1. Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops or multiple edges). The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$, respectively. For a vertex $v \in V(G)$, the neighbor set $N_{G}(v)$ is the set of vertices adjacent to $v, d_{G}(v)=\left|N_{G}(v)\right|$ is the degree of v. For a subgraph H of $G, N_{H}(v)$ is the set of the neighbours of v which are in H, and $d_{H}(v)=\left|N_{H}(v)\right|$ is the degree of v in H. When no confusion arises, we shall write $N(v)$ and $d(v)$, instead of $N_{G}(v)$ and $d_{G}(v)$.

$$
\delta(G)=\min \{d(v): v \in V(G)\}
$$

is the minimum degree of G. For a subset $U \subseteq V(G)$, the subgraph induced by U is denoted by $G[U]$, which is the graph on U whose edges are precisely the edges of G with both ends in U.

A tree T of G is a spanning tree of G if $V(T)=V(G)$. A leaf is a vertex of degree 1 . An internal vertex is a vertex of degree at least 2. A wheel graph W_{m} is a graph with $m(m \geq 4)$ vertices, formed by connecting a single vertex u_{0} to all vertices of cycle $C_{m-1}=u_{1} u_{2} \cdots u_{m-1}$. Its vertex set
is $\left\{u_{0}, u_{1}, \cdots, u_{m-1}\right\}$ and edge set $\left\{u_{0} u_{i}, u_{i} u_{i+1(\bmod m-1)} \mid 1 \leq i \leq m-1\right\}$. We called u_{0} is a center and $u_{0} u_{i}(1 \leq i \leq m-1)$ is a spoke. A graph G is a complete k-partite graph if there is a partition $V_{1} \cup \cdots \cup V_{k}$ of the vertex set $V(G)$, such that $u v \in E(G)$ if and only if u and v are in different parts of the partition. If $\left|V_{i}\right|=n_{i}(1 \leq i \leq k)$, then G is denoted by $K_{n_{1}, \cdots, n_{k}}$. Particularly, if $k=2,3$, then call it a complete bipartite graph and complete tripartite graph, respectively. Denote P_{n} and C_{n} to be path and cycle with n vertices. Given two graphs G and H, the Cartesian product of G and H, denoted by $G \square H$, is the graph with vertex set

$$
V(G \square H)=V(G) \times V(H),
$$

and edge set

$$
\left\{\left(u, u^{\prime}\right)\left(v, v^{\prime}\right) \mid\left(u=v \wedge u^{\prime} v^{\prime} \in E(H)\right) \vee\left(u^{\prime}=v^{\prime} \wedge u v \in E(G)\right)\right\} .
$$

Let x, y be two vertices of G. An (x, y)-path is a path with the two ends x and y. Two (x, y)-paths P_{1}, P_{2} are openly disjoint if they have no common edge and no common vertex except for the two ends x and y. Let $T_{1}, T_{2}, \ldots, T_{k}$ be spanning trees in a graph G. If for any two vertices u, v of G, the paths from u to v in $T_{1}, T_{2}, \ldots, T_{k}$ are pairwise openly disjoint, then we say that $T_{1}, T_{2}, \ldots, T_{k}$ are completely independent spanning trees (CISTs) in G. The concept of completely independent spanning trees (CISTs) was proposed by Hasunuma [6] and he gave a characterization for CISTs. It can be seen from the definition that a completely independent spanning tree is an independent spanning tree rooted at any vertex. That is to say, in the study of fault-tolerant broadcasting problems in parallel computing, if we construct a completely independent spanning tree, then when the source vertex becomes any other vertex, there is no need to re-construct the independent spanning tree. In fact, completely independent spanning trees have been studied from not only the theoretical point of view but also the practical point of view because of their applications to fault-tolerant broadcasting in parallel computers [14].

It is well known [16] that every $2 k$-edge-connected graph has k edge-disjoint spanning trees. Similarly, Hasunuma [7] conjectured that every $2 k$-connected graph has k CISTs. Ten years later, Péterfalvi [18] disproved the conjecture by constructing a k-connected graph, for each $k \geq 2$, which does not have two CISTs. Based on the question raised by Araki [1], in recent years, a specific relationship has been given between Hamilton's sufficient condition and the existence of a completely independent spanning tree, such as Fleischner's condition [1], Dirac's condition [1], Ore's condition [5] and Neighborhood union and intersection condition [13]. Moreover, the Dirac's condition has been generalized to $k(\geq 2)$ completely independent spanning trees $[3,9,10]$ and has been independently improved [9,10] for two completely independent spanning trees. Yuan et al. [20] show that a degree condition for the existence of k CISTs in bipartite graphs. Wang et al. [19] established the number of CISTs that can be constructed in the line graph of the complete graph. Chen et al. [4] proved that if G is a \{claw, hourglass, $\left.P_{6}^{2}\right\}$-free graph with $\delta(G) \geq 4$, then G contains two CISTs if and only if $\operatorname{cl}(G)$ has two CISTs. For the result of completely independent spanning trees in the k-th power graph, see [11,12]. In [7], it has been proved that it is NP-complete to find the number of completely independent spanning trees for a general graph. Therefore, it is meaningful to study the existence of completely independent spanning trees for special graphs. In [8], Hasunuma showed that there are two completely independent spanning trees in the Cartesian product $C_{m} \square C_{n}$ for all $m \geq 3, n \geq 3$. Also, Masayoshi [15] considered the number of completely independent spanning trees in any k-trees. In this paper, we consider the number of completely independent spanning trees in some Cartesian product graphs such as $W_{m} \square P_{n}, W_{m} \square C_{n}, K_{m, n} \square P_{r}, K_{m, n} \square C_{r}, K_{m, n, r} \square P_{s}, K_{m, n, r} \square C_{s}$.

2. Preliminaries

Definition 2.1. ([6]) Let $T_{1}, T_{2}, \ldots, T_{k}$ be spanning trees in a graph G. If for any two vertices u, v of G, the paths from u to v in $T_{1}, T_{2}, \ldots, T_{k}$ are pairwise openly disjoint, then we say that $T_{1}, T_{2}, \ldots, T_{k}$ are completely independent spanning trees(CISTs) in G.

Given a graph G, let $\operatorname{mcist}(\mathrm{G})$ be the maximum integer k such that there exist k completely independent spanning trees in G. The following result obtained by Hasunuma [6] plays a key role in our proof.
Lemma 2.1. ([6]) Let $k \geq 2$ be an integer. $T_{1}, T_{2}, \cdots, T_{k}$ are completely independent spanning trees in a graph G if and only if they are edge disjoint spanning trees of G and for any $v \in V(G)$, there is at most one T_{i} such that $d_{T_{i}}(v)>1$.

It is easy to see from the lemma that there are two completely independent spanning trees in the following graph as Figure 1.

Figure 1. T_{1}, T_{2} are two completely independent spanning trees (red and green).
Lemma 2.2. ([7]) There are two completely independent spanning trees in any 4-connected maximal plane graph.

Pai et al. [17] showed that the following results.
Lemma 2.3. ([17]) There are $\left\lfloor\frac{n}{2}\right\rfloor$ completely independent spanning trees in complete graph K_{n} for all $n \geq 4$.

Lemma 2.4. ([17]) There are $\left\lfloor\frac{n}{2}\right\rfloor$ completely independent spanning trees in complete bipartite graph $K_{m, n}$ for all $m \geq n \geq 4$.

Lemma 2.5. ([17]) There are $\left\lfloor\frac{n_{2}+n_{1}}{2}\right\rfloor$ completely independent spanning trees in complete tripartite graph $K_{n_{3}, n_{2}, n_{1}}$ for all $n_{3} \geq n_{2} \geq n_{1}$ and $n_{2}+n_{1} \geq 4$.

In 2012, Hasunuma [8] showed that the following result holds.
Lemma 2.6. ([8]) There are two completely independent spanning trees in the Cartesian product of any 2-connected graphs.

Darties [2] determined the maximum number of completely independent spanning trees in Cartesian product $K_{m} \square C_{n}$.
Lemma 2.7. ([2]) Let $m \geq 3$ and $n \geq 3$ be integers. We have

$$
m c i s t\left(K_{m} \square C_{n}\right)= \begin{cases}\left\lceil\frac{m}{2}\right\rceil, & \text { if }(m=3,5 \vee(m=7 \wedge n=3,4) \vee(m=9 \wedge n=4,5)) ; \\ \left\lfloor\frac{m}{2}\right\rfloor, & \text { otherwise. }\end{cases}
$$

In 2015, Matsushita et al. [15] consider the maximum number of completely independent spanning trees in any k-trees and proved the following result.

Lemma 2.8. ([15]) If $k \geq 3$, then $\left\lfloor\frac{k+1}{2}\right\rfloor \leq m \operatorname{cist}(G) \leq k-1$ for any k-trees G.

3. Main results

Theorem 3.1. Let m and n be integers and $m \geq 4, n \geq 2$. We have

$$
m c i s t\left(W_{m} \square P_{n}\right)=2 .
$$

Proof. Denote wheel

$$
V\left(W_{m}\right)=\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}
$$

and

$$
E\left(W_{m}\right)=\left\{u_{0} u_{i}, u_{i} u_{i+1(\bmod m-1)} \mid 1 \leq i \leq m-1\right\} .
$$

The Cartesian product $W_{m} \square P_{n}$ is denoted by as follows:

$$
\begin{gathered}
V\left(W_{m} \square P_{n}\right)=\left\{u_{i}^{j} \mid 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}, \\
E\left(W_{m} \square P_{n}\right)=\left\{u_{0}^{j} u_{k}^{j} \mid 1 \leq k \leq m-1,0 \leq j \leq n-1\right\} \cup\left\{u_{i}^{j} u_{i+1(\bmod m-1)}^{j} \mid 1 \leq i \leq m-1,0 \leq j \leq n-1\right\} \\
\cup\left\{u_{i}^{j} u_{i}^{j+1} \mid 0 \leq i \leq m-1,0 \leq j \leq n-2\right\} .
\end{gathered}
$$

Note that

$$
\left|V\left(W_{m} \square P_{n}\right)\right|=m n,\left|E\left(W_{m} \square P_{n}\right)\right|=3 m n-2 n-m .
$$

On the one hand, completely independent spanning trees are edge disjoint by Lemma 2 and every spanning tree has $m n-1$ edges, and combining with $m \geq 4, n \geq 2$, we have

$$
m c i s t\left(W_{m} \square P_{n}\right) \leq\left\lfloor\frac{3 m n-2 n-m}{m n-1}\right\rfloor \leq 2 .
$$

On the other hand, we give the lower bound of $m \operatorname{cist}\left(W_{m} \square P_{n}\right)$ by constructing two completely independent spanning trees in $W_{m} \square P_{n}$.

We construct two completely independent spanning trees T_{1}, T_{2} as follows:

$$
E\left(T_{1}\right)=\left\{u_{0}^{j} u_{k}^{j} \mid 2 \leq k \leq m-1,0 \leq j \leq n-1\right\} \cup\left\{u_{1}^{j} u_{2}^{j} \mid 0 \leq j \leq n-1\right\} \cup\left\{u_{0}^{j} u_{0}^{j+1} \mid 0 \leq j \leq n-2\right\},
$$

and

$$
E\left(T_{2}\right)=\left\{u_{i}^{j} u_{i+1(\bmod m-1)}^{j}, u_{0}^{j} u_{1}^{j} \mid 2 \leq i \leq m-1,0 \leq j \leq n-1\right\} \cup\left\{u_{1}^{j} u_{1}^{j+1} \mid 0 \leq j \leq n-2\right\} .
$$

It is easy to see that T_{1} and T_{2} are edge disjoint. Note that the spanning tree T_{1} contains $2 n$ internal vertices $\left\{u_{0}^{j}, u_{2}^{j} \mid 0 \leq j \leq n-1\right\}$ which are leaves in T_{2}. And T_{2} contains ($m-2$) n internal vertices $\left\{u_{1}^{j}, u_{i}^{j} \mid 3 \leq i \leq m-1,0 \leq j \leq n-1\right\}$ which are leaves in T_{1}. Hence, by Lemma $2, T_{1}$ and T_{2} are two completely independent spanning trees as Figure 2. Therefore, $\operatorname{mcist}\left(W_{m} \square P_{n}\right) \geq 2$ and further we have $m c i s t\left(W_{m} \square P_{n}\right)=2$.

Figure 2. T_{1}, T_{2} are two completely independent spanning trees in $W_{m} \square P_{n}$ (red and green).

Corollary 3.1. Let m and n be integers and $m \geq 4, n \geq 2$. We have

$$
m c i s t\left(W_{m} \square C_{n}\right)=2 .
$$

Proof. Denote wheel

$$
V\left(W_{m}\right)=\left\{u_{0}, u_{1}, \cdots, u_{m-1}\right\}
$$

and

$$
E\left(W_{m}\right)=\left\{u_{0} u_{i}, u_{i} u_{i+1(\bmod m-1)} \mid 1 \leq i \leq m-1\right\} .
$$

The Cartesian product $W_{m} \square C_{n}(n \geq 3)$ is denoted by as follows:

$$
\begin{aligned}
& V\left(W_{m} \square C_{n}\right)=\left\{u_{i}^{j} \mid 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}, \\
& E\left(W_{m} \square C_{n}\right)=E\left(W_{m} \square P_{n}\right) \cup\left\{u_{i}^{0} u_{i}^{n-1} \mid 0 \leq i \leq m-1\right\} .
\end{aligned}
$$

Note that

$$
\left|V\left(W_{m} \square C_{n}\right)\right|=m n,\left|E\left(W_{m} \square C_{n}\right)\right|=3 m n-2 n .
$$

On the one hand, completely independent spanning trees are edge disjoint by Lemma 2 and every spanning tree has $m n-1$ edges, and combining with $m \geq 4, n \geq 2$, we have

$$
m \operatorname{cist}\left(W_{m} \square C_{n}\right) \leq\left\lfloor\frac{3 m n-2 n}{m n-1}\right\rfloor \leq 2 .
$$

On the other hand, we give the lower bound of $m \operatorname{cist}\left(W_{m} \square C_{n}\right)$ by constructing two completely independent spanning trees in $W_{m} \square C_{n}$. To obtain the lower bound, the construction is similar with Theorem 3.1. Therefore, $\operatorname{mcist}\left(W_{m} \square C_{n}\right)=2$.

Theorem 3.2. Let m, n, r be integers and $m \geq n \geq 4, r \geq 2$. We have

$$
\left\lfloor\frac{n}{2}\right\rfloor \leq m c i s t\left(K_{m, n} \square P_{r}\right) \leq\left\lfloor\frac{m n+n+m}{m+n-1}\right\rfloor .
$$

Proof. Denote $K_{m, n}$ is complete bipartite graph with

$$
V\left(K_{m, n}\right)=\left\{u_{i}, v_{k} \mid 1 \leq i \leq m, 1 \leq k \leq n\right\} .
$$

We denote the Cartesian product graphs $K_{m, n} \square P_{r}$ and $K_{m, n} \square C_{r}(r \geq 3)$ as follows:

$$
\begin{aligned}
V\left(K_{m, n} \square P_{r}\right)= & V\left(K_{m, n} \square C_{r}\right)=\left\{u_{i}^{j}, v_{k}^{j} \mid 1 \leq i \leq m, 1 \leq k \leq n, 1 \leq j \leq r\right\}, \\
E\left(K_{m, n} \square P_{r}\right)= & \left\{u_{i}^{j} v_{k}^{j} \mid 1 \leq i \leq m, 1 \leq k \leq n, 1 \leq j \leq r\right\} \\
& \cup\left\{u_{i}^{j} u_{i}^{j+1}, v_{k}^{j} v_{k}^{j+1} \mid 1 \leq i \leq m, 1 \leq k \leq n, 1 \leq j \leq r-1\right\}, \\
E\left(K_{m, n} \square C_{r}\right) & =E\left(K_{m, n} \square P_{r}\right) \cup\left\{u_{i}^{1} u_{i}^{r}, v_{k}^{1} u_{k}^{r} \mid 1 \leq i \leq m, 1 \leq k \leq n\right\} .
\end{aligned}
$$

Note that

$$
\left|V\left(K_{m, n} \square P_{r}\right)\right|=m r+n r,\left|E\left(K_{m, n} \square P_{r}\right)\right|=m n r+m r+n r-n-m .
$$

On one hand, completely independent spanning trees are edge disjoint by Lemma 2 and every spanning tree has $m r+n r-1$ edges, and combining with $m \geq n \geq 4, r \geq 2$, we have

$$
m c i s t\left(K_{m, n} \square P_{r}\right) \leq\left\lfloor\frac{m n r+m r+n r-n-m}{m r+n r-1}\right\rfloor \leq\left\lfloor\frac{m n+m+n}{m+n-1}\right\rfloor .
$$

On the other hand, we give the lower bound of $m \operatorname{cist}\left(K_{m, n} \square P_{r}\right)$ by constructing $\left\lfloor\frac{n}{2}\right\rfloor$ completely independent spanning trees in $K_{m, n} \square P_{r}$.

We construct $\left\lfloor\frac{n}{2}\right\rfloor$ completely independent spanning trees $T_{1}, \cdots, T_{\left\lfloor\frac{n}{2}\right\rfloor}$ as follows:

$$
\begin{aligned}
E\left(T_{i}\right)= & \left\{u_{i}^{j} v_{k}^{j}, v_{i}^{j} u_{l}^{j} \left\lvert\, i \leq k \leq \frac{n}{2}+i\right., i \leq l \leq \frac{n}{2}+i, 1 \leq j \leq r\right\} \\
& \cup\left\{u_{i+\frac{n}{2}}^{j} v_{p}^{j}, v_{i+\frac{1}{2}}^{j} u_{q}^{j} \left\lvert\,\left(\frac{n}{2}+i<p \leq n\right) \wedge(1 \leq p<i)\right.,\right. \\
\left(\frac{n}{2}+i<q \leq m\right) \wedge & \left.(1 \leq q<i), 1 \leq j \leq r\} \cup\left\{u_{i}^{j} u_{i}^{j+1} \mid 1 \leq j \leq r-1\right\}\right\}, i=1, \cdots,\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

It is easy to see that $T_{1}, T_{2}, \cdots, T_{\left\lfloor\frac{n}{2}\right\rfloor}$ are edge disjoint. Note that every spanning tree T_{i} contains $4 r$ internal vertices $\left\{u_{i}^{j}, v_{i}^{j}, u_{\frac{n}{2}+i}^{j}, \left.v_{{ }_{\frac{n}{2}+i}}^{j} \right\rvert\, 1 \leq j \leq r\right\}$ which are leaves in $T_{j}(j \neq i)$. Hence, by Lemma 2, $T_{1}, T_{2}, \cdots, T_{\left\lfloor\frac{n}{2}\right\rfloor}$ are completely independent spanning trees. Therefore, $m c i s t\left(K_{m, n} \square P_{r}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor$ and further it holds.

An immediate consequence of the above theorem is the following corollary.
Corollary 3.2. Let m, n, r be integers and $m \geq n \geq 4, r \geq 2$. We have

$$
\left\lfloor\frac{n}{2}\right\rfloor \leq m c i s t\left(K_{m, n} \square C_{r}\right) \leq\left\lfloor\frac{m n+n+m}{m+n-1}\right\rfloor .
$$

Theorem 3.3. Let m, n, r be integers and $m \geq n \geq r, n+r \geq 4$. We have

$$
\left\lfloor\frac{n+r}{2}\right\rfloor \leq m \operatorname{cist}\left(K_{m, n, r} \square P_{s}\right) \leq\left\lfloor\frac{m n+n r+m r+(m+n+r)}{m+n+r-1}\right\rfloor .
$$

Proof. Denote $K_{m, n, r}$ is complete tripartite graph with

$$
V\left(K_{m, n, r}\right)=\left\{u_{i}, v_{j}, w_{k} \mid 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq r\right\} .
$$

We denote the Cartesian product $K_{m, n, r} \square P_{s}(s \geq 3)$ and $K_{m, n, r} \square C_{s}(s \geq 3)$ as follows:

$$
\begin{aligned}
V\left(K_{m, n, r} \square P_{s}\right) & =V\left(K_{m, n, r} \square C_{s}\right)=\left\{u_{i}^{l}, v_{j}^{l}, w_{k}^{l} \mid 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq r, 1 \leq l \leq s\right\}, \\
E\left(K_{m, n, r} \square P_{s}\right)= & \left\{u_{i}^{l} v_{j}^{l}, v_{j}^{l} w_{k}^{l}, w_{k}^{l} u_{i}^{l} \mid 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq r, 1 \leq l \leq s\right\} \\
& \cup\left\{u_{i}^{l} u_{i}^{l+1}, v_{j}^{l} v_{j}^{l+1}, w_{k}^{l} w_{k}^{l+1} \mid 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq r, 1 \leq l \leq s-1\right\}, \\
E\left(K_{m, n, r} \square C_{s}\right) & =E\left(K_{m, n, r} \square P_{s}\right) \cup\left\{u_{i}^{1} u_{i}^{s}, v_{j}^{1} v_{j}^{s},, w_{k}^{1} w_{k}^{s} \mid 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq r\right\} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \left|V\left(K_{m, n, r} \square P_{s}\right)\right|=(m+n+r) s, \\
& \left|E\left(K_{m, n, r} \square P_{s}\right)\right|=(m n+m r+n r) s+(m+n+r)(s-1) .
\end{aligned}
$$

On one hand, completely independent spanning trees are edge disjoint by Lemma 2 and every spanning tree has $(m+n+r) s-1$ edges, and combining with $m \geq n \geq r, n+r \geq 4$, we have

$$
m c i s t\left(K_{m, n, r} \square P_{s}\right) \leq\left\lfloor\frac{(m n+m r+n r) s+(m+n+r)(s-1)}{(m+n+r) s-1}\right\rfloor \leq\left\lfloor\frac{m n+n r+m r+(m+n+r)}{m+n+r-1}\right\rfloor .
$$

On the other hand, we give the lower bound of $m c i s t\left(K_{m, n, r} \square P_{s}\right)$ by constructing $\left\lfloor\frac{n+r}{2}\right\rfloor$ completely independent spanning trees in $K_{m, n, r} \square P_{s}$.

We construct $\left\lfloor\frac{n+r}{2}\right\rfloor$ completely independent spanning trees $T_{1}, \cdots, T_{\left\lfloor\frac{n+r}{2}\right\rfloor}$ as follows:
If $i \leq r$, then let

$$
\begin{aligned}
E\left(T_{i}\right)= & \left\{w_{i}^{l} u_{k}^{l}, w_{i}^{l} v_{2 j}^{l} \mid 1 \leq k \leq m, k \neq i, r<2 j \leq n, 1 \leq l \leq s\right\} \cup\left\{v_{i}^{l} w_{p}^{l} \mid 1 \leq p \leq r\right\} \\
& \cup\left\{u_{i}^{l} v_{q}^{l}, u_{i}^{l} v_{2 j+1}^{l} \mid 1 \leq q \leq r, r<2 j+1 \leq n, 1 \leq l \leq s\right\} \\
& \cup\left\{w_{i}^{l} w_{i}^{l+1} \mid 1 \leq l \leq s-1\right\}, i=1, \cdots,\left\lfloor\frac{n+r}{2}\right\rfloor .
\end{aligned}
$$

If $i>r$, then let

$$
\begin{aligned}
E\left(T_{i}\right) & =\left\{v_{i}^{l} w_{k}^{l}, v_{i}^{l} u_{2 a}^{l}, v_{i}^{l} u_{2 b+1}^{l} \mid 1 \leq k \leq r, r<2 a \leq i, i+1<2 b+1 \leq n, 1 \leq l \leq s\right\} \\
& \cup\left\{u_{i}^{l} v_{2 c}^{l}, u_{i}^{l} v_{2 d+1}^{l} \mid r<2 c \leq i, i \leq 2 d+1 \leq n, 1 \leq l \leq s\right\} \\
& \cup\left\{v_{i+1}^{l} u_{t}^{l}, v_{i+1}^{l} u_{2 a+1}^{l}, v_{i+1}^{l} u_{2 b}^{l}, v_{i+1}^{l} u_{q}^{l} \mid 1 \leq t \leq r,\right. \\
r & <2 a+1 \leq i, i \leq 2 b \leq n, n \leq q \leq m, 1 \leq l \leq s\} \\
& \cup\left\{u_{i+1}^{l} v_{k}^{l}, u_{i+1}^{l} l_{2 c+1}^{l}, u_{i+1}^{l} v_{2 d}^{l} \mid 1 \leq k \leq r, r \leq 2 c+1<i, i<2 d \leq n, 1 \leq l \leq s\right\} \\
& \cup\left\{v_{i}^{l} v_{i}^{l+1} \mid 1 \leq l \leq s-1\right\}, i=1, \cdots,\left\lfloor\frac{n+r}{2}\right\rfloor .
\end{aligned}
$$

It is easy to see that $T_{1}, T_{2}, \cdots, T_{\left\lfloor\frac{n+r}{2}\right\rfloor}$ are edge disjoint in Figure 1 . Note that every spanning tree T_{i} contains $3 s$ internal vertices $\left\{u_{i}^{l}, v_{i}^{l}, w_{i}^{l} \mid 1 \leq i \leq m, 1 \leq l \leq s\right\}$ (or $4 s$ internal vertices $\left\{v_{i}^{l}, v_{i+1}^{l}, w_{i}^{l}, w_{i+1}^{l} \mid 1 \leq\right.$ $l \leq s\})$ which are leaves in $T_{j}(j \neq i)$. Hence, by Lemma $2, T_{1}, T_{2}, \cdots, T_{\left\lfloor\frac{n+r}{2}\right\rfloor}$ are completely independent spanning trees as Figure 3. Therefore, $m \operatorname{cist}\left(K_{m, n, r} \square P_{s}\right) \geq\left\lfloor\frac{n+r}{2}\right\rfloor$ and further it holds.

Figure 3. $T_{1}, T_{2}, \cdots, T_{\left\lfloor\frac{n+r}{2}\right\rfloor}$ are completely independent spanning trees.

An immediate consequence of the above theorem is the following corollary.
Corollary 3.3. Let m, n, r be integers and $m \geq n \geq r, n+r \geq 4$. We have

$$
\left\lfloor\frac{n+r}{2}\right\rfloor \leq m c i s t\left(K_{m, n, r} \square C_{s}\right) \leq\left\lfloor\frac{m n+n r+m r+(m+n+r)}{m+n+r-1}\right\rfloor .
$$

4. Conclusions

Constructing CIST is has many applications on interconnection networks such as fault-tolerant broadcasting and secure message distribution. Hasunuma [7] proved that it is NP-complete to find the number of completely independent spanning trees for a general graph, and Hasunuma [8] showed also that there are two completely independent spanning trees in the Cartesian product $C_{m} \square C_{n}$ for all $m \geq 3, n \geq 3$. Therefore, it is meaningful to study the existence of completely independent spanning trees for special graphs. In this paper, we cleverly use the characterization of completely independent spanning trees to determine the number of completely independent spanning trees in Cartesian product graphs such as $W_{m} \square P_{n}, W_{m} \square C_{n}, K_{m, n} \square P_{r}, K_{m, n} \square C_{r}, K_{m, n, r} \square P_{s}, K_{m, n, r} \square C_{s}$. It is natural and interesting to consider the following problem, that is,

Problem 4.1. How can we determine the number of completely independent spanning trees in the Cartesian product graph of any two connected graphs?

Acknowledgments

The authors thank the referees for their remarks that allowed to improve the clarity of this paper. Xia Hong is financially supported by National Natural Science Foundation of China (Grant No. 12126336) and the Young backbone teachers in Luoyang Normal College (Grant No. 2021XJGGJS-07). Wei Feng is financially supported by Natural Science Foundation of Inner Mongolia autonomous regions (Grant No. 2022LHMS01006) and the Programs Foundation of basic scientific research of colleges and universities directly under Inner Mongolia Autonomous Region in 2022 (Grant No. GXKY22156).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. T. Araki, Dirac's condition for completely independent spanning trees, J. Graph Theory, 77 (2014), 171-179. https://doi.org/10.1002/jgt. 21780
2. D. Benoit, G. Nicolas, T. Olivier, Completely independent spanning trees in some regular graphs, Discrete Appl. Math., 217 (2017), 163-174. https://doi.org/10.1016/j.dam.2016.09.007
3. H. Y. Chang, H. L. Wang, J. S. Yang, J. M. Chang, A note on the degree condition of completely independent spanning trees, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E98 (2015), 2191-2196. https://doi.org/10.1587/TRANSFUN.E98.A. 2191
4. X. D. Chen, M. C. Li, L. M. Xiong, Two completely independent spanning trees of claw-free graphs, Discrete Math., 345 (2022), 113080. https://doi.org/10.1016/j.disc.2022.113080
5. G. H. Fan, Y. M. Hong, Q. H. Liu, Ore's condition for completely independent spanning trees, Discrete Appl. Math., 177 (2014), 95-100. https://doi.org/10.1016/j.dam.2014.06.002
6. T. Hasunuma, Completely independent spanning trees in the underlying graph of a line digraph, Discrete Math., 234 (2001),149-157. https://doi.org/10.1016/S0012-365X(00)00377-0
7. T. Hasunuma, Completely independent spanning trees in maximal planar graphs, 28th International Workshop on Graph-Theoretic Concepts in Computer Science (WG2002), 2002, 235-245. https://doi.org/10.1007/3-540-36379-3-21
8. T. Hasunuma, C. Morisaka, Completely independent spanning trees in torus networks, Network, 60 (2012), 59-69. https://doi.org/10.1002/net. 20460
9. T. Hasunuma, Minimum degree conditions and optimal graphs for completely independent spanning trees, International Workshop on Combinatorial Algorithms, 2016, 260-273. https://doi.org/10.1007/978-3-319-29516-9-22
10. X. Hong, Q. H. Liu, Degree condition for completely independent spanning trees, Inf. Process. Lett., 116 (2016), 644-648. https://doi.org/10.1016/j.ipl.2016.05.004
11. X. Hong, Completely independent spanning trees in k-th power of graphs, Discuss. Math. Graph Theory, 38 (2018), 801-810. https://doi.org/10.7151/dmgt. 2038
12. X. Hong, On completely independent spanning trees in powers of graphs, Utilitas Math., 108 (2018), 73-87.
13. X. Hong, H. Zhang, A Hamilton sufficient condition for completely independent spanning tree, Discrete Appl. Math., 279 (2020), 183-187. https://doi.org/10.1016/j.dam.2019.08.013
14. A. Itai, M. Rodeh, The multi-tree approach to reliability in distributed networks, Inf. Comput., 79 (1988), 43-59. https://doi.org/10.1016/0890-5401(88)90016-8
15. M. Matsushita, Y. Otachi, T. Araki, Completely independent spanning trees in (partial) k-trees, Discuss. Math. Graph Theory, 35 (2015), 427-437. https://doi.org/10.7151/dmgt. 1806
16. C. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc., 36 (1961), 445-450. https://doi.org/10.1112/jlms/s1-36.1.445
17. K. J. Pai, S. M. Tang, J. M. Chang, J. S. Yang, Advances in intelligent systems and applications, Spring, 2013, 107-113. https://doi.org/10.1007/978-3-642-35452-6-13
18. F. Péterfalvi, Two counterexamples on completely independent spanning trees, Discrete Math., 312 (2012), 808-810. https://doi.org/10.1016/j.disc.2011.11.015
19. Y. F. Wang, B. L. Cheng, Y. Qian, D. J. Wang, Constructing completely independent spanning trees in a family of Line-Graph-Based data center networks, IEEE Trans. Comput., 71 (2021), 1194-1203. https://doi.org/10.1109/TC.2021.3077587
20. J. Yuan, R. Zhang, A. X. Liu, Degree conditions for completely independent spanning trees of bipartite graphs, Graphs Combinatorics, 38 (2022), 179.
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
