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Abstract: In this paper, we employ the concept of the g-derivative to derive certain differential
and integral operators, Dj, and 17 ;> resp., to generalize the class of Salagean operators over the
set of univalent functions. By means of the new operators, we establish the subclasses M} , and
Dy , of analytic functions on an open unit disc. Further, we study coefficient inequalities for each
function in the given classes. Over and above, we derive some properties and characteristics of the
set of differential subordinations by following specific techniques. In addition, we study the general
properties of D} , and I, and obtain some interesting differential subordination results. Several results

are also derived in some details.
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1. Introduction

The theory of the g-calculus operators has been included in diverse areas of science including
fractional g-calculus, optimal control, g-difference and g-integral equations. An application to the
existed g-calculus operators is given by [1]. Meanwhile, the geometric function theory of the area
of complex analysis is described by Srivastava [2]. In [3], the authors present the g-Salagean and
Ruscheweyh differential operators as a special case of analytic functions. The Jackson g-derivative of
conformable bi-univalent functions is discussed in [4]. Authors in [5] discuss g-calculus and symmetric
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Salagean differential operators. Arif et al. [6] investigate the multivalent functions by using a g-
derivative operator. Ismail et al. [7] obtain some properties of starlike functions by using g-derivative
operators. Srivastava et al. [8] derive some properties of analytic functions based on a g-Noor integral
operator. However, some important properties of the g-calculus theory in the geometric class of analytic
functions are studied by various authors, see, e.g., [9-20] and [21-24]. See also [25-27] for further
integral transforms and applications.

Let f be a complex valued function and 0 < g < 1. Then, the Jackson g-difference operator is
defined by [28]

,2€D (D={z:|zl < 1}).

D,fe) = FEL0E

Let A consist of analytic functions on the unite disc D normalized by f(0) = 0 and f’(0) = 1. Then,
the expansion of the function f € A has the following form

Q=2+ ) az" (1.1)
n=2

The class of univalent functions in (A is denoted by S. Whereas, the class of starlike functions and the
class of convex functions are respectively denoted by S * and K [29]. Many important properties of the
aforementioned subclasses of univalent functions are given by [30-32].

Here, we denote by P the class of analytic functions p which are analytic in D such that p(0) = 0
and Re{p} > 0 [29]. Therefore, the function p can be written in the form

p@ =1+ p, zeD. (12)
k=1

Assume that the function f is given by (1.1) and the function g is given by the following form

g =z+ Z b,7", z€ D.
n=2

Then, the convolution (or Hadamard) product of two functions f and g is presented in [33] as

f@*g@)=z+ Z a,b,7", z € D.
n=2

Let f € A be given by (1.1) and g be analytic function on the open unit disk D with g(0) = 0. We say
that the function f is subordinate to a function g written as f < g if

f(@) = gw() (zeD),

where w is a Schwartz function with w(0) = 0 and |w(z)| < |z|. Note that the function g need not be
univalent [34] (see also [35]).

Let f € A be a univalent convex function given by (1.1). A sequence {b};7, of complex numbers
is said to be a subordinating factor sequence if it satisfies the following differential subordination
([36,37])

Z abi < f2), z€D, (1.3)

k=1
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where a; = 1. The univalent function /(z) is called a dominant of the solution of the differential
subordination or, more simply, a dominant if

f@@) <hz), (zeD),
for all f(z) satisfying (1.3). A dominant h(z) that satisfies
h(z) < h(z), (z€ D),

for all of h(z) satisfying (1.3) is said to be the best dominant [34].
Let f € A be given by (1.1), then the Salagean differential operator, introduced in [38], is denoted
by D" f, where

D'f) =z+ Z Kaz-. (1.4)
n=2

The Salagean differential operator conciliated many researchers to generalize it; see, for example,
[39—41]. In this paper, benefited from the idea of Salagean and the g-derivative operator, we introduce
a g-analogue of Salagean differential and integral operators. We also define a new subclass of univalent
functions and establish coeflicient bounds for functions in these subclasses. Finally, we obtain some
differential subordination results.

Lemma 1. [29] Let the function p € P be given by (1.2). Then, the coefficients are bounded by
|pal <2, forall n €N,

where the bound of coefficients is sharp.

Lemma 2. [36] The sequence {b;};., is a subordinating factor if and only if

Re(l + ZZbkzk) >0, forall ze€D.
k=1

1.1. Generalized Salagean differential operator

Several differential operators have been recently introduced to generalize (1.4) [42]. Here, we define
a differential operator as follows:

D f(2)
D:;,af (2)

f(2);
(1 =D f(2) +AD,f(2);

Dy f() = DgaDy ) f(2)),

where n € Ny = N (J{0}. Let f be defined by (1.1), then we have

Dy f@) =2+ ) [(1 =)+ Ak, ad (15)
k=2
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From the definition of the operator (1.5), we, for ¢ — 17, obtain

qll)l}'! DZ,/lf(Z)

q—1-

lim |z + i [ =) + a1k, | @
k=2

2+ ) [+ (k= DA" a2 = Dif(),
k=2
where D, f is the generalized Salagean differential operator defined in [42].

1.2. Generalized Salagean integral operator
Suppose that

A Az
+ ,
(I-2)(1 -gqz)

_1_
V@) =1

and

ﬁf_/
k-times

W) = Y@ @) =2+ ) [1 - A+ alk,| .
k=2

Then, for every univalent function f € A we define the integral operator 7 , f such that

@)=Y * f2),

where
Z
PRI W) = ——=z+ ) & (zeD)
[P()] = Y(2) T2 =¢ z (zeD)
This, indeed, implies that

I =z Z ,,zk (z€ D).

Therefore, we have

=74 k e D). 1.6
I f@) =1 Z(I_A)”U{]]z (z€ D) (1.6)

Remark 1. Note that for A = 1, the integral operator (1.6) reduces to the following integral operator

(z€ D).

) 0 a )
I = E
q,lf(z) Z + £ [k]ZZ )

Lemma 3. If f € A, then we have

o I f(2) = f(2),
° Il]f(z) f(f)d ‘.
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2. Coeflicient estimate

Definition 1. Let M}, (1) be a subclass of A consisting of functions f such that the following inequality

holds
DD f(2))
R _ s
{ D, @) }<“

for z € D and some u (u > 1). For n = 1, we define M;’A(u) = M, ().

Definition 2. Let N (1) be a subclass of A consisting of functions f such that the following inequality

holds
D17, f(2)
R _ )
{ I,/ }<“

for z € D and some u (u > 1). For n = 1, we define qu,l(,u) = Ny ().

In the following, we derive a sufficient condition so that the function f belongs to the classes M
and N7 ;. We also derive theorems and discuss conditions so that the coefficient inequalities hold.

Theorem 1. Let u < [k],, B < [k], and k € N. If f € A satisfies the inequality

DNkl = il = A+ ATkl < = 1, 2.1

n=2
for some p > 1, then f belongs to M, ,(w).

Proof. Assume that the inequality (2.1) holds. Then, it suffices to show that
zDy(Dy 1 f(2)
D f@) B

DD f@)
DANIED) C )

<1.

For, we derive

DDy 1 ()
DL @) B

DD f@)
oL Cu-p)

24 Yol = A+ ALK) 1" [k),an* — Bz + Ypon BL1 — A+ ALk], )" arZ*
2+ Yol = A+ Alk] )" klgazt — 2Qu = Bz — Xl = PIL — A+ ALk 1 axzt
‘ 1 =B+ X5k, = Bl = A+ Ak] )" a !
2= 1=p =22kl +B = 2)[1 = A+ AK] 1" a2t
This, indeed, yields

2Dy(D ,f(2))

oo P 1B SR, - A+ AR, o
eDy(D;) 1 f(2) T2u—1-8-3,kl, + 8= 2ulll = A+ ALkl lagllz<t e
W —Qu-p)| B = 2 llkly + B —2ull [k]g)"lallz]
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If A’q’, 1(2) < 1, then we get
L=+ ) ((kly =B = A+ Akl < Qu—=1=p) = D |kl + B = 2ull1 = A+ AK],1"lal.
k=2 k=2

Therefore, we have
D (Kl = Bl + 1Kl + B = 2uD[1 = A+ AK]'la] < 240 =2,
k=2

which is equivalent to assertion (2.1). Thus, the proof of theorem is completed. O
In the special case, putting n = 1 in Theorem 1, we derive the following corollary.

Corollary 1. Let u < [k],, B < [kly, k € N. If for some u > 1 the function f € A satisfies the
inequality

D UKl = (1= A+ Akl < - 1,
n=2

then f(z) belongs to M, (1)
Similar Theorem 1, we state the following theorem.

Theorem 2. Let u < [k],, B < [k], and k € N. If f € A satisfies the inequality

- [k]q —H
z; A e 22)

for some p > 1, then f belongs to N ,(1).
As a special case, by putting n = 1 in Theorem 2, we arrive at the following corollary.

Corollary 2. Let u < [k],, B < [kl kK € N. If for some u > 1 the function f € A satisfies the
inequality

= [k]q_:u
§ 4l <u-1
- 1—/l+/1[k]q|ak| =HTE

then f € N, (u).

Lemma 4. Let u > 1. If the sequence {\;},7, is defined by

A= 1,
2 _ 1 k—1
A % i (2.3)
|[ ]q - | =1
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then

A = 2 (2.4)

and

), (k> 3). (2.5)

Proof. We can easily prove assertion (2.4). To prove assertion (2.5), we use the induction on k. Indeed,
from (2.3), we get

_2(,u—1) 2(u—1)
MEhl o (“ [2]q—1)’

which implies that (2.4) holds for k = 3. Suppose that assertion (2.5) holds for k = m, then we have

Qu-1) < 2u-1 &
Ay = 2D A._w_>[ZAj+Am

[m+1l, =14 [m+1], -1

2u—1) (lmly -1

m+1],— 12— 1)
m—1

_ 2u-D [m]q—1+1)2(y—l) (1+2g¢—1))

[m+ 10, = 1\2 -1 ") {m], - 11 ] [, - 1

o 2u-D) 2u—1)
- [m+1]q—1.—[(”[j]q—1)'

I)Am

Jj=2
This implies that (2.5) holds for k = m + 1. This completes the proof of the Lemma. O

Theorem 3. Let u > 1and f € M (W), then we have
2u—1
W= (2.6)

las| < (2], - D1 = A+ A12],1"
and
2u—1) k—1( - 1))
- 1 k> 3. 2.7
ol < ([k]l; = DI = A + A[k],]" l;l + Dlo—1 for k> 2.7)

Proof. In view of Dy, f presented in (1.5), we write

D f@) =2+ ) A
k=2

where

Ay = [(1 =) + A[k],]"ay. (2.8)
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Now, we consider

zDy(Dy ,f(2)
p=1- ( Dy f@) 1)

p) = P =1+ piz+p +.. (2.9)
Then it is easy to show that p € P. In view of (1.5), we derive
DDl f(2)) = uDl 1 f(2) = (= Dp@DLf(2). (2.10)

From Egs (2.1), (2.9) and (2.10), we establish

2+ 21,0077 + oo + K AT + o = plz + A + o+ N+ L]
— (=D +piz+p?+ .+ + A+ M+ + M+ (2.11)

By evaluating the coefficients of z¥, in both sides of (2.11), we infer
[KlgAr = pAx — (u = Dpr — pr-18o + pr1As + o+ prAy + Al
As p € P, we apply Lemma 1 to yield

2(#— 1)

Z'A' (Ar=1,jeN-(1).

VIS

Next, we find the sequence {A},?, such that

A= 1,
and
Qu-1) <
[kl, - Z;
Let us show that
Al € Ay, (ke N-={1}). (2.12)
For k = 2, we have
2u—1)
Ay < 27D
(2], -

Assume that
Apl < 1ALl (mef2,3,..,k}).

Then, we have

D)
Al < 1Z| < —12A = At

Therefore, by applying Lemma 4, we reach to the assertions (2.4) and (2.5). From Egs (2.8), (2.12),
(2.4) and (2.5), we establish the coefficient estimates in (2.6) and (2.7). Thus, the proof of Theorem 3
is completed. O
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Similar to Theorem 3, we state without proof the following theorem.

Theorem 4. Let u > 1 and f € N, ,(u), then we have

2w —= D[l = A+ a12],]"
[2]q -1 ’

la,| <

and

2(;4—1)[(1—“1[1(] i L 2=
lay| < k] (

[ —1)’ =3
q

Jj=2
3. Properties of differential subordination

In this section, by applying the inequalities (2.1) and (2.2), we introduce the subclasses MZ’ 2(w) and
NZ, 1(w). Further, we construct differential subordination results for these subclasses.

Definition 3. The function f € A belongs to the class M A(,u) if the Taylor Maclaurin coefficient
satisfies the inequality (2.1). When g — 17, the class M. 411 is denoted by M ﬁ(,u).

Theorem 5. Let f € Abe givenby (1.1),0<g <1, u<[klyand0 <A< 1. Iff € MZJ('“) and g isa
convex function, then we have

Aga(n, 1) (f * )(2) < g(2), (3.1)
and
p—=1+2], - Il =1+ A2],]"
R - , 3.2
N (5 N | B B TN G2
where

(121, — w1 — A+ A[2],]""
N e . 3.3
1% 1) =1+ (2] = wll = A+ A[2]4]" .

Proof. Suppose that f € MZ, () and g(z) = 7+ Yo, biZ¥, then we conclude

Agan, (f % 8)(@) = Agalrn, 1) [z £y akbkz"], (34)

k=2

where A, i(n, ) has the significance of (3.3). If {A,1(n, w)ai};2 , 1s a subordinate factor sequence with
a; = 1, then the subordination (3.1) holds.
By applying Lemma 2, the inequality (3.4) is equivalent to

o _ _ n—1
- {“Z 2([2], — [l = A+ A[21,]

k
=1+ (2, -l - A+ 2], } >0, for z€D. (3.5)

k=1
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Note that {|[k], — ul[1 — A + A[k],]"};7, is an increasing sequence. Now, by applying Theorem 1, we
infer

S22l -l - A+ A2
Re{l ' ; H= 1+ (2] -l = 2+ 2],

N (2], - wll = 1+ A2],]" ¢
= e {1 * ; M= 1+ ([2]q —,Ll)[l -+ ﬂ[z]q]nakz }

e {1+ 2021, = A+ 2L
p= 1+ (20, — Il — A+ 2121,

1
Tho (2, - Il - A+ A2,
221, -l = A+ ARLY
K1+ (120, — Il — A+ 2], 1

I Z([z]q -l —a+ /l[z]q]nakzk}
k=2

1 N n k
R T TR ;(mq L1 = 2+ A2,
22, -l - A+ A2 -l )
p= T4 (@21 =l - A+ 2L p= 1+ (120, = Ll = A+ 1211

=1-r

for |zl = r < 1. This proves inequality (3.5). Hence, the differential subordination (3.1) is established.

We can verify inequality (3.2) by setting g(z) = —. This completes the proof of Theorem 5. O

1-z°

Remark 2. Suppose that the function f, is defined as follows
p—1 2

L (o T T

It can be easily shown that f,(z) € M;l’ ). Thus, from the differential subordination (3.1), we find that

Aga(n, @) f2(2) < li_z (z € D), (3.6)

where Ay (n, i) has the meaning of (3.3). This implies that

1
minzep {Aga(n. ) fo2)) = =3

This shows that, the constant A, (n, ) in (3.1) is the best unique dominant. Indeed, we can’t replace
this constant by a large one.

By setting ¢ — 17 in Theorem 5, one may derive the following corollary.

Corollary 3. Let f € Abe givenby (1.1), 1 <u<2and0 <A< 1. Iff e Mﬁ(,u) and g is a convex
function, then

Aa(n, )(f * 8)(2) < 8(2), (3.7)
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and
u=1+Q2—-w(d+2)"
Re(f(2)) > - iz
where
2 —w)(1 + )1
Mg - 2B+ D

p=1+Q2-pwd+"

Remark 3. Similar to Remark 2, we infer that the constant A (n, u) in (3.7) is the best unique dominant.
Indeed, we can’t replace this constant by a large one.

Definition 4. The function f € A belongs to the class N; L) if the Taylor-Maclaurin coefficient
satisfies the inequality _(2.2). _
For g — 17, the class NZ’ (W) is denoted by NZ(,u).

Similar to Theorem 5, we can derive the following theorem.

Theorem 6. Let f € A be givenby (1.1),0<qg <1, u<[kl,and0 <AL 1. If f € N;A(y) and g is a
convex function, then

Aga(n, )(f % 8)(2) < 8(2), s
and
Re(f (5 > - = D= A+ 211"+ (2 =)
[2]g —u
where
Aga(n,p) = (121, — (A = 2+ 2[2]y)

(1= DI = A+ 2], 1" + [2], — 4

Remark 4. Similar to Remark 2, we claim that the constant Ay (n,u) in (3.8) is the best unique
dominant. Indeed, we can’t replace this constant by a large one.

By allowing ¢ — 1~ in Theorem 6, one may state- without proof the following corollary.

Corollary 4. Let f € A be givenby (1.1), 1 <u<2and0 <A< 1. Iff € Nﬁ(,u) and g is a convex
function, then

Aa(n, p)(f * 8)(z) < g(2), (3.9)
and
Re(f(2) > _(u - 1)(12+ A +2 —,u,
—u
where
2—w(1+2
Ay = Qo0 D

wu—-DA+)"+2—u
We cannot replace the constant A (n, ) in (3.9) by a larger one.

Remark 5. Similar to Remark 2, we establish that the constant A(n,u) in (3.9) is the best unique
dominant. Indeed, we can’t replace this constant by a large one.
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4. Conclusions

In this paper, new subclasses of analytic functions and g-analogues of Salagean differential
operators were studied by virtue of an idea of Salagean operators. Several subclasses of univalent
functions associated with g-Salagean differential operators are obtained. Further, coefficient bounds
for functions in the aforementioned subclasses are discussed. Some reliable results for differential
subordinations of the analytic functions are also investigated. However, our results may be used in
generalizing several Salagean differential operators, which in turn extend different types of g-analogues
of univalent functions. Moreover, by applying different types of fractional integral operators, some
subclasses of univalent functions can be introduced and various subordination chains with applications
to classes of univalent functions may be established by using the Loewner chain.
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