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Abstract: Let T1,T2, . . . ,Tk be spanning trees of a graph G. For any two vertices u, v of G, if
the paths from u to v in these k trees are pairwise openly disjoint, then we say that T1,T2, . . . ,Tk

are completely independent. Hasunuma showed that there are two completely independent spanning
trees in any 4-connected maximal planar graph, and that given a graph G, the problem of deciding
whether there exist two completely independent spanning trees in G is NP-complete. In this paper, we
consider the number of completely independent spanning trees in some Cartesian product graphs such
as Wm□Pn, Wm□Cn, Km,n□Pr, Km,n□Cr, Km,n,r□Ps, Km,n,r□Cs.
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1. Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops or multiple edges).
The vertex set and the edge set of G are denoted by V(G) and E(G), respectively. For a vertex v ∈ V(G),
the neighbor set NG(v) is the set of vertices adjacent to v, dG(v) = |NG(v)| is the degree of v. For a
subgraph H of G, NH(v) is the set of the neighbours of v which are in H, and dH(v) = |NH(v)| is the
degree of v in H. When no confusion arises, we shall write N(v) and d(v), instead of NG(v) and dG(v).

δ(G) = min{d(v) : v ∈ V(G)}

is the minimum degree of G. For a subset U ⊆ V(G), the subgraph induced by U is denoted by G[U],
which is the graph on U whose edges are precisely the edges of G with both ends in U.

A tree T of G is a spanning tree of G if V(T ) = V(G). A leaf is a vertex of degree 1. An
internal vertex is a vertex of degree at least 2. A wheel graph Wm is a graph with m(m ≥ 4) vertices,
formed by connecting a single vertex u0 to all vertices of cycle Cm−1 = u1u2 · · · um−1. Its vertex set
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is {u0, u1, · · · , um−1} and edge set {u0ui, uiui+1(mod m−1)|1 ≤ i ≤ m − 1}. We called u0 is a center and
u0ui(1 ≤ i ≤ m − 1) is a spoke. A graph G is a complete k-partite graph if there is a partition
V1 ∪ · · · ∪ Vk of the vertex set V(G), such that uv ∈ E(G) if and only if u and v are in different parts of
the partition. If |Vi| = ni(1 ≤ i ≤ k), then G is denoted by Kn1,··· ,nk . Particularly, if k = 2, 3, then call it a
complete bipartite graph and complete tripartite graph, respectively. Denote Pn and Cn to be path and
cycle with n vertices. Given two graphs G and H, the Cartesian product of G and H, denoted by G□H,
is the graph with vertex set

V(G□H) = V(G) × V(H),

and edge set
{(u, u

′

)(v, v
′

)|(u = v ∧ u
′

v
′

∈ E(H)) ∨ (u
′

= v
′

∧ uv ∈ E(G))}.

Let x, y be two vertices of G. An (x, y)-path is a path with the two ends x and y. Two (x, y)-paths
P1, P2 are openly disjoint if they have no common edge and no common vertex except for the two
ends x and y. Let T1,T2, . . . ,Tk be spanning trees in a graph G. If for any two vertices u, v of G,
the paths from u to v in T1,T2, . . . ,Tk are pairwise openly disjoint, then we say that T1,T2, . . . ,Tk are
completely independent spanning trees (CISTs) in G. The concept of completely independent spanning
trees (CISTs) was proposed by Hasunuma [6] and he gave a characterization for CISTs. It can be seen
from the definition that a completely independent spanning tree is an independent spanning tree rooted
at any vertex. That is to say, in the study of fault-tolerant broadcasting problems in parallel computing,
if we construct a completely independent spanning tree, then when the source vertex becomes any other
vertex, there is no need to re-construct the independent spanning tree. In fact, completely independent
spanning trees have been studied from not only the theoretical point of view but also the practical point
of view because of their applications to fault-tolerant broadcasting in parallel computers [14].

It is well known [16] that every 2k-edge-connected graph has k edge-disjoint spanning trees.
Similarly, Hasunuma [7] conjectured that every 2k-connected graph has k CISTs. Ten years later,
Péterfalvi [18] disproved the conjecture by constructing a k-connected graph, for each k ≥ 2, which
does not have two CISTs. Based on the question raised by Araki [1], in recent years, a specific
relationship has been given between Hamilton’s sufficient condition and the existence of a completely
independent spanning tree, such as Fleischner’s condition [1], Dirac’s condition [1], Ore’s
condition [5] and Neighborhood union and intersection condition [13]. Moreover, the Dirac’s
condition has been generalized to k(≥ 2) completely independent spanning trees [3, 9, 10] and has
been independently improved [9, 10] for two completely independent spanning trees. Yuan et al. [20]
show that a degree condition for the existence of k CISTs in bipartite graphs. Wang et al. [19]
established the number of CISTs that can be constructed in the line graph of the complete graph.
Chen et al. [4] proved that if G is a {claw, hourglass, P2

6}-free graph with δ(G) ≥ 4, then G contains
two CISTs if and only if cl(G) has two CISTs. For the result of completely independent spanning
trees in the k-th power graph, see [11, 12]. In [7], it has been proved that it is NP-complete to find the
number of completely independent spanning trees for a general graph. Therefore, it is meaningful to
study the existence of completely independent spanning trees for special graphs. In [8], Hasunuma
showed that there are two completely independent spanning trees in the Cartesian product Cm□Cn for
all m ≥ 3, n ≥ 3. Also, Masayoshi [15] considered the number of completely independent spanning
trees in any k-trees. In this paper, we consider the number of completely independent spanning trees
in some Cartesian product graphs such as Wm□Pn,Wm□Cn,Km,n□Pr,Km,n□Cr,Km,n,r□Ps,Km,n,r□Cs.
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2. Preliminaries

Definition 2.1. ([6]) Let T1,T2, . . . ,Tk be spanning trees in a graph G. If for any two vertices u, v of
G, the paths from u to v in T1,T2, . . . ,Tk are pairwise openly disjoint, then we say that T1,T2, . . . ,Tk

are completely independent spanning trees(CISTs) in G.

Given a graph G, let mcist(G) be the maximum integer k such that there exist k completely
independent spanning trees in G. The following result obtained by Hasunuma [6] plays a key role in
our proof.

Lemma 2.1. ([6]) Let k ≥ 2 be an integer. T1,T2, · · · ,Tk are completely independent spanning trees
in a graph G if and only if they are edge disjoint spanning trees of G and for any v ∈ V(G), there is at
most one Ti such that dTi(v) > 1.

It is easy to see from the lemma that there are two completely independent spanning trees in the
following graph as Figure 1.

Figure 1. T1,T2 are two completely independent spanning trees (red and green).

Lemma 2.2. ([7]) There are two completely independent spanning trees in any 4-connected maximal
plane graph.

Pai et al. [17] showed that the following results.

Lemma 2.3. ([17]) There are ⌊ n
2⌋ completely independent spanning trees in complete graph Kn for all

n ≥ 4.

Lemma 2.4. ([17]) There are ⌊ n
2⌋ completely independent spanning trees in complete bipartite graph

Km,n for all m ≥ n ≥ 4.

Lemma 2.5. ([17]) There are ⌊ n2+n1
2 ⌋ completely independent spanning trees in complete tripartite

graph Kn3,n2,n1 for all n3 ≥ n2 ≥ n1 and n2 + n1 ≥ 4.

In 2012, Hasunuma [8] showed that the following result holds.

Lemma 2.6. ([8]) There are two completely independent spanning trees in the Cartesian product of
any 2-connected graphs.

Darties [2] determined the maximum number of completely independent spanning trees in Cartesian
product Km□Cn.

Lemma 2.7. ([2]) Let m ≥ 3 and n ≥ 3 be integers. We have

mcist(Km□Cn) =

 ⌈m
2 ⌉, if (m = 3, 5 ∨ (m = 7 ∧ n = 3, 4) ∨ (m = 9 ∧ n = 4, 5));
⌊m

2 ⌋, otherwise.
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In 2015, Matsushita et al. [15] consider the maximum number of completely independent spanning
trees in any k-trees and proved the following result.

Lemma 2.8. ([15]) If k ≥ 3, then ⌊ k+1
2 ⌋ ≤ mcist(G) ≤ k − 1 for any k-trees G.

3. Main results

Theorem 3.1. Let m and n be integers and m ≥ 4, n ≥ 2. We have

mcist(Wm□Pn) = 2.

Proof. Denote wheel
V(Wm) = {u0, u1, . . . , um−1}

and
E(Wm) = {u0ui, uiui+1(mod m−1)|1 ≤ i ≤ m − 1}.

The Cartesian product Wm□Pn is denoted by as follows:

V(Wm□Pn) = {u j
i |0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1},

E(Wm□Pn) = {u j
0u j

k|1 ≤ k ≤ m − 1, 0 ≤ j ≤ n − 1}∪{u j
i u

j
i+1(mod m−1)|1 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}

∪{u j
i u

j+1
i |0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 2}.

Note that
|V(Wm□Pn)| = mn, |E(Wm□Pn)| = 3mn − 2n − m.

On the one hand, completely independent spanning trees are edge disjoint by Lemma 2 and every
spanning tree has mn − 1 edges, and combining with m ≥ 4, n ≥ 2, we have

mcist(Wm□Pn) ≤ ⌊
3mn − 2n − m

mn − 1
⌋ ≤ 2.

On the other hand, we give the lower bound of mcist(Wm□Pn) by constructing two completely
independent spanning trees in Wm□Pn.

We construct two completely independent spanning trees T1 ,T2 as follows:

E(T1) = {u j
0u j

k|2 ≤ k ≤ m − 1, 0 ≤ j ≤ n − 1} ∪ {u j
1u j

2|0 ≤ j ≤ n − 1} ∪ {u j
0u j+1

0 |0 ≤ j ≤ n − 2},

and
E(T2) = {u j

i u
j
i+1(mod m−1), u

j
0u j

1|2 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} ∪ {u j
1u j+1

1 |0 ≤ j ≤ n − 2}.

It is easy to see that T1 and T2 are edge disjoint. Note that the spanning tree T1 contains 2n internal
vertices {u j

0, u
j
2|0 ≤ j ≤ n − 1} which are leaves in T2. And T2 contains (m − 2)n internal vertices

{u j
1, u

j
i |3 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} which are leaves in T1. Hence, by Lemma 2, T1 and T2 are two

completely independent spanning trees as Figure 2. Therefore, mcist(Wm□Pn) ≥ 2 and further we have
mcist(Wm□Pn) = 2.

□
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Figure 2. T1,T2 are two completely independent spanning trees in Wm□Pn(red and green).

Corollary 3.1. Let m and n be integers and m ≥ 4, n ≥ 2. We have

mcist(Wm□Cn) = 2.

Proof. Denote wheel
V(Wm) = {u0, u1, · · · , um−1}

and
E(Wm) = {u0ui, uiui+1(mod m−1)|1 ≤ i ≤ m − 1}.

The Cartesian product Wm□Cn(n ≥ 3) is denoted by as follows:

V(Wm□Cn) = {u j
i |0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1},

E(Wm□Cn) = E(Wm□Pn) ∪ {u0
i un−1

i |0 ≤ i ≤ m − 1}.

Note that

|V(Wm□Cn)| = mn, |E(Wm□Cn)| = 3mn − 2n.

On the one hand, completely independent spanning trees are edge disjoint by Lemma 2 and every
spanning tree has mn − 1 edges, and combining with m ≥ 4, n ≥ 2, we have

mcist(Wm□Cn) ≤ ⌊
3mn − 2n
mn − 1

⌋ ≤ 2.

On the other hand, we give the lower bound of mcist(Wm□Cn) by constructing two completely
independent spanning trees in Wm□Cn. To obtain the lower bound, the construction is similar with
Theorem 3.1. Therefore, mcist(Wm□Cn) = 2.

□

AIMS Mathematics Volume 8, Issue 7, 16127–16136.



16132

Theorem 3.2. Let m, n, r be integers and m ≥ n ≥ 4, r ≥ 2. We have

⌊
n
2
⌋ ≤ mcist(Km,n□Pr) ≤ ⌊

mn + n + m
m + n − 1

⌋.

Proof. Denote Km,n is complete bipartite graph with

V(Km,n) = {ui, vk|1 ≤ i ≤ m, 1 ≤ k ≤ n}.

We denote the Cartesian product graphs Km,n□Pr and Km,n□Cr(r ≥ 3) as follows:

V(Km,n□Pr) = V(Km,n□Cr) = {u
j
i , v

j
k|1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ j ≤ r},

E(Km,n□Pr) = {u
j
i v

j
k|1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ j ≤ r}

∪{u j
i u

j+1
i , v

j
kv

j+1
k |1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ j ≤ r − 1},

E(Km,n□Cr) = E(Km,n□Pr) ∪ {u1
i ur

i , v
1
kur

k|1 ≤ i ≤ m, 1 ≤ k ≤ n}.

Note that

|V(Km,n□Pr)| = mr + nr, |E(Km,n□Pr)| = mnr + mr + nr − n − m.

On one hand, completely independent spanning trees are edge disjoint by Lemma 2 and every
spanning tree has mr + nr − 1 edges, and combining with m ≥ n ≥ 4, r ≥ 2, we have

mcist(Km,n□Pr) ≤ ⌊
mnr + mr + nr − n − m

mr + nr − 1
⌋ ≤ ⌊

mn + m + n
m + n − 1

⌋.

On the other hand, we give the lower bound of mcist(Km,n□Pr) by constructing ⌊ n
2⌋ completely

independent spanning trees in Km,n□Pr.
We construct ⌊ n

2⌋ completely independent spanning trees T1, · · · ,T⌊ n
2 ⌋

as follows:

E(Ti) = {u
j
i v

j
k, v

j
i u

j
l |i ≤ k ≤ n

2 + i, i ≤ l ≤ n
2 + i, 1 ≤ j ≤ r}

∪{u j
i+ n

2
v j

p, v
j
i+ n

2
u j

q|(n
2 + i < p ≤ n) ∧ (1 ≤ p < i),

( n
2 + i < q ≤ m) ∧ (1 ≤ q < i), 1 ≤ j ≤ r} ∪ {u j

i u
j+1
i |1 ≤ j ≤ r − 1}}, i = 1, · · · , ⌊ n

2⌋.

It is easy to see that T1,T2, · · · ,T⌊ n
2 ⌋

are edge disjoint. Note that every spanning tree Ti contains
4r internal vertices {u j

i , v
j
i , u

j
n
2+i, v

j
n
2+i|1 ≤ j ≤ r} which are leaves in T j( j , i). Hence, by Lemma 2,

T1,T2, · · · ,T⌊ n
2 ⌋

are completely independent spanning trees. Therefore, mcist(Km,n□Pr) ≥ ⌊n
2⌋ and

further it holds. □

An immediate consequence of the above theorem is the following corollary.

Corollary 3.2. Let m, n, r be integers and m ≥ n ≥ 4, r ≥ 2. We have

⌊
n
2
⌋ ≤ mcist(Km,n□Cr) ≤ ⌊

mn + n + m
m + n − 1

⌋.

Theorem 3.3. Let m, n, r be integers and m ≥ n ≥ r, n + r ≥ 4. We have

⌊
n + r

2
⌋ ≤ mcist(Km,n,r□Ps) ≤ ⌊

mn + nr + mr + (m + n + r)
m + n + r − 1

⌋.
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Proof. Denote Km,n,r is complete tripartite graph with

V(Km,n,r) = {ui, v j,wk|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r}.

We denote the Cartesian product Km,n,r□Ps(s ≥ 3) and Km,n,r□Cs(s ≥ 3) as follows:

V(Km,n,r□Ps) = V(Km,n,r□Cs) = {ul
i, v

l
j,w

l
k|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r, 1 ≤ l ≤ s},

E(Km,n,r□Ps) = {ul
iv

l
j, v

l
jw

l
k,w

l
ku

l
i|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r, 1 ≤ l ≤ s}

∪{ul
iu

l+1
i , v

l
jv

l+1
j ,w

l
kw

l+1
k |1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r, 1 ≤ l ≤ s − 1},

E(Km,n,r□Cs) = E(Km,n,r□Ps) ∪ {u1
i us

i , v
1
jv

s
j, ,w

1
kws

k|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r}.

Note that

|V(Km,n,r□Ps)| = (m + n + r)s,

|E(Km,n,r□Ps)| = (mn + mr + nr)s + (m + n + r)(s − 1).

On one hand, completely independent spanning trees are edge disjoint by Lemma 2 and every
spanning tree has (m + n + r)s − 1 edges, and combining with m ≥ n ≥ r, n + r ≥ 4, we have

mcist(Km,n,r□Ps) ≤ ⌊
(mn + mr + nr)s + (m + n + r)(s − 1)

(m + n + r)s − 1
⌋ ≤ ⌊

mn + nr + mr + (m + n + r)
m + n + r − 1

⌋.

On the other hand, we give the lower bound of mcist(Km,n,r□Ps) by constructing ⌊ n+r
2 ⌋ completely

independent spanning trees in Km,n,r□Ps.
We construct ⌊n+r

2 ⌋ completely independent spanning trees T1, · · · ,T⌊ n+r
2 ⌋

as follows:
If i ≤ r, then let

E(Ti) = {wl
iu

l
k,w

l
iv

l
2 j|1 ≤ k ≤ m, k , i, r < 2 j ≤ n, 1 ≤ l ≤ s} ∪ {vl

iw
l
p|1 ≤ p ≤ r}

∪{ul
iv

l
q, u

l
iv

l
2 j+1|1 ≤ q ≤ r, r < 2 j + 1 ≤ n, 1 ≤ l ≤ s}

∪{wl
iw

l+1
i |1 ≤ l ≤ s − 1}, i = 1, · · · , ⌊ n+r

2 ⌋.

If i > r, then let

E(Ti) = {vl
iw

l
k, v

l
iu

l
2a, v

l
iu

l
2b+1|1 ≤ k ≤ r, r < 2a ≤ i, i + 1 < 2b + 1 ≤ n, 1 ≤ l ≤ s}

∪{ul
iv

l
2c, u

l
iv

l
2d+1|r < 2c ≤ i, i ≤ 2d + 1 ≤ n, 1 ≤ l ≤ s}

∪{vl
i+1ul

t, v
l
i+1ul

2a+1, v
l
i+1ul

2b, v
l
i+1ul

q|1 ≤ t ≤ r,

r < 2a + 1 ≤ i, i ≤ 2b ≤ n, n ≤ q ≤ m, 1 ≤ l ≤ s}

∪{ul
i+1vl

k, u
l
i+1vl

2c+1, u
l
i+1vl

2d|1 ≤ k ≤ r, r ≤ 2c + 1 < i, i < 2d ≤ n, 1 ≤ l ≤ s}

∪{vl
iv

l+1
i |1 ≤ l ≤ s − 1}, i = 1, · · · , ⌊ n+r

2 ⌋.

It is easy to see that T1,T2, · · · ,T⌊ n+r
2 ⌋

are edge disjoint in Figure 1. Note that every spanning tree Ti

contains 3s internal vertices {ul
i, v

l
i,w

l
i|1 ≤ i ≤ m, 1 ≤ l ≤ s} (or 4s internal vertices {vl

i, v
l
i+1,w

l
i,w

l
i+1|1 ≤

l ≤ s}) which are leaves in T j( j , i). Hence, by Lemma 2, T1,T2, · · · ,T⌊ n+r
2 ⌋

are completely independent
spanning trees as Figure 3. Therefore, mcist(Km,n,r□Ps) ≥ ⌊n+r

2 ⌋ and further it holds. □
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Figure 3. T1,T2, · · · ,T⌊ n+r
2 ⌋

are completely independent spanning trees.
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An immediate consequence of the above theorem is the following corollary.

Corollary 3.3. Let m, n, r be integers and m ≥ n ≥ r, n + r ≥ 4. We have

⌊
n + r

2
⌋ ≤ mcist(Km,n,r□Cs) ≤ ⌊

mn + nr + mr + (m + n + r)
m + n + r − 1

⌋.

4. Conclusions

Constructing CIST is has many applications on interconnection networks such as fault-tolerant
broadcasting and secure message distribution. Hasunuma [7] proved that it is NP-complete to find
the number of completely independent spanning trees for a general graph, and Hasunuma [8] showed
also that there are two completely independent spanning trees in the Cartesian product Cm□Cn for all
m ≥ 3, n ≥ 3. Therefore, it is meaningful to study the existence of completely independent spanning
trees for special graphs. In this paper, we cleverly use the characterization of completely independent
spanning trees to determine the number of completely independent spanning trees in Cartesian product
graphs such as Wm□Pn, Wm□Cn, Km,n□Pr, Km,n□Cr, Km,n,r□Ps, Km,n,r□Cs. It is natural and interesting
to consider the following problem, that is,

Problem 4.1. How can we determine the number of completely independent spanning trees in the
Cartesian product graph of any two connected graphs?
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