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Abstract: In this work, a novel optimal weighted combination Markov model (OWCMM) is proposed 

to forecast the public financial budget expenditure of Dongguan, China, from 2016 to 2020. The new 

model is constructed based on the optimal combination, which includes the fractional grey model, the 

Fourier function regression model and the autoregressive integrated moving average model (ARIMA), 

and modifies this optimal combination by the Markov model. The number of the optimal fractional order 

is determined by particle swarm optimization algorithm. One example is provided to verify the high 

fitting accuracy of the new model, the results show that the mean absolute percentage error (MAPE) and 

the root mean square error (RMSE) of the optimal weighted combination Markov model are smaller than 

that of the quadratic function model (QFM), the classical combinatorial model and its three sub-models, 

which proves the robustness of the optimal weighted combination Markov model. This work will provide 

a scientific basis and technical reference for the further research in finance field. 
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1. Introduction 

The public financial budget expenditure is of great significance for economic development. 

Budgets is an important activity for calculating and planning revenue and expenditure. The annual 

public finance budget expenditure plays a key role for economic planning and the development, and it 
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enables the policymakers to carry out the economic decisions more efficient. 

Dongguan is one of the central city in Guangdong-Hong Kong-Macao Greater Bay Area, and it 

locates at the east bank of the Pearl River Delta. At the end of 2020, the per capita GDP of the 

Dongguan has reached more than 100,000 CNY. At the same time, the growth rate of the expenditure 

in general public budget has appeared an increasing trend, achieved at 84 billion CNY, which is an 

increase of 66.7% compared to 1996. Hence, it is very necessary to forecast the fiscal expenditure and 

explore the relationship with history relevant data. This will provide a scientific guidance for the 

Dongguan government to make the reasonable economic decisions. 

A great deal of effort has been dedicated to develop the relevant theoretical models, such as the 

time series forecasting model, the grey model, the regression forecasting model and so on. In 1997, 

Li [1] proposed the financial forecasting model and applied it to research fiscal revenue and 

expenditure. Chen et al. [2] established the autoregressive single integrated moving average model 

to predict the China’s fiscal expenditure. Chen et al. [3] constructed the time series forecasting model 

to forecast the fiscal revenue in Inner Mongolia. Zhao et al. [4] applied a grey radial basis function 

(RBF) neural network in forecasting the fiscal revenue. Hansen [5] proposed a panel threshold model 

and investigated the nonlinear relationship between the inhabitant financial expenditure and the 

urban-rural income gap. The above mentioned works have not only made a series of scientific 

forecasts on the expenditure and revenue in budgets but also provided some corresponding theories 

in making financial decisions and measures. Unfortunately, the main disadvantage of the classical 

forecasting model lies in the low prediction accuracy. 

The financial and economic system has distinct characteristics such as nonlinearity, correlation, 

systematization, randomness and chaos, which makes it difficult to describe the change rule of regional 

fiscal revenues and get better forecast values from a single model [6]. In order to achieve the integration 

of different types and levels of information and knowledge, it is necessary to integrate the various 

forecasting methods for mutual learning from each other [7]. Generally, it is a classic approach to 

combine several prediction models optimally. For example, Li et al. proposed an optimal weighted 

method to establish the combination forecasting model for grain yields in China [8]. Fang et al. [9] 

established the combined prediction model of fiscal revenue through the max-min closeness evaluation 

method. Chen et al. [10] conducted a housing price prediction analysis by establishing an optimal 

weighted combination model. Fisher et al. [11] revealed an inefficient forecasting process and that 

there exists substantial serial correlation in errors for forecasting budget revenues in the last two 

decades, and they improved the efficiency and the prediction accuracy of the tax budget by 

incorporating the national accounts data on household saving behaviors. By employing the out-of-

sample forecasting framework, Rich et al. [12] found that, compared to those models generated from 

the univariate auto-regression, the coincident indexes can improve significantly tax base forecasts ether 

in statistic or in economic domains. Li [13] predicted financial time series data by combining the 

support vector machine model with the convolutional neural network model. In [14], Gan constructed 

a multiple regression model based on four explanatory variables, the fiscal expenditure, the GDP, the 

tax revenue and the fixed asset investment. The empirical results showed that the change of the fiscal 

revenue in Sichuan Province was mainly affected by the tax revenue and the fixed asset investment. In 

order to forecast the fiscal revenue, Sheng et al. [15] considered the combination of the grey prediction 

model and the BP neural network after dimension reduction by the Lasso, and they found that this 

model has a good effect on multiple inputs. 

The optimal combination model performs well in the prediction efficiency and accuracy. However, 
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because it is obtained from the weighted combination of the fractional grey prediction model, the 

Fourier regression model and the time series model, this model is still a random model, and the 

prediction accuracy is still limited. In order to solve this problem, we propose an optimal weighted 

combination Markov model to modify the optimal weighted combination model in this paper. Then, 

we apply this new model to forecast and explore the fiscal budget expenditure of Dongguan. The 

results show that the fitting accuracy of this model is more than that of the classical combination model 

itself and the three sub-models, which proves the efficiency of the new model. This work will provide 

a scientific forecasting method and theoretical basis for the local government to predict the local fiscal 

expenditure, the future value and the growth trend, which helps the local government to carry out 

economic management and make the corresponding economic strategies. 

2. Optimal weighted combination Markov model 

In this part, we construct the OWCMKM model by using Markov to modify the OWCM model 

constructed by the combination of the FGM model, the Fourier model and the autoregressive integrated 

moving average (ARIMA) model. We also compare the effect of the new model to that of the quadratic 

function model (QFM). Finally, we provide two statistic experiments to analyze the results of each 

model. 

2.1. Fractional grey prediction model 

The grey prediction technique is an important branch of the modern prediction theory system, and 

many researchers have contributed to this method. For example, Xu et al. [16] predicted the water 

demand in agriculture by adopting the fractional-order cumulative discrete grey model, and they put 

out that the prediction performance of this model is better than that of the GM (1,1) model. Considering 

different growth rates, Xie et al. [17] established the grey multivariate convolution (GMCN(1,N)) 

model of the electricity consumption for China's three major industries based on the analysis of the 

socio-economic factors. Halis [18] proposed a new exponential grey prediction model, which is called 

EXGM (1,1). By using this model, new cases, deaths and recovered cases of COVID-19 in Turkey 

were forecasted. Cai and Ma [19] constructed a novel ensemble learning-based grey model for 

forecasting the electricity supply in China. Ma et al. [20] developed a novel nonlinear multivariate 

forecasting grey model based on the Bernoulli equation (NGBMC (1, n)). By using the fractional 

accumulation generation, the forecast model can not only reduced the randomness and volatility of the 

original data but also reduced the disturbance boundary of the solution for the grey model [21]. Next, 

we will establish the fractional grey prediction model, the specific modeling steps are as follows: 

First, the original sequence of fiscal expenditure is accumulated in order 𝑟, and the following 

equation can be calculated: 

  𝑦(𝑟) = [𝑦(𝑟)(1), 𝑦(𝑟)(2), 𝑦(𝑟)(3),⋯ , 𝑦(𝑟)(𝑛)]   ,0 < r < 1 .               (1) 

Among them, 

   𝑦(𝑟)(𝑘) = ∑ 𝐶𝑘−𝑖+𝑟−1
𝑘−𝑖𝑘

𝑖=1 𝑦(0)(𝑖), 𝑘 = 1,2,3,⋯ , 𝑛  ,            (2) 

and 
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𝐶𝑟−1
0 = 1, 𝐶𝑘−1

𝑘 = 0, 𝐶𝑘−𝑖+𝑟−1
𝑘−𝑖 =

(𝑘−𝑖+𝑟−1)(𝑘−𝑖+𝑟−1)⋯(𝑟+1)𝑟

(𝑘−𝑖)！
. 

The adjacent mean sequence of 𝑦(𝑟) is generated: namely, 

     𝑧(𝑟) = [𝑧(𝑟)(2), 𝑧(𝑟)(3), 𝑧(𝑟)(4),⋯ , 𝑧(𝑟)(𝑛)] ,                  (3) 

where 

    𝑧(𝑟)(𝑘) =
1

2
(𝑦(𝑟)(𝑘) + 𝑦(𝑟)(𝑘 − 1)) , 𝑘 = 2,3,4,⋯ , 𝑛 .             (4) 

Second, the fractional grey prediction differential equation of the fiscal expenditure is created as 

                          
𝑑𝑦(𝑟)

𝑑𝑡
+ 𝑎𝑦(𝑟) = 𝑏.                                  (5) 

Thus, the prediction equation of the fractional grey prediction model is obtained: 

    𝑦̂(𝑟)(𝑘) = (𝑥(0)(1) −
𝑏

𝑎
) 𝑒−𝑎(𝑘−1) +

𝑏

𝑎
     , 𝑘 = 1,2,3,⋯ , 𝑛.           (6) 

The least square method is applied to solve the parameter estimates of 𝑎 and 𝑏, and the following 

results can be figured out: 

                          [
𝑎̂
𝑏̂
] = (𝑄𝑇𝑄)−1𝑄𝑇𝑌,                               (7) 

where 

        𝑄 =

[
 
 
 
−𝑧(𝑟)(2) 1

−𝑧(𝑟)(3) 1
⋮

−𝑧(𝑟)(𝑛)
⋮
1]
 
 
 

=

[
 
 
 
 
 −

1

2
(𝑦(𝑟)(2) + 𝑦(𝑟)(1)) 1

−
1

2
(𝑦(𝑟)(3) + 𝑦(𝑟)(2)) 1

⋮

−
1

2
(𝑦(𝑟)(𝑛) + 𝑦(𝑟)(𝑛 − 1))

⋮
1]
 
 
 
 
 

 ,               (8) 

                                    𝑌 =

[
 
 
 

𝑦(𝑟)(2) − 𝑦(𝑟)(1)

𝑦(𝑟)(3) − 𝑦(𝑟)(2)
⋮

𝑦(𝑟)(𝑛) − 𝑦(𝑟)(𝑛 − 1)]
 
 
 

 .                          (9) 

Finally, 𝑟 order reduction of  𝑦̂(𝑟) is computed: 

 𝑦̂(0)(1) = 𝑦̂(𝑟)(1) ,                               (10) 

𝑦̂(0)(𝑘) = ∑ 𝐶𝑘−𝑖+1+𝑟−1
𝑘−𝑖𝑘

𝑖=1 𝑦(𝑟)(𝑘) − ∑ 𝐶𝑘−1−𝑖+1+𝑟−1
𝑘−1−𝑖𝑘−1

𝑖=1 𝑦(𝑟)(𝑘 − 1) = ∑ 𝐶𝑘−𝑖+𝑟
𝑘−𝑖𝑘

𝑖=1 𝑦(𝑟)(𝑘) −
∑ 𝐶𝑘−𝑖+𝑟−1

𝑘−1−𝑖𝑘−1
𝑖=1 𝑦(𝑟)(𝑘 − 1) , (𝑘 = 2,3,4,⋯ ).                         (11) 

In order to optimize the new model and improve the prediction accuracy, we choose the universal 

particle swarm optimization (PSO) algorithm [22] to search for the optimal fractional order, and it is 

based on the principle of minimizing the error of the forecast values. Then, we obtain the following 

objective function: 

   𝑓(𝑥) = 𝑚𝑖𝑛
1

𝑛
∑ |

𝑦(0)(𝑘)−𝑦̂(0)(𝑘)

𝑦(0)(𝑘)
|.                                               𝑛

𝑘=1   (12) 

Because the accumulated fractional order r could weaken the randomness and the volatility of the 

original sequence data effectively, it can not only reflect the features of the new information priority 
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but also improve the prediction accuracy of the model. 

In order to seek the optimal fractional order 𝑟, the following optimization model is constructed: 

{𝑓
(𝑥) = 𝑚𝑖𝑛

1

𝑛
∑ |

𝑦(0)(𝑘)−𝑦̂(0)(𝑘)

𝑦(0)(𝑘)
|𝑛

𝑘=1 .             

 0 < 𝑟 < 1                              
                   (13) 

The particle swarm optimization algorithm solves the fractional order grey prediction model optimal 

order. 

2.2. Fourier regression model 

After analyzing the characteristics of the data, we found that the growth rate of Dongguan 

public finance budget expenditure is relatively slow in the previous years. From 2000 to 2020, the 

spending in the general public budget of Dongguan appears to have nonlinear growth, which makes 

it difficult to fit these data efficiently. In order to find a suitable regression model, we will propose 

the Fourier regression model to fit the expenditure in general public finance budget of Dongguan 

from 1996 to 2015. Let years be the independent variables and the fiscal expenditures be the 

dependent variables and combine with the exponential function. We obtain the Fourier curve as 

follows [23]: 

 𝑦̂ =  𝑎0 + 𝑎1𝑐𝑜𝑠(𝑥𝑤) + 𝑎2𝑠𝑖𝑛(𝑥𝑤).                       (14) 

2.3. Autoregressive integrated moving average model 

As is known, time series models regard the research object data in time series as a random series. 

This type model can predict and infer the future behaviors based on the past and present behavior of 

the data in time series. For the observed value series data, the ARIMA model can be established by 

transforming the non-stationary original data in time series into the stationary non-white noise time 

series with a 𝒅-order difference process. 

The sequence with the 𝒅-order difference can be expressed as 

                   ∇𝑑𝑥𝑡 = ∑ (−1)𝑖𝑑
𝑖=0 𝐶𝑑

𝑖 𝑥𝑡−𝑖 .                             (15) 

The structure of the ARIMA (𝑝, 𝑑, 𝑞) model is [24] 

     {

Φ(𝐵)∇𝑑𝑥𝑡 = Θ(𝐵)𝜀𝑡

𝐸(𝜀𝑡) = 0, 𝑉𝑎𝑟(𝜀𝑡) = 𝜎𝜀
2, 𝐸(𝜀𝑡𝜀𝑠) = 0, 𝑠 ≠ 𝑡

𝐸(𝑥𝑆𝜀𝑡) = 0, ∀ 𝑠 < 𝑡

，               (16) 

where B is the delay operator, ∇𝑑= (1 − 𝐵)𝑑 , Φ(𝐵) = 1 − 𝜙1𝐵 − ⋯− 𝜙𝑝𝐵
𝑝 , Θ(𝐵) = 1 − 𝜃1𝐵 −

⋯− 𝜃𝑞𝐵
𝑞. 

ARIMA can also be defined as 

                             ∇𝑑𝑥𝑡 =
Θ(B)

Φ(𝐵)
𝜀𝑡 .                                 (17) 
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2.4. Combination model 

Due to the different characteristics and the data processing of the single models, there exists a 

great deviation of the results from each other. In this part, in order to make the more reasonable and 

efficient prediction for the financial expenditures in Dongguan, we will establish a combined model 

according to the fundamentals of the above proposed single models. The error at a certain time is 

calculated by the optimal weighting method. 

Let 𝑦̂𝑖(𝑘) be the predicted value of the 𝑖th prediction model and 𝑦𝑖(𝑘) − 𝑦̂𝑖(𝑘) be the residual 

error at the time 𝑘. The error between each model is 

        𝑒𝑖𝑘 =
1

𝑛
∑ |

𝑦𝑖(𝑘)−𝑦̂𝑖(𝑘)

𝑦𝑖(𝑘)
|𝑛

𝑘 .                                (18) 

Then, the prediction error of the 𝑖𝑡h forecast model with weight is 

            𝑒𝑖 = ∑ ∑ 𝑤𝑖𝑒𝑖𝑘𝑘𝑖 .                                  (19) 

In order to improve the accuracy and minimize the error for forecasting the financial expenditure of 

this model, we recall the following optimization model [25]: 

                {

𝑚𝑖𝑛𝑄 = ∑ ∑ 𝑤𝑖𝑒𝑖𝑘𝑘𝑖

𝑠. 𝑡. ∑ 𝑤𝑖𝑖 = 1
𝑤𝑖 ≥ 0

,                            (20) 

where 

𝑤𝑖 = (𝑒𝑖
2 ∑

1

𝑒𝑖
2𝑖 )

−1

，                               (21) 

and it can be computed by using the least squares method. 

2.5. Markov model 

A Markov model is a general tool for statistical analysis of data. In this system, the state at a 

certain moment predicts the latest state according to the transition probability of the state at the 

previous moment. A Markov process is suitable for processing fluctuating data and has the 

characteristics of no aftereffect and good short-term prediction effect, which has been widely used in 

customer assets, intelligent health, remote sensing evaluation and other fields [26–32]. 

2.5.1. Status division 

We use E1,  𝐸2, ⋯ ,  𝐸𝑚 to represent the data sequence divided into several different states by the 

Markov chain. The state transition only occurs at countable moments denoted by t1, 𝑡2, ⋯ , 𝑡𝑚. 

                                                            E𝑖 = [𝑄𝑖1, 𝑄𝑖2], ( 𝑖 = 1,2,⋯ , 𝑗),                          (22) 

where 𝑗 is the number of divided states, and 𝑄𝑖1 and 𝑄𝑖2 represent the lower and the upper limits for 

the relative error of the state intervals, respectively. 
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2.5.2. State transition probability matrix 

The transition probability of the Markov chain from state 𝐸𝑖 to state 𝐸𝑗  after 𝑘 steps is denoted 

by 𝑝𝑖𝑗(𝑘), and we have 

                        𝑝𝑖𝑗(𝑘) =
𝑚𝑖𝑗(𝑘)

𝑀𝑖
 .                                 (23) 

𝑀𝑖 represents the total number of occurrences for the state 𝐸𝑖, 𝑚𝑖𝑗(𝑘) denotes the number of the state 

𝐸𝑖 transferred to the state 𝐸𝑗 after 𝑘 steps, and 𝑚 is the number of divided states. The one-step 

state transition probability matrix is displayed as follows: 

𝑃(1) = [
𝑝11(1) ⋯ 𝑝1𝑚(1)

⋮ ⋮ ⋮
𝑝𝑚1(1) ⋯ 𝑝𝑚𝑚(1)

].                              (24) 

By using the Chapman-Kolmogorov equation repeatedly, we assume that the initial vector of the 

variables for the initial state 𝐸𝑖 is 𝑉(0), and then the k-step transition probability matrix and the state 

vector are obtained as follows: 

𝑃(𝑘) = (𝑃(1)𝑘),                                  (25) 

𝑉(𝑘) = 𝑉(0) ∙ (𝑃(1)𝑘).                               (26) 

2.5.3. The determination of the predicted value 

Choose the j-group data which are closest to the prediction data, and denote the number of steps 

from near to far by t (1,2,⋯ , 𝑗). Then, we construct a new matrix by selecting the row vectors of the 

t-step corresponding state transition matrix to each data, the most probable state of the predicted value 

is determined by the sum of the column vectors of the new matrix. Once the state is determined, the 

state interval is determined, and the Markov modification value is equal to the midpoint of the interval, 

that is, 
1

2
(𝑄𝑖1 + 𝑄𝑖2). Finally, the Markov predicted value is obtained, 

                 𝑦̂𝑂𝑊𝐶𝑀𝑀(𝑘) =
𝑦̂𝑂𝑊𝐶𝑀(𝑘)

1+
1

2
(𝑄𝑖1+𝑄𝑖2)

.                            (27) 

2.6. Quadratic function model 

According to the features of the data in general public budget expenditure, we chose the QFM as 

a comparison model to the OWCMM. The QFM is expressed as 

𝑦4(t) = α0 + α1𝑡 + α2𝑡
2 + 𝜀𝑡 ,                                                    (28) 

where 𝑦4(t)  is the public finance budget expenditure,α0, α1, α2  are the regression parameters, 𝑡 

represents the time, and 𝜀𝑡 is the random error term and satisfies 𝜀𝑡~𝑁(0, 𝜎2). Assuming that 𝑦̂4(t) 

is an estimation of the 𝑦4(t), we can obtain the least square estimate of the parameters α0, α1, α2 under 

the condition ∑ (𝑦̂4(𝑡) − 𝑦4 (𝑡))
2 = 𝑚𝑖𝑛𝑛

𝑡=1  by treating 𝑡2 as a variable. 
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2.7. Model error test 

In this article, the mean absolute percentage error (MAPE) and the root mean square error (RMSE) 

are offered to validate the prediction accuracy of the proposed new model. The specific formulations 

are represented as follows, respectively. 

The mean absolute percentage error (MAPE) 

MAPE =
1

𝑛
∑ |

𝑦̂𝑡−𝑦𝑡

𝑦𝑡
| 𝑛

𝑡=1 .                             (29) 

The root mean square error (RMSE) 

                        RMSE = √
1

𝑛
∑ (𝑦̂𝑡 − 𝑦𝑡)

2𝑛
𝑡=1  .                          (30) 

3. Application of the model 

In this part, we will apply the above-mentioned models to forecast and analyze the general public 

finance budget expenditure of Dongguan from 2016 to 2020. We chose the data from 1996 to 2015 as 

the sample data, which comes from the Dongguan Statistical Yearbook. 

3.1. FGM model prediction 

The optimal order 𝑟 = 0.00134 was obtained by particle swarm optimization (PSO) algorithm 

using R software. Substitute the order number 𝑟 and the fiscal expenditure series into the above 

Eqs (1), (3) and (6), and the parameter estimates of the fractional grey prediction model on the fiscal 

expenditure can be computed: 

𝑎 = −0.1043, 𝑏 = 80596.6079. 

Thus, it can be known that the prediction equation of the fractional grey prediction model is 

𝑦̂(0.00134)(𝑘) = 896797.3310𝑒0.1043(𝑘−1) − 772738.3310 , 𝑘 = 1,2,3, … , 𝑛. 

Finally, according to Eqs (10) and (11), the cumulative reduction is carried out to obtain the 

predicted value. 

Now, we use the FGM model to predict the budget expenditure in general public finance of 

Dongguan from 2016–2020, and the results are listed in Table 1. As can be seen from Table 1, we 

found that there is still a larger error between the prediction value and the real value in 2020, which 

may be related to the factors such as the outbreak of the epidemic in the whole world in recent years. 
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Table 1. Comparison of results of various models (ten thousand CNY). 

  FGM Fourier ARIMA OWCM 

Year Raw Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

1996 124059 124059 0 167649 35.14% 124004 −0.04% 145291 17.11% 

1997 148510 197046 32.68% 158058 6.43% 148622 0.08% 156520 5.39% 

1998 179064 280533 56.67% 182369 1.85% 175847 −1.80% 186155 3.96% 

1999 212641 376013 76.83% 240573 13.14% 205118 −3.54% 234042 10.06% 

2000 336102 485208 44.36% 332641 −1.03% 242155 −27.95% 302829 −9.89% 

2001 478646 610088 27.46% 458535 −4.20% 355075 −25.82% 422889 −11.64% 

2002 649606 752912 1.59% 618197 −4.84% 552161 −15% 598031 −7.93% 

2003 765190 916258 19.74% 811556 6.06% 756648 −1.12% 794291 3.80% 

2004 941554 1103077 17.15% 1038527 10.30% 915650 −2.75% 988331 4.96% 

2005 1170427 1316745 1.25% 1299008 10.99% 1063687 −9.12% 1195670 2.15% 

2006 1478955 1561121 5.56% 1592884 7.70% 1314301 −11.13% 1466956 −0.81% 

2007 1930968 1840621 −4.68% 1920023 −0.57% 1657306 −14.17% 1797900 −6.89% 

2008 2182626 2160293 −1.02% 2280280 4.47% 2158860 −1.09% 2218168 1.62% 

2009 2326216 2525913 8.58% 2673495 14.93% 2563693 10.21% 2614666 12.39% 

2010 2898306 2944087 1.58% 3099492 6.94% 2652789 −8.47% 2890456 −0.27% 

2011 3519171 3422369 −2.75% 3558082 1.11% 3059623 −13.06% 3327393 −5.44% 

2012 3855844 3969401 2.95% 4049061 5.01% 3898111 1.10% 3976575 3.13% 

2013 4446589 4595064 3.34% 4572209 2.83% 4410433 −0. 81% 4501893 1.24% 

2014 4576816 5310663 16.03% 5127295 12.03% 4843252 5.82% 5013588 9.54% 

2015 5812410 6129126 5.45% 5714071 −1.69% 5149673 −11.40% 5491586 −5.51% 
  

RMSE 212180 RMSE 170780 RMSE 222430 RMSE 152000 
  

MAPE 17.76% MAPE 7.56% MAPE 8.22% MAPE 6.19% 

2016 5992899 7065240 17.89% 6332276 5.66% 5975072 −0.30% 6223484 3.85% 

2017 6676462 8135918 21.86% 6981635 4.57% 6888291 3.17% 7018752 5.13% 

2018 7654053 9360503 22.29% 7661858 0.10% 7276467 −4.93% 7606290 −0.62% 

2019 8630134 10761120 24.69% 8372643 −2.98% 8031930 −6.93% 8383890 −2.85% 

2020 8403253 12363074 47.12% 9113673 8.45% 8530462 1.51% 9075800 8.00% 

  RMSE 2298400 RMSE 394810 RMSE 335200 RMSE 370290 

  MAPE 26.77% MAPE 4.35% MAPE 3.37% MAPE 4.09% 

3.2. Analysis results of Fourier model 

MATLAB was used to achieve the regression fitting. The parameter estimate of the Fourier model 

is 

𝑎0 = 76310000,  𝑎1  = 21000000,  𝑎2  = 73200000,  𝑤 = 0.0211. 

By the Fourier model, the prediction equation is obtained: 

𝑦̂ = 76310000 + 21000000𝑐𝑜𝑠(0.0211𝑥) +  73200000𝑠𝑖𝑛(0.0211𝑥). 
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In order to test the advantages and disadvantages of the two models for Fourier curve fitting 

regression and exponential function fitting regression, the goodness-of-fit tests were carried out, and 

the average MAPE values of the forecast error for the fiscal expenditure forecasting model were 

calculated. 

Now, we adopt the goodness-of-fit tests and calculate the MAPE of the errors to validate the 

advantages and the disadvantages of the Fourier curve fitting regression model and the exponential 

function fitting regression model. The results are listed as follows. 

Table 2. Comparison results of regression prediction models. 

Test indicators Exponential function Fourier curve 

𝑅2 0.9782 0.9954 

𝑅𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  0.9773 0.9948 

𝑆𝑆𝐸 4064000000000 852700000000 

𝑅𝑀𝑆𝐸 420400 201500 

𝑀𝐴𝑃𝐸 20.92% 6.92% 

Based on the results in Table 2, we can see that the determination coefficient of the Fourier curve 

fitting model is larger than that of the exponential function model, while the mean square error (RMSE) 

of the former is smaller than that of the latter. This indicates that the fitting effect of the Fourier curve 

fitting model is better than that of the exponential function model. As can be seen from the results 

shown in Tables 1 and 2, the Fourier curve fitting model can describe the change rule of the historical 

data well. However, it is not suitable for a long-term prediction since this model omitted the impact of 

other factors such as market rule on the fiscal data. 

3.3. Application of ARIMA model 

According to the fiscal expenditure budget system and the actual situation of the regional fiscal 

expenditure, we can regard the general public finance budget expenditure data of Dongguan as the 

random time series. Due to the volatile exponential growth trend of the fiscal expenditure data, we can 

judge this time series to be non-stationary data. In fact, as is shown in Table 3, the p value of the ADF 

test is larger than 0.05, which indicates the existence of the unit root, and this proves that the fiscal 

expenditure series is a non-stationary series. 

Table 3. Unit root test results of ARIMA. 

ADF unit root test 𝑃 

Before the difference 0.99 

2 order difference 0.01 

In order to get more accurate prediction results, we transform this fiscal expenditure series into a 

stationary series by using the differential transformation. Compared with the original fiscal expenditure 

series, it has no obvious features of exponential growth after the second order difference. Moreover, it 
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is still a stable series since the p value of the ADF test is 0.01. Next, we use the ARIMA model to 

forecast this fiscal expenditure series. 

Now, we construct the LB statistic to validate the pure randomness of the above fiscal expenditure 

series, and the results are listed in Table 4. 

Table 4. Test results of pure randomness of fiscal expenditure series after difference. 

𝐿𝐵 𝑃 𝐷𝐹 

7.7254 0.005445 1 

According to the results in Tables 3 and 4, it can be seen that the fiscal expenditure series after 

the second-order difference satisfies the establishing conditions of the ARIMA model. Next, we present 

four ARIMA models, ARIMA(0,2,0), ARIMA(0,2,1), ARIMA(1,2,1) and ARIMA(2,2,1), based on the 

above time series. The AIC values of these models were calculated to select the most optimal ARIMA 

model, and all the results are listed in Table 5. 

Table 5. AIC values of each ARIMA model. 

𝐴𝑅𝐼𝑀𝐴 𝐴𝐼𝐶 

𝐴𝑅𝐼𝑀𝐴(0,2,0) 509.8608 

𝐴𝑅𝐼𝑀𝐴(0,2,1) 505.8489 

𝐴𝑅𝐼𝑀𝐴(1,2,1) 505.3887 

𝐴𝑅𝐼𝑀𝐴(2,2,1) 508.7512 

According to the AIC criterion, we obtain that the most optimal time series model is 

ARIMA(1,2,1). The second order difference equation of the ARIMA(1,2,1) model can be calculated 

by the conditional least squares estimation as follows: 

                             (1 − 𝐵)2𝑥𝑡 =
1+0.4522𝐵

1+0.6995𝐵
𝜀𝑡 ,                                                           (31) 

that is, 

              𝑥𝑡 = 1.3005𝑥𝑡−1 + 0.399𝑥𝑡−2 − 0.6995𝑥𝑡−3 + 𝜀𝑡 + 0.4522𝜀𝑡−1.          (32) 

In order to carry out the White noise test, we need to predict the residual of the ARIMA model by 

constructing the statistics once the p, d, q are determined. The results are shown in Table 6. 

Table 6. Residual white noise test of ARIMA (1,2,1). 

From the 𝑃=0.3262>0.05 in Table 6, we know that this model passes the residual white noise 

test. Hence, the residual of the time series forecasting model based on the fiscal expenditures is a white 

noise series. 

According to the above ARIMA model, the general public finance budget expenditure of 

Statistic 𝑃 𝐷𝐹 

0.96406 0.3262 1 
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Dongguan from 2016 to 2020 is predicted, and the prediction results are shown in Table 1. There is no 

significant deviation between the predicted expenditure and the actual expenditure, which indicates 

that the established ARIMA (1,2,1) model has a small error in forecasting the general public finance 

budget expenditure in Dongguan. This illustrates that the ARIMA model has a high accuracy in 

forecasting the financial expenditure data. By combining MAPE and RMSE, it can be seen that the 

forecasting accuracy of the ARIMA model is more improved compared to the two former forecasting 

models. 

3.4. Analysis of the optimal weighted combination model 

In this part, we establish the optimal weighted combination model by combining the fractional 

grey prediction model, the Fourier regression model and the ARIMA model. We obtain the optimal 

weighting coefficient by using the following equation: 

        {

𝑚𝑖𝑛𝑄 = ∑ ∑ 𝑤𝑖𝑒𝑖𝑘
20
𝑘=1

3
𝑖=1

𝑠. 𝑡. ∑ 𝑤𝑖
3
𝑖=1 = 1

𝑤𝑖 ≥ 0

.                                  (33) 

The weights are obtained by the least squares method, 

𝑤𝑖 = (0.06808,0.48765,0.44427). 

The optimal weighted combination model is 

   𝑦̂(𝑘) = 0.06808𝑦̂1𝑘 + 0.48765𝑦̂2𝑘 + 0.44427𝑦̂3𝑘,                (34) 

where 𝑦̂1𝑘, 𝑦̂2𝑘 and 𝑦̂3𝑘 are the prediction values of the fractional grey model, the Fourier regression 

model and the ARIMA model at the time 𝑘, respectively. The prediction results of the fiscal budget 

expenditures with this combination model are listed in Table 1. 

3.5. Markov model modification 

3.5.1. Interval division and establishment of state transition matrix 

According to the relative error of the optimal weighted combination model (OWCM), the state 

interval is divided. Table 1 shows that the minimum relative error of the first 20 fitted data of this 

model is −11.64%, and the maximum is 17.11%. Therefore, five state intervals are divided according 

to the equal spacing rule and listed as follows: 

𝐸1(−11.64%,−5.89%], 𝐸2(−5.89%,−0.14%], 𝐸3(−0.14%, 5.61%], 

𝐸4(5.61%, 11.36%], 𝐸5(11.36%, 17.11%]. 

According to the state of each data and the probability of transferring from the current state to the 

next state, we obtain the following transition probability matrixes of the 1, 2, 3, 4 and 5 steps state as 

well as the final state vector. 
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0.66 0 0.34 0 0

0.33 0.33 0.34 0 0

P(1) ,0 0 0.57 0.29 0.14

0.5 0.5 0 0 0

0 0.5 0.5 0 0

 
 
 
 =
 
 
  

0.4356 0 0.4182 0.0986 0.0476

0.3267 0.1089 0.4182 0.0986 0.0476

P(2) 0.1450 0.2150 0.3949 0.1653 0.0798

0.4950 0.1650 0.3400 0 0

0.1650 0.1650 0.4550 0.1450 0.0700

 
 
 
 =
 
 
  

， 

0.3368 0.0731 0.4103 0.1213 0.0585

0.3009 0.1090 0.4103 0.1213 0.0585

P(3) 0.2493 0.1935 0.3874 0.1145 0.0553

0.3811 0.0545 0.4182 0.0986 0.0476

0.2359 0.1620 0.4065 0.1319 0.0637

 
 
 
 =
 
 
  

，

0.3070 0.1140 0.4025 0.1190 0.0547

0.2952 0.1259 0.4025 0.1190 0.0547

P(4) 0.2857 0.1488 0.3990 0.1123 0.0542

0.3188 0.0911 0.4103 0.1213 0.0585

0.2751 0.1513 0.3988 0.1179 0.0569

 
 
 
 =
 
 
  

， 

0.2998 0.1258 0.4013 0.1167 0.0563

0.2959 0.1298 0.4013 0.1167 0.0563

P(5) 0.2938 0.1324 0.4023 0.1157 0.0559

0.3011 0.1200 0.4025 0.1190 0.0574

0.2904 0.1373 0.4008 0.1157 0.0558

 
 
 
 =
 
 
  

， 

𝑉(𝑘) = (0.2965,0.1289,0.4018,0.1165,0.0563)(𝑘 → ∞). 

3.5.2. Forecast the public finance budget expenditure of Dongguan 

A new state transition matrix is constructed by using the recent data sets. The statuses of 2016 are 

listed in Table 7, and the results are shown in Table 8. 

According to Table 7, the most likely state of Dongguan's public financial budget expenditure 

in 2016 is 𝐸3 , because 𝐸3  has the largest value in the total. The predicted value of the optimal 

weighted combination model in 2016 is 6223484 million CNY. According to Eq (27), the predicted 

value of the OWCMM model is 6057803 million CNY. Using the same method, the predicted value 

of the Markov model from 2017 to 2020 can be gained. The specific results are shown in Table 8. 

The estimated and predicted values of each sub-model, optimal weighted model and Markov model 

are displayed in Figure 1. 

Table 7. Forecast the status of 2016. 

Year Initial state 
Transfer 

steps 
𝑝𝑖𝑗  𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 

2015 2 1 𝑝12  0.33 0.33 0.34 0 0 

2014 4 2 𝑝24  0.4950 0.1650 0.34 0 0 

2013 3 3 𝑝33  0.2493 0.1935 0.3874 0.1145 0.0553 

2012 3 4 𝑝43  0.2857 0.1488 0.3990 0.1123 0.0542 

2011 2 5 𝑝52  0.2959 0.1298 0.4013 0.1167 0.0563 

Total    1.6559 0.9671 1.8677 0.3435 0.6855 
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Table 8. Comparison of OWCM, QFM and OWCMM model results (ten thousand CNY). 

Year Raw 

OWCM QFM OWCMM 

Predicted 

value 

Relative 

error 

Station 

value 

Predicted 

value 

Relative 

error 

Predicted 

value 

Relative 

error 

1996 124059 145291 17.11% 5 179834 44.96% 127185 2.52% 

1997 148510 156520 5.39% 3 161733 8.90% 152353 2.59% 

1998 179064 186155 3.96% 3 176856 −1.23% 181198 1.19% 

1999 212641 234042 10.06% 4 225203 5.91% 215736 1.46% 

2000 336102 302829 −9.89% 1 306774 −8.73% 331920 −1.24% 

2001 478646 422889 −11.64% 1 421569 −11.92% 463516 −3.16% 

2002 649606 598031 −7.93% 1 569588 −12.32% 655483 0. 9% 

2003 765190 794291 3.80% 3 750831 −1.88% 773144 1.04% 

2004 941554 988331 4.96% 3 965298 2.52% 962019 2.17% 

2005 1170427 1195670 2.15% 3 1212989 3.64% 1163839 −0.56% 

2006 1478955 1466956 −0.81% 2 1493904 1.01% 1512559 2.27% 

2007 1930968 1797900 −6.89% 1 1808043 −6.37% 1970625 2.05% 

2008 2182626 2218168 1.62% 3 2155406 −1.25% 2159115 −1.08% 

2009 2326216 2614666 12.39% 5 2535993 9.02% 2288847 −1.61% 

2010 2898306 2890456 −0.27% 2 2949804 1.78% 2980312 2.83% 

2011 3519171 3327393 −5.44% 2 3396839 −3.48% 3432832 −2.45% 

2012 3855844 3976575 3.13% 3 3877098 0.55% 3870711 0.39% 

2013 4446589 4501893 1.24% 3 4390581 −1.26% 4382044 −1.45% 

2014 4576816 5013588 9.54% 4 4937288 7.88% 4621457 0.98% 

2015 

 

5812410 

 

5491586 

RMSE 

−5.51% 

152000 

2 

 

5517219 

RMSE 

-5.08% 

125480 

5662304 

RMSE 

−2.58% 

49289 

 
2016 

 
5992899 

MAPE 

6223484 

6.19% 

3.85% 

 

3 

MAPE 

6130374 

6.98% 

2.29% 

MAPE 

6057803 

1.73% 

1.08% 

2017 6676462 7018752 5.13% 3 6776753 1.50% 6831899 2.33% 

2018 7654053 7606290 −0.62% 2 7456356 −2.58% 7403796 −3.27% 

2019 8630134 8383890 −2.85% 2 8169183 −5.34% 8160694 −5.44% 

2020 

 

8403253 

 

9075800 

RMSE 

8% 

370290 

4 

 

8915234 

RMSE 

6.09% 

329440 

8834185 

RMSE 

5.13% 

315300 

  MAPE 4.09%  MAPE 3.56% MAPE 3.45% 
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Figure 1. The forecast results of different models for public finance budget expenditure of 

Dongguan. 

3.6. Empirical analysis of QFM model 

By using the data from 1996 to 2015 and Eq (28), we obtain the estimated model, 

𝑦̂4(t) = 231159 − 67937𝑡 + 16612𝑡2.                     (35) 

The goodness of fit is 𝑅2 = 0.9945, and we can calculate estimates (𝑡 =1,2,⋯,20) and predictions (𝑡 

=21,22,⋯,25). See Table 8 for specific values. 

3.7. Comparative analysis of the results of each model 

As can be seen from Table 1, the results predicted by the OWCM model are closer to the real 

value, and the relative error is smaller than that of other models. We can also get a smaller value of the 

RMSE and the MAPE when we forecast the test data and estimate the training data by using the 

OWCM model. 

In Table 8, the results predicted by OWCMM model are closer to the real value, and the relative 

error is smaller than that of OWCM. By using the OWCMM model to forecast the data (2016–2020) 

and estimate the data (1996–2015), we also can obtain a smaller value of the RMSE as well as the 

MAPE. No matter in the terms of the estimation or the prediction, we can see that the MAPE and 

RMSE values of the OWCMM model are still smaller than those of the QFM model. 

The results in Figure 1 show that the curve of the OWCMM model is closer to the true values 

than that of the OWCM model. 

4. Conclusions 

In this paper, we established the new optimal weighted combination Markov model by modifying 
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an optimal weighted combination model using the Markov chain. The optimal weighted combination 

model is constructed by the combination of the fractional grey model, the Fourier function regression 

model and the autoregressive integrated moving average model. We also constructed the QFM model 

as a comparison of our proposed model. We applied the new model to predict the fiscal expenditure of 

Dongguan from 1996 to 2015. The results show that the prediction accuracy is greatly improved, and 

the error was reduced effectively compared to the three single common prediction models. The RMSE 

value and the MAPE value of the OWCMM model are also smaller than those of the QFM model, the 

single model and their combination model. This illustrated that the optimal weighted combination 

Markov model is more reliable and robustness compared to the classical models. This study has made 

a significant contribution in predicting the fiscal expenditure of Dongguan. 
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