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1. Introduction and position of the model

In the past, it was believed that scientific disciplines were completely separate; but now,
after the tremendous development and modern theories in basic science techniques, they have
become completely connected. For example, mathematics in which the level of development in
different disciplines has varied dramatically in contemporary times. Not knowing mathematics in a
mathematically-driven world is like walking around a museum without looking at its walls. Learning
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and appreciating mathematics can help you appreciate certain things you would not otherwise focus on
in your surrounding world. Mathematics is everywhere in nature. A typical example is the celebrated
Fibonacci sequence of numbers, which is present in the reproduction of species in nature. Mathematics
is also useful to formulate epidemic models via differential or difference systems of equations that
describe the couplings of the dynamics among sub-populations like susceptible, exposed, infectious,
or recovered with immunity.

Fractional differential equations appear naturally in diverse fields of science and engineering. They
constitute an important field of research. It should be noted that most papers dealing with the existence
of solutions of nonlinear initial value problems of fractional differential equations mainly use the
techniques of nonlinear analysis, such as fixed point techniques, stability, the Leray–Schauder result,
etc. Relatively, fractional calculus and fractional differential/integral equations are very fresh topics for
the researchers. Fractional differential equations (FDEs) are more useful and have a higher degree of
freedom. Consequently, academics have employed fractional order derivatives and integrals to describe
the behavior of numerous real-world problems. For more details; see [1–14].

Stability analysis of FDEs with different types of initial and boundary conditions have attracted
many researchers who discussed the analysis of stability in the setting of Ulam-Hyers. It should be
noted that most papers dealing with the existence of solutions of nonlinear initial value problems of
fractional differential equations mainly use the techniques of nonlinear analysis, such as fixed point
techniques, stability and the Leray–Schauder result. By using fixed point techniques, the existence and
uniqueness of solutions to differential/integral equations involving fractional operators were studied by
a large number of researchers. For further related results, see for example [15–28].

Another important class of this theory is fractional delay differential equations (FDDES), which
constitute a large class of equations including discrete, proportional and continuous type delay terms.
FDDEs plays a significant role in molding various physical process and phenomenon. FDDEs have
various applications in different fields, such as probability theory of structures, growth cell, quantum
mechanics, dynamics of both linear and nonlinear systems, astrophysics, and electrodynamics, see
[29–34].

There are several approaches for noninteger order derivatives, such as Weyl, Hadamard, Riemann–
Liouville, Grunwald–Letnikov and Caputo etc. Caputo fractional order derivative (CFOD) is very
suitable for describing the behavior of many real world problems because of its good physical
interpretation of initial and boundary conditions. That is why the FDEs are extensively studied by
many researchers using the Caputo fractional order derivative with several types of boundary and initial
conditions.

On the other hand, delay differential equations (DDEs) constitute a large class of differential
equations. The mentioned area has numerous applications in modeling real world problems from
the past to the present. It is worth mentioning that theoretical aspects like existence, uniqueness, and
stability of solution and analytical aspects like analytical and numerical methods for finding solutions
of the aforesaid problems need bit more mathematical maturity as compared to ordinary differential
equations [35, 36]. The classical form of the aforesaid equations has been studied very well. On the
other hand, FDDEs are equations in which fractional derivatives involve time delays. As compared to
ordinary derivatives, fractional derivatives are nonlocal in nature and have the ability to model memory
effects more comprehensively, whereas time delays represent the history of a past state. Therefore,
researchers have given attention to investigate FDDEs from various aspects, including existence theory
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and stability analysis. Plenty of research studies have been established addressing the theory and
applications of FDDEs. For detail we refer [37–40].

Further, stability results play a significant role in the analysis of dynamical problems. The
aforementioned theory has many applications. There are numerous kinds of stability analysis,
including Lyapunov and Mittag-Leffler as well as exponential stability. The mentioned forms have been
investigated for many FDDEs problems, see [41, 42]. Recently, Hyers–Ulam (HU) type stability has
received proper attention. The concerned stability has been established for large numbers of classical
as well as fractional order problems (see [43–45]). So far, we know the said stability has also been
investigated for proportional type delay problems, we refer [46, 47].

Continuing on the same path, we investigate the following CFDDEs subject to conditions:
cDℓϖ(t) = ℑ (t, ϖ(t − ρ), ϖ(t), φ(t)) , t ∈ D, ℓ ∈ (1, 2],
cDτφ(t) = ℑ (t, φ(t − ρ), φ(t), ϖ(t)) , t ∈ D, τ ∈ (1, 2],
ϖ(t) = ϱ(t), ϖ(1) = Λ(ϖ, φ), t ∈ D0,

φ(t) = κ(t), φ(1) = Λ(φ,ϖ), t ∈ D0,

(1.1)

where ϱ, κ : D0 → R, Λ : ℧ × ℧ → ℧ and ℑ : D × ℧3 → ℧ are continuous functions. Also, we
will derive a sufficient condition for at least one solution via CFOD for the considered model (1.1).
Moreover, the Banach contraction principle and the Schaefer fixed point (FP) theorem are used to
discuss the existence of FPs for the supposed problem. In addition to, with the tools of analysis, we will
investigate different types of HU stability, such as generalized HU stability, HU Rassias (HUR) stability
and generalized HUR (GHUR, for short) type stability for our considered problem (1.1). Finally, two
illustrative examples are investigated to support and strengthen theoretical results.

For the benefit of our readers, the remainder of the article is organized as follows: In Section 2,
some useful definitions and theorems are provided. In Section 3, we present results for existence
and uniqueness of the concerned model (1.1). Section 4 is committed to stability results for the
aforementioned model (1.1). Section 5 is devoted to presenting illustrative examples. Conclusion
of the work is provided at the end of the paper.

2. Preliminaries

This component of the paper is devoted to the fundamental findings, definitions of FP theory, and
nonlinear analysis that are required for the exploration of the main results, see [1, 4, 9–12]. Assume
that ℧1, ℧2 and ℧3 are spaces of all continuous function from D = [0, 1] and D0 = [−ρ, 0] to R,
respectively, equipped with the norms below

∥ϖ∥℧1 = sup
t∈D
|ϖ (t)| , ϖ ∈ D,

∥φ∥℧2
= sup

t∈D
|φ (t)| , φ ∈ D,

∥ϖ̃∥℧3 = sup
t∈D0

|ϖ̃ (t)| , ϖ̃ ∈ D0.

Clearly, the product ℧ = ℧1 × ℧2 is the space of all continuous functions with the norm ∥ϖ + φ∥℧ =
∥ϖ∥℧1 + ∥φ∥℧2

, for all ϖ, φ ∈ D.
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Definition 2.1. [48] For the function η ∈ L1[0, r], the integral of fractional order ℓ is denoted by Iℓη
and described as

Iℓη(t) =
∫ t

0

η(υ)
Γ(ℓ)(t − υ)1−ℓ dυ.

Definition 2.2. [48] For the function η(t) ∈ L1 ([0, r],R+) , the fractional order Caputo derivative on
the interval [0, r] is denoted by cDℓη and described as

cDℓη(t) =
∫ t

0

ηn(υ)
Γ(n − ℓ)(t − υ)1−n+ℓ dυ,

where n is the smallest integer equal or greater than ℓ, i.e., n = [ℓ].

Theorem 2.3. [48] The FDE
cDℓη(t) = 0, ℓ ∈ (n − 1, n],

has the following solution
η(t) = Q1 + Q2t + Q3t2 + ....Qntn−1,

where Q j ∈ R for j = 1, 2, ..., n.

Lemma 2.4. [48] The relation between a fractional order integral and its derivative is provided as

Iℓ
[

cDℓκ(t)
]
= C1 +C2t +C3t2 + ... +Cntn−1 + κ(t),

where Ci ∈ R for i = 1, 2, ..., n.

Definition 2.5. [49] The mappingℜ : ℧ → ℧∗ on normed linear spaces is continuous and complete,
if for each bounded Z ∈ ℧,ℜ(Z) ∈ ℧∗ is compact.

Definition 2.6. [50] Let (℧, d) be a metric space. If there is ϑ ≥ 0 so that

d(ℜϖ,ℜφ) ≤ ϑd(ϖ, φ), for all ϖ, φ ∈ ℧.

Thenℜ : ℧ → ℧ is called Lipschitz mapping and ϑ is the Lipschitz constant. If ϑ ∈ (0, 1), thenℜ is
called a contraction.

Theorem 2.7. [50] Every self contraction mappingℜ in a complete metric space (℧, d) has a unique
FP.

Theorem 2.8. [49] Assume that ℧ is a Banach space andℜ is equi-continuous on ℧. Then ℜ have
either a FP or the set Π0 = {ϖ ∈ ℧ : ϖ = θℜ(ϖ), for some θ ∈ (0, 1)} is unbounded.

For the benefit of our readers, the remainder of the article is organized as follows: The results
demonstrating the existence and uniqueness of the relevant model (1.1) are presented in Section 3.
Results for stability for the aforementioned mode (1.1) are the focus of Section 4. The examples in
Section 5 are meant to serve as applications to our study. The paper’s conclusion is offered at the end.
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3. Integral representation for the suggested model

The existence of the solutions for the proposed class of CFDDEs has been affirmed in this section.
We define the Green functions that corresponds to the created integral equations and offer the integral
representation of the problem under consideration. Also, we are able to provide the necessary
conditions for solving the underlying problem of CFDDEs by using the findings of FP theory and
analysis.

Theorem 3.1. Let ℓ, τ ∈ (1, 2]. Then the system of CFDDEs (1.1) has the following solution

ϖ(t) =

 s(t) +
1∫

0
ℵ (t, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ, t ∈ D,

ϱ(t), t ∈ D0,

(3.1)

and

φ(t) =

 r(t) +
1∫

0
Ξ (t, υ)ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ, t ∈ D,

κ(t), t ∈ D0,

(3.2)

where ℵ,Ξ : D × [0, 1]→ R are green’s functions defined in the proof below.

Proof. Suppose that
{
ℑ (t, ϖ(t − ρ), ϖ(t), φ(t)) = η (t) ,
ℑ (t, φ(t − ρ), φ(t), ϖ(t)) = η∗ (t)

for t ∈ D, then the considered problem (1.1)

takes the form 
cDℓϖ(t) − η (t) = 0, t ∈ D, 1 < ℓ ≤ 2,
cDτφ(t) − η∗ (t) = 0, t ∈ D, 1 < τ ≤ 2,
ϖ(t) = ϱ(t), ϖ(1) = Λ(ϖ, φ), t ∈ D0,

φ(t) = κ(t) φ(1) = Λ(φ,ϖ), t ∈ D0.

(3.3)

In the light of Lemma 2.4, problem (3.3) can be written as{
ϖ(t) = Q1 + Q2t + Iℓη(t),
φ(t) = P1 + P2t + Iτη∗ (t) .

(3.4)

Applying the conditions ϖ(0) = ϱ(0) and φ(0) = κ(0), we have

Q1 = ϱ(0) and P1 = κ(0). (3.5)

From (3.5) in (3.4), we get {
ϖ(t) = ϱ(0) + Q2t + Iℓη (t) ,
φ(t) = κ(0) + P2t + Iτη∗ (t) .

(3.6)

Substituting ϖ(1) = Λ(ϖ, φ) in the first equation of (3.6), one can obtain

Λ(ϖ, φ) = ϱ(0) + Q2 +
1
Γ(ℓ)

1∫
0

(1 − υ)ℓ−1η (υ) dυ,
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which yields that

Q2 = Λ(ϖ, φ) − ϱ(0) −
1
Γ(ℓ)

1∫
0

(1 − υ)ℓ−1η (υ) dυ. (3.7)

Similarly, from the condition φ(1) = Λ(φ,ϖ) in the second equation of (3.6), we get

P2 = Λ(φ,ϖ) − κ(0) −
1
Γ(τ)

1∫
0

(1 − υ)τ−1η (υ) dυ. (3.8)

Applying (3.7) and (3.8) in (3.6), we get

ϖ(t) = ϱ(0) − tϱ(0) + tΛ(ϖ, φ) −

1∫
0

η (υ)
Γ(ℓ)(1 − υ)1−ℓ dυ +

t∫
0

η (υ)
Γ(ℓ)(1 − υ)1−ℓ dυ

= (1 − t)ϱ(0) + tΛ(ϖ, φ)

−

t∫
0

η (υ)
Γ(ℓ)(1 − υ)1−ℓ dυ −

1∫
t

η (1)
Γ(ℓ)(1 − υ)1−ℓ dυ +

t∫
0

η (υ)
Γ(ℓ)(1 − υ)1−ℓ dυ,

and

φ(t) = (1 − t)κ(0) + tΛ(φ,ϖ)

−

t∫
0

η∗ (υ)
Γ(τ)(1 − υ)1−τdυ −

1∫
t

η∗ (1)
Γ(τ)(1 − υ)1−τdυ +

t∫
0

η∗ (υ)
Γ(τ)(1 − υ)1−τdυ.

In the light of the proven linear BVP results (3.1) and (3.2), we have

ϖ(t) = s(t) +

1∫
0

ℵ (t, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ, (3.9)

and

φ(t) = r(t) +

1∫
0

Ξ (t, υ)ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ, (3.10)

where

ϖ(t) =

 s(t) +
1∫

0
ℵ (t, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ, t ∈ D,

ϱ(t), t ∈ D0.

and

φ(t) =

 r(t) +
1∫

0
Ξ (t, υ)ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ, t ∈ D,

κ(t), t ∈ D0.

AIMS Mathematics Volume 8, Issue 7, 15749–15772.



15755

Moreover, the Green functions are represented as

ℵ (t, υ) =
1
Γ(ℓ)

{
(t − υ)ℓ−1

− (1 − υ)ℓ−1 , 0 ≤ υ ≤ t ≤ 1,
− (1 − υ)ℓ−1 , 0 ≤ t ≤ υ ≤ 1,

and

Ξ (t, υ) =
1
Γ(τ)

{
(t − υ)τ−1

− (1 − υ)τ−1 , 0 ≤ υ ≤ t ≤ 1,
− (1 − υ)τ−1 , 0 ≤ t ≤ υ ≤ 1.

Therefore, the integral representation of the considered problem (1.1) is the equations (3.9) and (3.10).
□

4. Existence results

This part is devoted to present the desired solution of the CFDDEs as an operator equation and
investigated some hypotheses to obtain the existence results for the stated problem.

Let us consider the operatorℜ : ℧→ ℧ such that

ℜ (ϖ, φ) (t) =
{
ℜ1 (ϖ, φ) (t) +ℜ2 (ϖ, φ) (t), t ∈ D,
ϱ(t), t ∈ D0,

and

ℜ (φ,ϖ) (t) =
{
ℜ1 (φ,ϖ) (t) +ℜ2 (φ,ϖ) (t), t ∈ D,
κ(t), t ∈ D0,

where

ℜ1 (ϖ, φ) (t) = (1 − t)ϱ(0) + tΛ(ϖ, φ),
ℜ1 (φ,ϖ) (t) = (1 − t)κ(0) + tΛ(φ,ϖ),

ℜ2 (ϖ, φ) (t) =

1∫
0

ℵ (t, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ,

ℜ2 (φ,ϖ) (t) =

1∫
0

Ξ (t, υ)ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ,

Ω = sup
t∈D

1∫
0

ℵ (t, υ) dυ, and Ω∗ = sup
t∈D

1∫
0

Ξ (t, υ) dυ.

The following are some essential assumptions that will be applied in this study.

(pi) For ϖ1, ϖ2, φ1, φ2 ∈ ℧, there is Bℑ ≥ 0 so that∣∣∣ℑ (t, ϖ1(t − ρ), ϖ1(t), φ1(t)) − ℑ (t, ϖ2(t − ρ), ϖ2(t), φ2(t))
∣∣∣ ≤ Bℑ (∥ϖ1 −ϖ2∥ + ∥φ1 − φ2∥) .
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(pii) For ϖ1, ϖ2, φ1, φ2 ∈ ℧, there is BΛ, B∗Λ ∈ [0, 1) so that

|Λ (ϖ1, φ1) − Λ (ϖ2, φ2)| ≤ BΛ (∥ϖ1 −ϖ2∥ + ∥φ1 − φ2∥) .

(piii) For any ϖ, φ ∈ ℧, there are RΛ,TΛ,T ∗Λ ≥ 0 and u ∈ [0, 1) so that

|Λ (ϖ, φ)| ≤ RΛ (∥ϖ∥u + ∥φ∥u) + TΛ and |Λ (φ,ϖ)| ≤ RΛ (∥ϖ∥u + ∥φ∥u) + T ∗Λ.

(piv) For any u0 ∈ [0, 1), ϖ, φ ∈ ℧, there are Rℑ,Tℑ,T ∗ℑ ≥ 0 so that∣∣∣ℑ (t, ϖ(t − ρ), ϖ(t), φ(t))
∣∣∣ ≤ Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ,

and
∣∣∣ℑ (t, φ(t − ρ), φ(t), ϖ(t))

∣∣∣ ≤ Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗
ℑ
.

Now, our first main result is as follows:

Theorem 4.1. In view of the assumptions (pi) and (pii), the operator ℜ has at most one FP provided
that BΛ + ΩBℑ = B < 1 and BΛ + Ω∗Bℑ = B∗ < 1.

Proof. Let ϖ∗, φ∗ ∈ ℧, if t ∈ D0, then∥∥∥ℜ (ϖ, φ) (t) −ℜ (ϖ∗, φ∗) (t)
∥∥∥ ≥ 0.

If t ∈ D, we have∣∣∣ℜ (ϖ, φ) (t) −ℜ (ϖ∗, φ∗) (t)
∣∣∣

=
∣∣∣ℜ1 (ϖ, φ) (t) +ℜ2 (ϖ, φ) (t) −ℜ1 (ϖ∗, φ∗) (t) −ℜ2 (ϖ∗, φ∗) (t)

∣∣∣
≤

∣∣∣ℜ1 (ϖ, φ) (t) −ℜ1 (ϖ∗, φ∗) (t)
∣∣∣ + ∣∣∣ℜ2 (ϖ, φ) (t) −ℜ2 (ϖ∗, φ∗) (t)

∣∣∣
≤ |(1 − t)ϱ(0) + tΛ(ϖ, φ) − (1 − t)ϱ(0) − tΛ(ϖ∗, φ∗)|

+

∣∣∣∣∣∣∣∣
1∫

0

ℵ (t, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ −

1∫
0

ℵ (t, υ)ℑ (υ,ϖ∗(υ − ρ), ϖ∗(υ), φ∗(υ)) dυ

∣∣∣∣∣∣∣∣
≤ |Λ(ϖ, φ) − Λ(ϖ∗, φ∗)|

+

1∫
0

|ℵ (t, υ)|
∣∣∣ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) − ℑ (υ,ϖ∗(υ − ρ), ϖ∗(υ), φ∗(υ))

∣∣∣ dυ.
Using assumptions (pi) and (pii), we can write∥∥∥ℜ (ϖ, φ) −ℜ (ϖ∗, φ∗)

∥∥∥
℧
≤ BΛ

(
∥ϖ −ϖ∗∥℧1 + ∥φ − φ

∗∥℧2

)
+

1∫
0

|ℵ (t, υ)| Bℑ
(
∥ϖ −ϖ∗∥℧1 + ∥φ − φ

∗∥℧2

)
dυ

≤

BΛ + Bℑ

1∫
0

|ℵ (t, υ)| dυ

 (∥ϖ −ϖ∗∥℧1 + ∥φ − φ
∗∥℧2

)
AIMS Mathematics Volume 8, Issue 7, 15749–15772.
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≤ (BΛ + ΩBℑ)
(
∥ϖ −ϖ∗∥℧1 + ∥φ − φ

∗∥℧2

)
= B

(
∥ϖ −ϖ∗∥℧1 + ∥φ − φ

∗∥℧2

)
. (4.1)

Similarly, one can obtain∥∥∥ℜ (φ,ϖ) −ℜ (φ∗, ϖ∗)
∥∥∥
℧
≤ B∗

(
∥φ − φ∗∥℧2

+ ∥ϖ −ϖ∗∥℧1

)
, (4.2)

where B = BΛ + ΩBℑ < 1, and B∗ = BΛ + Ω∗Bℑ < 1.
It follows from (4.1), (4.2) and the Banach contraction principle that there is a unique FP of the

operatorℜ. Thus, there is a unique solution to the problem (1.1) under consideration. □

Theorem 4.2. Under the assumptions (piii), the operator ℜ1 is equi-continuious and satisfies the
following growth conditions:∥∥∥ℜ1 (ϖ, φ) (t)

∥∥∥
℧1
= RΛ (∥ϖ∥u + ∥φ∥u) + T and

∥∥∥ℜ1 (φ,ϖ) (t)
∥∥∥
℧1
= RΛ (∥ϖ∥u + ∥φ∥u) + T ∗.

Proof. Assume that ϖn, φn ∈ ϕ ⊆ ℧, which converge to ϖ and φ respectively. For the continuity of
ℜ1, we have to proveℜ1 (ϖn, φn)→ℜ1 (ϖ, φ) as n→ ∞, where ϕ = {(ϖ, φ) ∈ ℧2 : ∥(ϖ, φ)∥ ≤ l ∈ R}.
For this, consider∥∥∥ℜ1 (ϖn, φn) (t) −ℜ1 (ϖ, φ) (t)

∥∥∥
℧1
= ∥(1 − t)ϱ(0) + tΛ(ϖn, φn) − (1 − t)ϱ(0) − tΛ(ϖ, φ)∥
= ∥tΛ(ϖn, φn) − tΛ(ϖ, φ)∥
= ∥t∥ ∥Λ(ϖn, φn) − Λ(ϖ, φ)∥ .

Since Λ is continuous, we get∥∥∥ℜ1 (ϖn, φn) (t) −ℜ1 (ϖ, φ) (t)
∥∥∥
℧1
→ 0, as n→ ∞.

Thus, we conclude thatℜ1 is continuous. For the growth stipulation, consider∥∥∥ℜ1 (ϖ, φ) (t)
∥∥∥
℧1
= ∥(1 − t)ϱ(0) − tΛ(ϖ, φ)∥
≤ ∥(1 − t)ϱ(0)∥ + ∥tΛ(ϖ, φ)∥
≤ ∥(1 − t)∥ ∥ϱ(0)∥ + ∥t∥ ∥Λ(ϖ, φ)∥
≤ |ϱ(0)| + |Λ(ϖ, φ)|
= |ϱ(0)| + RΛ (∥ϖ∥u + ∥φ∥u) + TΛ
= T + RΛ (∥ϖ∥u + ∥φ∥u) .

In the same scenario, one can get∥∥∥ℜ1 (φ,ϖ) (t)
∥∥∥
℧1
≤ T ∗ + RΛ (∥ϖ∥u + ∥φ∥u) ,

where T = |ϱ(0)| + TΛ and T ∗ = |κ(0)| + TΛ. Hence, ℜ1 fulfills the above growth stipulations. To
complete the prove, assume that ϕ∗ is any bounded subsetof ϕ, then using the growth stipulations of
ℜ1, we haveℜ1(ϕ∗) is bounded. Suppose thatℜ1 is a mapping from bounded set into equi-continuous
set, then, we get∥∥∥ℜ1 (ϖ, φ) (t1) −ℜ1 (ϖ, φ) (t2)

∥∥∥
℧1
= ∥(1 − t1)ϱ(0) − t1Λ(ϖ, φ) − (1 − t2)ϱ(0) − t2Λ(ϖ, φ)∥
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= ∥(t2 − t1)ϱ(0) − (t1 − t2)Λ(ϖ, φ)∥ → 0, as t1 → t2.

Similarly,∥∥∥ℜ1 (φ,ϖ) (t1) −ℜ1 (φ,ϖ) (t2)
∥∥∥
℧1
= ∥(t2 − t1)κ(0) − (t1 − t2)Λ(φ,ϖ)∥ → 0, as t1 → t2.

Therefore,ℜ1 is equi-continuious. □

Theorem 4.3. Via the assumption (piv), the operator ℜ2 is completely continuous and fulfills the
growth conditions below:∥∥∥ℜ2 (ϖ, φ) (t)

∥∥∥
℧2
= Z (∥ϖ∥u0 + ∥φ∥u0) +W and

∥∥∥ℜ2 (φ,ϖ) (t)
∥∥∥
℧2
= Z (∥ϖ∥u + ∥φ∥u) +W∗.

Proof. Similar to the proof of Theorem 4.2, suppose that ϖn, φn ∈ ϕ ⊆ ℧, which converge to ϖ and φ
respectively. For the continuity ofℜ2, we have to showℜ2 (ϖn, φn) → ℜ2 (ϖ, φ) as n → ∞. For this,
consider ∣∣∣ℜ2 (ϖn, φn) (t) −ℜ2 (ϖ, φ) (t)

∣∣∣
=

∣∣∣∣∣∣∣∣
1∫

0

ℵ (t, υ)ℑ (υ,ϖn(υ − ρ), ϖn(υ), φn(υ)) dυ −

1∫
0

ℵ (t, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣t
1∫

0

[
ℑ (υ,ϖn(υ − ρ), ϖn(υ), φn(υ)) − ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

] (1 − υ)ℓ−1

Γ(ℓ)
dυ

+

t∫
0

[
ℑ (υ,ϖn(υ − ρ), ϖn(υ), φn(υ)) − ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

] (t − υ)ℓ−1

Γ(ℓ)
dυ

∣∣∣∣∣∣∣∣
≤ |t|

1∫
0

∣∣∣ℑ (υ,ϖn(υ − ρ), ϖn(υ), φn(υ)) − ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))
∣∣∣ (1 − υ)ℓ−1

Γ(ℓ)
dυ

+

t∫
0

∣∣∣ℑ (υ,ϖn(υ − ρ), ϖn(υ), φn(υ)) − ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))
∣∣∣ (t − υ)ℓ−1

Γ(ℓ)
dυ

∣∣∣∣∣∣∣∣ , (4.3)

and ∣∣∣ℜ2 (φn, ϖn) (t) −ℜ2 (φ,ϖ) (t)
∣∣∣

=

∣∣∣∣∣∣∣∣
1∫

0

Ξ (t, υ)ℑ (υ, φn(υ − ρ), φn(υ), ϖn(υ)) dυ −

1∫
0

Ξ (t, υ)ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ

∣∣∣∣∣∣∣∣
≤ |t|

1∫
0

∣∣∣ℑ (υ,ϖn(υ − ρ), ϖn(υ), φn(υ)) − ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))
∣∣∣ (1 − υ)τ−1

Γ(τ)
dυ

+

t∫
0

∣∣∣ℑ (υ, φn(υ − ρ), φn(υ), ϖn(υ)) − ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ))
∣∣∣ (t − υ)τ−1

Γ(τ)
dυ

∣∣∣∣∣∣∣∣ . (4.4)
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Taking n→ ∞ in (4.3) and (4.4), we conclude that∥∥∥ℜ2 (ϖn, φn) (t) −ℜ2 (ϖ, φ) (t)
∥∥∥
℧2
→ 0 and

∥∥∥ℜ2 (φn, ϖn) (t) −ℜ2 (φ,ϖ) (t)
∥∥∥
℧2
→ 0.

For the growth stipulations, we proceed as

∥∥∥ℜ2 (φ,ϖ) (t)
∥∥∥
℧2
=

∥∥∥∥∥∥∥∥
1∫

0

ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ))Ξ (t, υ) dυ

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥t

1∫
0

ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ))
(1 − υ)ℓ−1

Γ(ℓ)
dυ

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥
t∫

0

ℑ (υ, φ(υ − ρ), φn(υ), ϖ(υ))
(t − υ)ℓ−1

Γ(ℓ)
dυ

∥∥∥∥∥∥∥∥
≤ sup

t∈D

|t|
1∫

0

∣∣∣ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ))
∣∣∣ (1 − υ)ℓ−1

Γ(ℓ)
dυ


+ sup

t∈D


t∫

0

∣∣∣ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ))
∣∣∣ (t − υ)ℓ−1

Γ(ℓ)
dυ


≤ sup

t∈D


1∫

0

∣∣∣ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ))
∣∣∣ (1 − υ)ℓ−1

Γ(ℓ)
dυ


+ sup

t∈D


t∫

0

∣∣∣ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ))
∣∣∣ (t − υ)ℓ−1

Γ(ℓ)
dυ

 ,
which yields that

∥∥∥ℜ2 (φ,ϖ) (t)
∥∥∥
℧2
≤

1
Γ(ℓ)

sup
t∈D


1∫

0

(1 − υ)ℓ−1 [
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ

]
dυ


+

1
Γ(ℓ)

sup
t∈D


t∫

0

(t − υ)ℓ−1 [
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ

]
dυ


≤

(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)
Γ(ℓ)

sup
t∈D

1∫
0

(1 − υ)ℓ−1dυ


+

(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)
Γ(ℓ)

sup
t∈D

t∫
0

(t − υ)ℓ−1dυ


=

(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)
ℓΓ(ℓ)

+
(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)

Γ(ℓ)
sup
t∈D

(
tℓ

ℓ

)
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≤
(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)

ℓΓ(ℓ)
+

(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)
ℓΓ(ℓ)

=
2

Γ(ℓ + 1)
(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ) ≤ Z (∥ϖ∥u0 + ∥φ∥u0) +W.

Analogously,

∥∥∥ℜ2 (φ,ϖ) (t)
∥∥∥
℧2
≤ sup

t∈D


1∫

0

∣∣∣ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))
∣∣∣ (1 − υ)τ−1

Γ(τ)
dυ


+ sup

t∈D


t∫

0

∣∣∣ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))
∣∣∣ (t − υ)τ−1

Γ(τ)
dυ


≤

1
Γ(ℓ)

sup
t∈D


1∫

0

(1 − υ)ℓ−1
[
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

]
dυ


+

1
Γ(ℓ)

sup
t∈D


t∫

0

(t − υ)ℓ−1
[
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

]
dυ


≤

(
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

)
τΓ(τ)

+
(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)

Γ(τ)
sup
t∈D

(
tτ

τ

)
=

2
Γ(τ + 1)

(
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

)
≤ Z (∥ϖ∥u0 + ∥φ∥u0) +W∗,

where

Z =
2Rℑ
Γ(τ + 1)

, W =
2Tℑ
Γ(τ + 1)

and W∗ =
2T ∗
ℑ

Γ(τ + 1)
.

Therefore,ℜ2 satisfies the growth stipulations above. Assume that ϕ∗ is any bounded subset of ϕ, from
the growth stipulations ofℜ2, we haveℜ2(ϕ∗) is bounded. Now, we claim thatℜ2 is a mapping from
bounded set into equi-continuous set.For this, we consider t2 ≤ t1. So, we have the following cases:

(1) If 0 ≤ t ≤ υ ≤ 1, we get∣∣∣ℜ2 (ϖ, φ) (t1) −ℜ2 (ϖ, φ) (t2)
∣∣∣

=

∣∣∣∣∣∣∣∣
1∫

0

ℵ (t1, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ −

1∫
0

ℵ (t2, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1∫

0

[ℵ (t1, υ) − ℵ (t2, υ)]ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ

∣∣∣∣∣∣∣∣
= |t1 − t2|

∣∣∣∣∣∣∣∣
1∫

0

(
ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

) (1 − υ)ℓ−1

Γ(ℓ)
dυ

∣∣∣∣∣∣∣∣→ 0 as t1 → t2,
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and ∣∣∣ℜ2 (φ,ϖ) (t1) −ℜ2 (φ,ϖ) (t2)
∣∣∣

=

∣∣∣∣∣∣∣∣
1∫

0

Ξ (t1, υ)ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ −

1∫
0

Ξ (t2, υ) (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1∫

0

[Ξ (t1, υ) − Ξ (t2, υ)]ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ

∣∣∣∣∣∣∣∣
= |t1 − t2|

∣∣∣∣∣∣∣∣
1∫

0

(
ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ))

) (1 − υ)τ−1

Γ(τ)
dυ

∣∣∣∣∣∣∣∣→ 0 as t1 → t2.

(2) If 0 ≤ υ ≤ t ≤ 1, we get∣∣∣ℜ2 (ϖ, φ) (t1) −ℜ2 (ϖ, φ) (t2)
∣∣∣

=

∣∣∣∣∣∣∣∣
1∫

0

ℵ (t1, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ −

1∫
0

ℵ (t2, υ)ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1∫

0

[ℵ (t1, υ) − ℵ (t2, υ)]ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣(t1 − t2)

1∫
0

(
ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

) (1 − υ)ℓ−1

Γ(ℓ)
dυ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
t1∫

0

(
ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

) (t1 − υ)ℓ−1 − (t2 − υ)ℓ−1

Γ(ℓ)
dυ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
t2∫

t1

(
ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

) (t2 − υ)ℓ−1

Γ(ℓ)
dυ

∣∣∣∣∣∣∣∣∣
which implies that∣∣∣ℜ2 (ϖ, φ) (t1) −ℜ2 (ϖ, φ) (t2)

∣∣∣
≤

1
Γ(ℓ)
|t1 − t2|

1∫
0

(1 − υ)ℓ−1 (Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ) dυ

+
1
Γ(ℓ)

t1∫
0

[
(t1 − υ)ℓ−1 − (t2 − υ)ℓ−1

]
(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ) dυ

+
1
Γ(ℓ)

t2∫
t1

(t2 − υ)ℓ−1 (Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ) dυ
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≤
(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)

Γ(ℓ)

|t1 − t2|

1∫
0

(1 − υ)ℓ−1dυ

+

t1∫
0

(
(t1 − υ)ℓ−1 − (t2 − υ)ℓ−1

)
dυ +

t2∫
t1

(t2 − υ)ℓ−1dυ


=

(Rℑ (∥ϖ∥u0 + ∥φ∥u0) + Tℑ)
Γ(ℓ)

(
|t1 − t2|

ℓ
+

tℓ1 − tℓ2 + (t2 − t1)ℓ

ℓ
+

(t2 − t1)ℓ

ℓ

)
→ 0,

as t1 → t2. Similarly,∣∣∣ℜ2 (φ,ϖ) (t1) −ℜ2 (φ,ϖ) (t2)
∣∣∣

≤
1
Γ(τ)
|t1 − t2|

1∫
0

(1 − υ)τ−1
(
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

)
dυ

+
1
Γ(τ)

t1∫
0

[
(t1 − υ)τ−1 − (t2 − υ)τ−1

] (
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

)
dυ

+
1
Γ(τ)

t2∫
t1

(t2 − υ)τ−1
(
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

)
dυ

≤

(
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

)
Γ(τ)

|t1 − t2|

1∫
0

(1 − υ)τ−1dυ

+

t1∫
0

(
(t1 − υ)τ−1 − (t2 − υ)τ−1

)
dυ +

t2∫
t1

(t2 − υ)τ−1dυ


=

(
Rℑ (∥ϖ∥u0 + ∥φ∥u0) + T ∗

ℑ

)
Γ(τ)

(
|t1 − t2|

τ
+

tτ1 − tτ2 + (t2 − t1)τ

τ
+

(t2 − t1)τ

τ

)
→ 0,

as t1 → t2. Based on the cases (1) and (2), we conclude thatℜ2 is completely continuous. □

Theorem 4.4. Assume that the hypotheses (piii) and (piv) are true. Then the CFDDEs (1.1) have a
solution.

Proof. The completely continuous of ℜ1 and ℜ2 leads to the equi-continuous of ℜ. Let us consider
the set Π0 = {(ϖ, φ) ∈ ℧ : ϖ = θℜ(ϖ, φ) and φ = θℜ(φ,ϖ), for some θ < 1}. If t ∈ D, we have

∥ϖ∥℧ =
∥∥∥θℜ(ϖ, φ)

∥∥∥
℧
= |θ|

∥∥∥ℜ(ϖ, φ)
∥∥∥
℧
= θ

∥∥∥ℜ(ϖ, φ)
∥∥∥
℧

≤
∥∥∥ℜ1(ϖ, φ)

∥∥∥
℧1
+

∥∥∥ℜ2(ϖ, φ)
∥∥∥
℧2

≤ T + RΛ (∥ϖ∥u + ∥φ∥u) + Z (∥ϖ∥u0 + ∥φ∥u0) +W, (4.5)

and

∥φ∥℧ =
∥∥∥θℜ(φ,ϖ)

∥∥∥
℧
= |θ|

∥∥∥ℜ(φ,ϖ)
∥∥∥
℧
= θ

∥∥∥ℜ(φ,ϖ)
∥∥∥
℧
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≤
∥∥∥ℜ1(φ,ϖ)

∥∥∥
℧1
+

∥∥∥ℜ2(φ,ϖ)
∥∥∥
℧2

≤ T ∗ + RΛ (∥ϖ∥u + ∥φ∥u) + Z (∥ϖ∥u0 + ∥φ∥u0) +W∗. (4.6)

Also, for t ∈ D0, we get
∥ϖ∥

℧3
= |θ|

∥∥∥ℜ(ϖ, φ)
∥∥∥ = θ ∥ϱ(t)∥ ≤ ∥ϱ(t)∥ , (4.7)

and
∥φ∥

℧3
= |θ|

∥∥∥ℜ(φ,ϖ)
∥∥∥ = θ ∥κ(t)∥ ≤ ∥κ(t)∥ . (4.8)

It follows from (4.5)-(4.8) that Π0 is bounded. If Π0 is unbounded and let say Π0 = U → ∞. Then
from(4.5) and (4.6), we obtain that for any ϖ, φ ∈ Π0

1 ≤ lim
U→∞

(
T + RΛ (∥ϖ∥u + ∥φ∥u)

U
+

Z (∥ϖ∥u0 + ∥φ∥u0) +W
U

)
= 0,

and

1 ≤ lim
U→∞

(
T ∗ + RΛ (∥ϖ∥u + ∥φ∥u)

U
+

Z (∥ϖ∥u0 + ∥φ∥u0) +W∗

U

)
= 0,

which is a contradiction. Thus, Π0 is bounded. In view of Theorem 2.8,ℜ has a FP which is a solution
to the proposed problem (1.1). □

5. Stability analysis

Here, for the stability study of the suggested problem (1.1), the authors give some specific
predictions. We begin this part with the following definitions.

Definition 5.1. We say that a solution (ϖ(t), φ(t)) of the considered system (1.1) is HU stable, if for a
unique solution (ϖ̂(t), φ̂(t)), there is a constant Pℑ ≥ 0 so that for each ϖ, φ ∈ ℧, ε ≥ 0 and t ∈ D, we
have ∣∣∣cDℓϖ(t) − ℑ (t, ϖ(t − ρ), ϖ(t), φ(t))

∣∣∣ ≤ ε and
∣∣∣cDτφ(t) − ℑ (t, φ(t − ρ), φ(t), ϖ(t))

∣∣∣ ≤ ε, (5.1)

such that ∥∥∥(ϖ, ϖ̂)
−

(
φ − φ̂

)∥∥∥
℧
≤ εPℑ.

Moreover, the solution is called GHU stable, if there is a function Mℑ : (0,∞)→ (0,∞) with Mℑ(0) = 0
so that ∥∥∥(ϖ, ϖ̂)

−
(
φ − φ̂

)∥∥∥ ≤ Mℑ(ε).

Definition 5.2. The solution (ϖ(t), φ(t)) of the proposed system (1.1) is HUR stable with respect to a
continuous function O ∈ ℧, if there is a constant Pℑ ≥ 0 such that for each ϖ, φ ∈ ℧, ε ≥ 0 and t ∈ D,
the differential inequalities ∣∣∣cDℓϖ(t) − ℑ (t, ϖ(t − ρ), ϖ(t), φ(t))

∣∣∣ ≤ εO(t),∣∣∣cDτφ(t) − ℑ (t, φ(t − ρ), φ(t), ϖ(t))
∣∣∣ ≤ εO(t), (5.2)

have a unique solution (ϖ̂(t), φ̂(t)) ∈ ℧ so that∥∥∥(ϖ, ϖ̂)
−

(
φ − φ̂

)∥∥∥ ≤ O(t)Pℑε.
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Further, we say that the problem (1.1) is GHUR stable with respect to a continuous function O ∈ ℧, if∥∥∥(ϖ, ϖ̂)
−

(
φ − φ̂

)∥∥∥ ≤ O(t)Pℑ.

Remark 5.3. The functions ϖ, φ ∈ ℧ are a solution to the differential inequalities (5.1) iff we can find
a continuous functions U,V : D→ R depend on ϖ and φ, respectively such that

(i) U (t) ≤ ε and V (t) ≤ ε, t ∈ D;
(ii) cDℓϖ(t) − ℑ (t, ϖ(t − ρ), ϖ(t), φ(t)) + U (t) = 0;

(iii) cDℓφ(t) − ℑ (t, φ(t − ρ), φ(t), ϖ(t)) + V (t) = 0.

Remark 5.4. The functions ϖ, φ ∈ ℧ are a solution to the differential inequalities (5.2) iff we can find
a continuous functions U,V : D→ R depend on ϖ and φ, respectively so that for υ ∈ ℧, we have

(r1) U (t) ≤ υ(t)ε and V (t) ≤ υ(t)ε, t ∈ D;
(rii) cDℓϖ(t) − ℑ (t, ϖ(t − ρ), ϖ(t), φ(t)) + U (t) = 0;
(riii) cDℓφ(t) − ℑ (t, φ(t − ρ), φ(t), ϖ(t)) + V (t) = 0.

Lemma 5.5. If ϖ and φ are the solution of the CFDDEs (1.1). Then ϖ and φ satisfy the following
inequalities:∣∣∣ϖ(t) −ℜ1(ϖ, φ) −ℜ2(ϖ, φ)

∣∣∣ ≤ εΩ and
∣∣∣φ(t) −ℜ1(φ,ϖ) −ℜ2(φ,ϖ)

∣∣∣ ≤ εΩ∗.
Proof. Assume that ϖ and φ are the solution of (1.1), then

ϖ(t) = ℜ1(ϖ, φ) +

1∫
0

ℵ (t, υ)
[
ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) + U (υ)

]
dυ,

which implies that

ϖ(t) −ℜ1(ϖ, φ) −

1∫
0

ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ =

1∫
0

ℵ (t, υ) U (υ) dυ.

Hence, ∣∣∣ϖ(t) −ℜ1(ϖ, φ) −ℜ2(ϖ, φ)
∣∣∣

=

∣∣∣∣∣∣∣∣ϖ(t) −ℜ1(ϖ, φ) −

1∫
0

ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) dυ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1∫

0

ℵ (t, υ) U (υ) dυ

∣∣∣∣∣∣∣∣ ≤
1∫

0

|ℵ (t, υ)| |U (υ)| dυ ≤ ε

1∫
0

|ℵ (t, υ)| dυ ≤ εΩ.

Analogously, ∣∣∣φ(t) −ℜ1(φ,ϖ) −ℜ2(φ,ϖ)
∣∣∣
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=

∣∣∣∣∣∣∣∣φ(t) −ℜ1(φ,ϖ) −

1∫
0

ℑ (υ, φ(υ − ρ), φ(υ), ϖ(υ)) dυ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1∫

0

Ξ (t, υ) V (υ) dυ

∣∣∣∣∣∣∣∣ ≤
1∫

0

|Ξ (t, υ)| |V (υ)| dυ ≤ ε

1∫
0

|Ξ (t, υ)| dυ ≤ εΩ∗.

This completes the proof. □

Theorem 5.6. Suppose that the postulates (pi) and (pii) are true. Then the proposed system (1.1) is
HU stable and GHU stable if W = 1 − BB∗

(1−B)(1−B∗) > 0 provided that max{B, B∗} < 1.

Proof. Let (ϖ̂(t), φ̂(t)) ∈ ℧ be a unique solution of (1.1), so for any solution ϖ, φ ∈ ℧, we have∣∣∣ϖ(t) − ϖ̂(t)
∣∣∣

=

∣∣∣∣∣∣∣∣ϖ(t) −ℜ1(ϖ̂, φ̂) +

1∫
0

ℵ (t, υ)
(
ℑ

(
υ, ϖ̂(υ − ρ), ϖ̂(υ), φ̂(υ)

))
dυ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ϖ(t) −ℜ1(ϖ, φ) −

1∫
0

ℵ (t, υ)
(
ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

)
dυ

−ℜ1(ϖ̂, φ̂) +ℜ1(ϖ, φ) +

1∫
0

ℵ (t, υ)
(
ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

)
dυ

−

1∫
0

ℵ (t, υ)
(
ℑ

(
υ, ϖ̂(υ − ρ), ϖ̂(υ), φ̂(υ)

))
dυ

∣∣∣∣∣∣∣∣
≤

∣∣∣ϖ(t) −ℜ1(ϖ, φ) −ℜ2(ϖ, φ)
∣∣∣ + ∣∣∣ℜ1(ϖ, φ) −ℜ1(ϖ̂, φ̂)

∣∣∣
+

∣∣∣∣∣∣∣∣
1∫

0

ℵ (t, υ)
(
ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ))

)
dυ −

1∫
0

ℵ (t, υ)
(
ℑ

(
υ, ϖ̂(υ − ρ), ϖ̂(υ), φ̂(υ)

))
dυ

∣∣∣∣∣∣∣∣ ,
which implies that∥∥∥ϖ − ϖ̂∥∥∥

℧1
≤ Ωε + t

∣∣∣Λ(φ,ϖ) − Λ(φ̂, ϖ̂)
∣∣∣

+

1∫
0

|ℵ (t, υ)|
∣∣∣ℑ (υ,ϖ(υ − ρ), ϖ(υ), φ(υ)) − ℑ

(
υ, ϖ̂(υ − ρ), ϖ̂(υ), φ̂(υ)

)∣∣∣ dυ
≤ Ωε +

∣∣∣Λ(φ,ϖ) − Λ(φ̂, ϖ̂)
∣∣∣ + ΩBℑ

(∥∥∥ϖ − ϖ̂∥∥∥
℧1
+

∥∥∥φ − φ̂∥∥∥
℧2

)
≤ Ωε + BΛ

(∥∥∥ϖ − ϖ̂∥∥∥ + ∥∥∥φ − φ̂∥∥∥) + ΩBℑ
(∥∥∥ϖ − ϖ̂∥∥∥

℧1
+

∥∥∥φ − φ̂∥∥∥
℧2

)
= Ωε + (BΛ + ΩBℑ)

(∥∥∥ϖ − ϖ̂∥∥∥
℧1
+

∥∥∥φ − φ̂∥∥∥
℧2

)
= Ωε + B

(∥∥∥ϖ − ϖ̂∥∥∥
℧1
+

∥∥∥φ − φ̂∥∥∥
℧2

)
.
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Hence, ∥∥∥ϖ − ϖ̂∥∥∥
℧1
−

B
1 − B

∥∥∥φ − φ̂∥∥∥
℧2
≤
Ωε

1 − B
. (5.3)

Similarly, one can write ∥∥∥φ − φ̂∥∥∥
℧2
−

B∗

1 − B∗
∥∥∥ϖ − ϖ̂∥∥∥

℧1
≤
Ω∗ε

1 − B∗
. (5.4)

The inequalities (5.3) and (5.4) can be written as
1 − B

1−B

− B∗
1−B∗ 1




∥∥∥ϖ − ϖ̂∥∥∥
℧1∥∥∥φ − φ̂∥∥∥
℧2

 ≤

Ωε

1−B

Ω∗ε
1−B∗

 ,
which implies that 

∥∥∥ϖ − ϖ̂∥∥∥
℧1∥∥∥φ − φ̂∥∥∥
℧2

 ≤


1
W

B
1−B

1
W

B∗
1−B∗

1
W

1
W



Ωε

1−B

Ω∗ε
1−B∗

 , (5.5)

where W = 1 − BB∗
(1−B)(1−B∗) . According to the system (5.5), we can write

∥∥∥ϖ − ϖ̂∥∥∥
℧1
≤

Ωε

W (1 − B)
+

BΩ∗ε
W (1 − B) (1 − B∗)

,

and ∥∥∥φ − φ̂∥∥∥
℧2
≤

B∗Ωε
W (1 − B∗) (1 − B)

+
Ω∗ε

W (1 − B∗)
.

Hence, ∥∥∥ϖ − ϖ̂∥∥∥
℧1
+

∥∥∥φ − φ̂∥∥∥
℧2
≤

Ωε

W (1 − B)
+

Ω∗ε

W (1 − B∗)

+
BΩ∗ε

W (1 − B) (1 − B∗)
+

B∗Ωε
W (1 − B∗) (1 − B)

.

Put
Pℑ =

Ω

W (1 − B)
+

Ω∗

W (1 − B∗)
+

BΩ∗

W (1 − B) (1 − B∗)
+

B∗Ω
W (1 − B∗) (1 − B)

.

Then, ∥∥∥(ϖ, ϖ̂) − (φ, φ̂)
∥∥∥
℧
≤ Pℑε.

Therefore, the solution of (1.1) is HU stable. Moreover, if we define a function Mℑ(ε) = ε so that
Mℑ(0) = 0, we conclude that ∥∥∥(ϖ, ϖ̂) − (φ, φ̂)

∥∥∥
℧
≤ Mℑ(ε),

which guarantees the GHU stability (1.1). □

Lemma 5.7. If ϖ and φ are the solution of the CFDDEs (1.1). Then ϖ and φ satisfy the following
inequalities:∣∣∣ϖ(t) −ℜ1(ϖ, φ) −ℜ2(ϖ, φ)

∣∣∣ ≤ ευ(t)Ω and
∣∣∣φ(t) −ℜ1(φ,ϖ) −ℜ2(φ,ϖ)

∣∣∣ ≤ ευ(t)Ω∗.
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Proof. Using Remark 5.4, we obtain the desired result in the same manner as Lemma 5.5. □

Theorem 5.8. Via Lemma 5.7 and the conditions (pi) and (pii), the solution of (1.1) is HUR stable and
GHUR if B + B∗ , 1.

Proof. Using Remark 5.4 and Theorem 5.6, we arrive to the desired result. □

6. Supportive examples

Here, we provide some applications to support our findings.

Example 6.1. Consider the following CFDDEs: cD
7
4ϖ(t) = 1

29+sin(t) +
|ϖ(t−5)|

(1+|ϖ(t−5)|)(37+3 sin(t)) +
|ϖ(t)|

(1+|ϖ(t)|)(37+3 sin(t)) +
|φ(t)|

(1+|φ(t)|)(37+3 sin(t))
cD

7
4φ(t) = 1

29+sin(t) +
|φ(t−5)|

(1+|φ(t−5)|)(37+3 sin(t)) +
|φ(t)|

(1+|φ(t)|)(37+3 sin(t)) +
|ϖ(t)|

(1+|ϖ(t)|)(37+3 sin(t))

, (6.1)

for t ∈ D with boundary conditions

ϖ(t) = φ(t) = 0, ϖ(1) = φ(1) = Λ(ϖ, φ) = Λ(φ,ϖ) =
ϖ(t) + φ(t)

30
+ 35, t ∈ [−5, 0].

Now, consider ∣∣∣ℑ (t, ϖ1(t − 5), ϖ1(t), φ1(t)) − ℑ (t, ϖ2(t − 5), ϖ2(t), φ2(t))
∣∣∣

=

∣∣∣∣∣ 1
29 + sin(t)

+
|ϖ1(t − 5)|

(1 + |ϖ1(t − 5)|) (37 + 3 sin(t))
+

|ϖ1(t)|
(1 + |ϖ1(t)|) (37 + 3 sin(t))

+
|φ1(t)|

(1 + |φ1(t)|) (37 + 3 sin(t))
−

1
29 + sin(t)

−
|ϖ2(t − 5)|

(1 + |ϖ1(t − 5)|) (37 + 3 sin(t))

−
|ϖ2(t)|

(1 + |ϖ1(t)|) (37 + 3 sin(t))
−

|φ2(t)|
(1 + |φ1(t)|) (37 + 3 sin(t))

∣∣∣∣∣
≤
∥ϖ1 −ϖ2∥

40
+
∥ϖ1 −ϖ2∥

40
+
∥φ1 − φ2∥

40

≤
1

20
(∥ϖ1 −ϖ2∥ + ∥φ1 − φ2∥) ,

and ∣∣∣ℑ (t, φ1(t − 5), φ1(t), ϖ1(t)) − ℑ (t, φ2(t − 5), φ2(t), ϖ2(t))
∣∣∣

=

∣∣∣∣∣ 1
29 + sin(t)

+
|φ1(t − 5)|

(1 + |φ1(t − 5)|) (37 + 3 sin(t))
+

|φ1(t)|
(1 + |φ1(t)|) (37 + 3 sin(t))

+
|ϖ1(t)|

(1 + |ϖ1(t)|) (37 + 3 sin(t))
−

1
29 + sin(t)

−
|φ2(t − 5)|

(1 + |φ2(t − 5)|) (37 + 3 sin(t))

−
|φ2(t)|

(1 + |φ1(t)|) (37 + 3 sin(t))
−

|ϖ2(t)|
(1 + |ϖ1(t)|) (37 + 3 sin(t))

∣∣∣∣∣
≤
∥φ1 − φ2∥

40
+
∥φ1 − φ2∥

40
+
∥ϖ1 −ϖ2∥

40
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≤
1

20
(∥φ1 − φ2∥ + ∥ϖ1 −ϖ2∥) .

Hence, Bℑ = 1
20 , BΛ = 1

30 , ℓ = τ =
7
4 and Ω = Ω∗ = 1

Γ( 11
4 ) ≈ 0.6218. Based on these values, we get

BΛ+ΩBℑ = BΛ+Ω∗Bℑ ≈ 0.06442 < 1. Hence, in view of Theorem 4.1, the problem (6.1) has a unique
solution. Additionally, conditions created for Ulam forms of stability are still in place. Therefore, in
light of Theorem 5.6, the solution of (6.1) is UH and GUH stable. (note B + B∗ ≈ 0.12884 , 1).

Example 6.2. Assume the following CFDDEs:
cD

8
5ϖ(t) = 1

15+et +
|
√
ϖ(t−4)|

(1+|ϖ(t−5)|)(18+2et)) +
√
|ϖ(t)|

(1+|ϖ(t)|)(18+2et) +

√
|φ(t)|

(1+|φ(t)|)(18+2et)

cD
8
5φ(t) = 1

15+et +

∣∣∣∣√φ(t−4)
∣∣∣∣

(1+|φ(t−5)|)(18+2et)) +

√
|φ(t)|

(1+|φ(t)|)(18+2et) +
√
|ϖ(t)|

(1+|ϖ(t)|)(18+2et)

, (6.2)

for t ∈ D with boundary conditions

ϖ(t) = φ(t) = 0, ϖ(1) = φ(1) = Λ(ϖ, φ) = Λ(φ,ϖ) =
ϖ(t) + φ(t)

8
, t ∈ [−4, 0].

Let ∣∣∣ℑ (t, ϖ(t − 4), ϖ(t), φ(t))
∣∣∣ ≤ ∣∣∣∣∣ 1

16

∣∣∣∣∣ +
∣∣∣∣∣∣∣ (ϖ(t − 4))

1
2

20

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ (ϖ(t))

1
2

20

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ (φ(t))

1
2

20

∣∣∣∣∣∣∣
≤

1
16
+
|(ϖ(t))|

1
2

20
+
|(ϖ(t))|

1
2

20
+
|(φ(t))|

1
2

20

=
1
16
+
|(ϖ(t))|

1
2

10
+
|(φ(t))|

1
2

20

≤
1
16
+

1
10

(
|(ϖ(t))|

1
2 + |(φ(t))|

1
2
)

= Tℑ + Rℑ (∥ϖ∥u0 + ∥φ∥u0) ,

and ∣∣∣ℑ (t, φ(t − 4), φ(t), ϖ(t))
∣∣∣ ≤ ∣∣∣∣∣ 1

16

∣∣∣∣∣ +
∣∣∣∣∣∣∣ (φ(t − 4))

1
2

20

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ (φ(t))

1
2

20

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ (ϖ(t))

1
2

20

∣∣∣∣∣∣∣
≤

1
16
+
|(φ(t))|

1
2

20
+
|(φ(t))|

1
2

20
+
|(ϖ(t))|

1
2

20

=
1
16
+
|(φ(t))|

1
2

10
+
|(ϖ(t))|

1
2

20

≤
1
16
+

1
10

(
|(ϖ(t))|

1
2 + |(φ(t))|

1
2
)

= T ∗
ℑ
+ Rℑ (∥ϖ∥u0 + ∥φ∥u0) .

Assigning the following values and using boundary conditions, we get Rℑ = 1
10 , Tℑ = T ∗

ℑ
= 1

16 , RΛ = 1
8 ,

TΛ = T ∗
Λ
= 0, u = u0 =

1
2 and ℓ = τ = 8

5 ∈ (1, 2]. In light of Theorem 4.4, CFDDEs (6.2) have a unique
solution.
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7. Conclusion and future works

The theory of delay for differential equations underwent significant development. This had a
number of practical implications whose investigation required the solutions from delay equations.
Such equations are required to describe processes whose pace relies on their initial conditions. These
procedures are frequently referred to as “processes with delays” or “with aftereffects”. As a result of
the fact that nonlinear differential equations (both ODEs and PDEs) can be used to model a variety of
physical processes, the discussion and investigation of different analytical and numerical approaches
to solving nonlinear differential equations is crucial for evaluating scientific engineering challenges.
For a class of nonlocal FDDEs, the authors have developed a thorough mathematical study using the
Caputo derivative framework. In order to construct the needed conditions for existence and stability of
the solution, we used the findings of FP theory and nonlinear analysis to explain the dynamics of the
suggested CFDDEs. In order to support the main findings of this study, we provide two examples. As
future works, we raise the following five points:

• Generalizing the aforementioned findings for CFDDEs with stricter BVPs.
• Applying the results on arbitrary fractional-order differential equations and Hadamard fractional

derivatives.
• Applying the results on linear and nonlinear fractional integrodifferential systems.
• Investigating brand-new numerical discoveries relating to the operator with a higher order.
• Replacing the current kernels with Mittag-Leffler kernels.
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