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Abstract: Dengue fever, a vector-borne disease, has affected the whole world in general and the
Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic
and health impact worldwide; it is essential to develop new mathematical models to study not only
the dynamics of the disease but also to suggest cost-effective mechanisms to control disease. In this
paper, we design modified facts about the dynamics of this disease more realistically by formulating a
new basic S hEhIhRh host population and S vIv vector population integer order model, later converting
it into a fractional-order model with the help of the well-known Atangana-Baleanu derivative. In
this design, we introduce two more compartments, such as the treatment compartment Th, and the
protected traveler compartment Ph in the host population to produce S hEhIhThRhPh. We present some
observational results by investigating the model for the existence of a unique solution as well as by
proving the positivity and boundedness of the solution. We compute reproduction number R0 by using
a next-generation matrix method to estimate the contagious behavior of the infected humans by the
disease. In addition, we prove that disease free and endemic equilibrium points are locally and globally
stable with restriction to reproduction number R0. The second goal of this article is to formulate an
optimal control problem to study the effect of the control strategy. We implement the Toufik-Atangana
scheme for the first time to solve both of the state and adjoint fractional differential equations with
the ABC derivative operator. The numerical results show that the fractional order and the different
constant treatment rates affect the dynamics of the disease. With an increase in the fractional order
and the treatment rate, exposed and infected humans, as well as the infected mosquitoes, decrease.
However, the optimal control analysis reveals that the implemented optimal control strategy is very
effective for disease control.
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1. Introduction

The dengue fever caused by mosquitoes is one of the most dangerous transmissible disease. More
than 100 countries are effectively facing challenges from this disease. After malaria, dengue is
scrutinized as the most life-threatening disease in recent times. It has been shown in WHO reports
that every year 50 to 100 million cases of dengue are being observed. Earlier, dengue was considered
a disease of hot regions, but now it has spread to the other regions of the world due to global warming.
In the past 30 years, dengue infection has increased almost five fold. The symptoms of this disease
are identified by high fever, frontal headache, pain behind the eyes, joint pain, nausea, vomiting and
some other symptoms. The human population is mainly affected by the bites of the female mosquitoes
carrying the dengue virus. The infection occurs when a mosquito sucks the blood from an infected
person and transfers the virus to other healthy individuals by biting them. The symptoms do not appear
in infected individuals for approximately 4 to 7 days (on average) before they begin to experience a
sudden onset of fever.

There is no specific cure for dengue fever, but some precautions can be suggested to avoid or reduce
the effect of disease. They include hospital treatments, with complete bed rest in support of medication
to prevent fever and to give relief in pain. In addition, mosquito repellent must be used, wearing long-
sleeved shirts and pants. Outdoors must be avoided without having proper preventive measures at dawn
and dusk. It is highly recommended to clean uncovered stagnant water properly indoors and outdoors
and to avoid camping near still water. According to conventional wisdom, the human body’s natural
immune system eliminates dengue virus within 7 days of infection [1].

A useful tool for forecasting the dynamics of communicable diseases with preventive measures is
the mathematical modeling technique. Many epidemic models consisting of ordinary, stochastic or
delay differential equations have been suggested and investigated to analyze the dynamics of a variety
of vector-host infectious diseases. The transmission dynamics of dengue fever can be understood
with the help of the variety of models given in [2–13]. Researchers have conducted several studies
to investigate the transmission of dengue fever to control the disease and to compare various theories
to eradicate it from the society. For example, in [6], a compartmental deterministic model including
human prevention and vector control interventions for the dynamics of dengue fever spread is presented
to analyze the impact of various control strategies on disease control. An optimal control model
of dengue infection with partial immune and asymptomatic individuals is analyzed in [13], where
the authors introduced four time-dependent control measures and performed a cost-effective analysis
by suggesting five strategies for controlling dengue fever. The various modeling approaches used
in formulating these models are limited because of the local nature of integer order derivatives.
Recently, many researchers have started converting these mathematical models to fractional models
in order to add memory effects for the best analysis of dengue fever disease. For example, the
authors in [14,15] consider a compartmental model for the transmission dynamics of dengue fever with
nonlinear forces of infection through the fractional derivative and show that the biting rate, recruitment
rate of mosquitoes and index of memory are the most sensitive factors to lower the level of dengue
fever. Vaccination effect on the proposed system’s threshold is also explored here.

Fractional modeling for epidemiology is more productive than integer order with reference to the
memory as the past is required to explain the present. Classical integer order models consisting of
autonomous differential equations have no memory, as their solution does not depend on previous
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instant. This means, given an initial value, the solution is determined uniquely for any point of the
domain. However, this claim is not true for fractional-order differential equations. Thus, to introduce
the memory effect into a mathematical model, the order of the derivative of the classical model is
changed to the noninteger order [16, 17]. In the recent past, fractional calculus has been considered a
key tool to design epidemic models to obtain better results to eradicate diseases from society. Recent
literature on fractional modeling [18–26] shows that the mathematical models constructed by using
fractional operators behave more accurately and provide a better fit to the real data.

A variety of fractional derivative operators have been suggested in the last few decades, but
recently the fractional operators, namely, the Caputo [27, 28], Caputo-Fabrizio (CF) [29–31] and
Atangana-Baleanu-Caputo (ABC) [32–34] have obtained more attraction of the researchers. The
main disadvantage of the Caputo operator is the singularity property of its kernel. Although the
CF derivative has a nonsingular kernel, the function space of CF derivative is not clear and has no
memory effects [35]. The ABC fractional derivative operator, proposed by Atangana and Baleanu,
uses a Mittag-Leffler (ML) kernel with one parameter. The ML function is a generalization of the
exponential function in the context of fractional calculus, and the main advantage of this kernel is its
nonlocal and nonsingular behavior. The ABC fractional operator is thus considered to be superior and
is chosen as the best option for modeling real world phenomena, including epidemic diseases. The
applicability of this operator to models can be found in [36–38]. Some more attributes of this operator
were later reported by Losada and Nieto in [39]. Since then, many mathematical models have been
formulated by researchers by using this operator. The results associated with these models have shown
both the efficiency and suitability of the ABC operator.

Optimal control analysis is considered to be a very effective tool to provide reasonable control
strategies to eradicate or to minimize an infection in the human population. Moreover, such an analysis
gives better understanding of the disease flow pattern. Therefore, conveniently, the optimal control
problems involving fractional calculus are called fractional optimal control problems (FOCPs) and are
considered to be the general form of classical optimal control problems (OCPs). Many researchers
have applied FOCPs for better understanding and for speedy results about the behavior of eradicating
diseases [41–43]. We can say that by using FOCPs, we are able to do some new analysis to remove
the dengue disease from the face of earth. Hence, FOCPs have become potentially the most flexible
tool in modeling and analyzing biological systems related to time memory. The main objective of this
study is also to design a fractional optimal control problem of eradicating dengue disease from society.

To demonstrate the usefulness of the ABC fractional operator, we have developed a new ABC
fractional-order system of ordinary differential equations to explore the dynamics of dengue fever for
optimal control in the context of treated travelers. The choice of ABC operator is due to its nonlocal
and nonsingular kernel; moreover, the crossover attribute of epidemic models can be described in
a better way via this operator. Another advantage of this operator is its capability to capture more
susceptibilities and fewer infections than that of the other fractional operators such as Caputo and
Caputo-Fabrizio [34]. The purpose of developing this fractional model is to examine the impact of
fractional order on disease dynamics and to determine the possible control strategy. For this, we first
present some important features of the suggested model, such as the existence and uniqueness of the
solution, positivity, invariant regions, reproduction number and stability analysis. An important feature
of this study is to use Toufik-Atangana numerical scheme for the first time to optimally analyze the
proposed ABC fractional dengue fever model.

AIMS Mathematics Volume 8, Issue 7, 15499–15535.



15502

The remaining sections of this paper are structured as follows: In Section 2, we formulate a
S hEhIhThRhPh host population and S vIv vector population integer order model by introducing two
compartments in the host population, i.e., treatment and protected travelers. Corresponding to this
integer-order model, a nonlinear fractional model is formulated with the help of the Atangana-Baleanu
fractional derivative in Section 3 for better analysis of the memory effects. Sections 4 and 5 address
the theoretical view of the proposed fractional model where the existence of the unique solution,
the positivity and boundedness of solutions, the calculations of the equilibrium points and the basic
reproduction number are presented. Section 6 presents the stability analysis of the model, where we
analyze the behavior of the model locally as well as globally. In Section 7, a numerical scheme
is presented to simulate the effect of order as well as the effect of various treatments levels on
the suggested model. In this section, we present sensitivity analysis to determine highly sensitive
parameters to reproduction number R0. The model is then adjusted with time-dependent control to
formulate an optimal control problem in Section 8. Associated optimality conditions resulting from
the Pontryagin principle are numerically solved by using the Toufik-Atangana scheme to determine the
best treatment strategy for dengue fever control. Conclusions drawn from numerical simulations are
presented in Section 9.

2. Description of dengue fever model

The central idea about transmission models is to describe the transmission of infected individuals
in a mechanical way. This approach makes it easy to transform the evolution of an epidemic in
mathematical form. Therefore, designing a mathematical model requires focusing on necessary
processes needed in formulating the epidemiology of an infectious disease and discerning the most
significant and tractable parameters for control. Consequently, in this section, we formulate a basic
S hEhIhRh host and S vIv vector population model with the addition of two new classes, treatment class
Th and protected travelers class Ph to make it more realistic. In the treatment class, the infectious
subjects receives proper treatment along with some preventive measures, and after treatment, they
move to the recovered class and finally become protected travelers. Protected travelers are free to
move anywhere in the society without being afraid of becoming infected again [44].

This model is represented by two populations, i.e., the human population and the vector
(mosquitoes) population. The total population is denoted by P(t), which is further partitioned into
various compartments, i.e., susceptible human population denoted by S h(t), the exposed individuals
Eh(t) after being bitten by mosquitoes, infected humans denoted with Ih(t), humans under treatment
represented by Th(t), Rh(t) are the recovered or removed individuals and the protected travelers
represented by Ph(t). The vector (mosquito) population is subdivided into two classes, i.e., susceptible
mosquitoes denoted by S v(t) and the infected mosquitoes represented by Iv(t). The human population
recruitment rate is denoted by λh. Susceptible humans are bitten by the mosquitoes at the rate of α.
The probabilities of contact between an infectious mosquito and a susceptible person and between
an infectious person and a susceptible mosquito are given by βh and βv, respectively. Humans in the
exposed class become infectious at a rate ζh. Infected people receiving treatment from the hospital
are recruited to the treatment class at the rate vh, and they recover from dengue fever at a rate ξh to
move into the class of protected travelers at the rate of δh. Humans die naturally at a rate µh in all
compartments and die due to disease at the rates dh1 , dh2 in the compartments Ih and Th, respectively.
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The mosquitoes are recruited at rate λv to the susceptible class S v and become infected when they have
interaction with the infected humans. The mosquitoes die naturally at a rate µv. The real-valued state
variables S h, Eh, Ih, Th, Rh, Ph, S v, Iv are considered as time dependent functions that belong to class
C1[0,∞). Figure 1 describes the disease flow pattern through the population compartments together
with the model assumptions and the parameters for the considered compartments.

The disease flow pattern given in Figure 1 is described in the form of the following nonlinear
coupled ordinary differential equations, called the S hEhIhThRhPhS vIv model.

Figure 1. Flow diagram for the dengue fever model.

dS h

dt
= λh − αβhS hIv − (τh + µh)S h, (2.1a)

dEh

dt
= αβhS hIv − (ζh + µh)Eh, (2.1b)

dIh

dt
= ζhEh − (vh + µh + dh1)Ih, (2.1c)

dTh

dt
= vhIh − (ξh + µh + dh2)Th, (2.1d)

dRh

dt
= ξhTh − (δh + µh)Rh, (2.1e)

dPh

dt
= τhS h + δhRh − µhPh, (2.1f)

dS v

dt
= λv − αβvS vIh − µvS v, (2.1g)
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dIv

dt
= αβvS vIh − µvIv, (2.1h)

with the initial conditions

S h(0) > 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Th(0) ≥ 0, Rh(0) ≥ 0, Ph(0) ≥ 0, S v(0) > 0, Iv(0) ≥ 0, (2.1i)

where S h(0), Eh(0), Ih(0), Th(0), Rh(0), Ph(0), S v(0), Iv(0) represent the initial population sizes. The
parameters of this dynamical system for the human population and the vector population are given in
Table 1.

Table 1. Model parameters along with their numerical values.

Parameter Description Values Source
λh Human population recruitment rate 0.05 [44]
λv Vector population recruitment rate 0.071 [44]
µh Natural death rate of human population 0.05 Assumed
βh Probability for a susceptible human to be 0.5 [44]

bitten by an infectious mosquito
βv Probability for an infectious human to be 0.57 Assumed

bitten by a susceptible mosquito
α Rate at which susceptible humans are bitten 0.4 [44]

by the mosquitoes
ζh Rate at which humans become infectious 0.03 [44]
ξh Rate of becoming recovered 0.02 [44]
τh Rate of becoming protected from susceptible 0.01 Assumed
δh Rate of becoming protected from recovered 0.06 [44]
vh Rate of getting treatment 0.03 Assumed
dh1 Disease-induced death rate of infectious humans 0.01 Assumed
dh2 Disease-induced death rate of humans under treatment 0.01 Assumed
µv Natural death rate of vector population 0.05 Assumed

3. Atangana-Baleanu fractional order model

Fractional-order derivatives are very useful in the field of mathematical epidemiology, as they give
very versatile results as compared to those of classical derivatives. Before applying the Atangana-
Baleanu fractional derivative to our proposed dengue model, we first describe some basic concepts
regarding the Atangana-Baleanu fractional derivative and other associated results.

Definition 3.1. Let Ω ⊆ R be open and p ε [1,∞), so Hp(Ω) can be defined as

Hp(Ω) = {ω ∈ L2(Ω) : Dαω ∈ L2, for all |α| ≤ p}.

Definition 3.2. [45,46] The Caputo derivative of fractional order ρ with n − 1 < ρ < n, n ∈ N, for an
integrable function g ∈ Cn, can be presented as

C
a Dρ

t g(t) =
1

Γ(n − ρ)

t∫
a

gn(γ)(t − γ)n−ρ−1dγ.
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For either of the cases n = 1 or n = 2, the Caputo fractional derivative C
a Dρ

t g(t) tends to g′(t) as its
order ρ tends to 1.

Definition 3.3. [32] The Atangana-Baleanu fractional derivative of a differentiable function g(t), i.e.,
g : [a, b]→ R of order ρ where ρ ∈ (0, 1), b > a, is denoted by ABC

a Dρg(t), where g ∈ H1(a, b) is defined
as:

ABC
a Dρg(t) =

M(ρ)
(1 − ρ)

t∫
a

g′(γ)Eρ[−
ρ

1 − ρ
(t − γ)ρ]dγ,

where M(ρ) represents the normalization function satisfying M(0)=M(1)=1 and Eρ is known to be the
Mittag-Leffler (ML) function defined as

Eρ(z) =

∞∑
n=0

(z)n

Γ(ρn + 1)
.

Definition 3.4. [32] The Laplace transform of the Atangana-Baleanu fractional derivative is defined
as:

L
[

ABC
a D

ρ
t g(t)

]
=

M(ρ)
(1 − ρ)

[ sρL [g(t)](s) − sρ−1g(0)
sρ +

ρ

1−ρ

]
, s ≥ 0.

Definition 3.5. [32, 46] The fractional integral with a nonlocal kernel can be defined as:

ABC
a Iρt g(t) =

1 − ρ
M(ρ)

g(t) +
ρ

M(ρ)Γ(ρ)

t∫
a

g(γ)(t − γ)ρ−1dγ.

Definition 3.6. The fractional derivatives and integrals satisfy the following useful relation:

CIρ[CDρu(t)] =CF Iρ[CF Dρu(t)] =ABC Iρ[ABCDρu(t)] = u(t) − u(0).

Fractional order models are very widely used compared to the integer order models due to hereditary
and the description of memory. Therefore, to observe the internal memory effects of the dengue fever
biological model, we replace the first-order ordinary derivatives in (2.1) by the Atangana-Baleanu
fractional derivative of order ρ where 0 < ρ < 1 to obtain:

ABC
0 Dρ

t S h(t) = λh − αβhS hIv − (τh + µh)S h, (3.1a)
ABC
0 Dρ

t Eh(t) = αβhS hIv − (ζh + µh)Eh, (3.1b)
ABC
0 Dρ

t Ih(t) = ζhEh − (vh + µh + dh1)Ih, (3.1c)
ABC
0 Dρ

t Th(t) = vhIh − (ξh + µh + dh2)Th, (3.1d)
ABC
0 Dρ

t Rh(t) = ξhTh − (δh + µh)Rh, (3.1e)
ABC
0 Dρ

t Ph(t) = τhS h + δhRh − µhPh, (3.1f)
ABC
0 Dρ

t S v(t) = λv − αβvS vIh − µvS v, (3.1g)
ABC
0 Dρ

t Iv(t) = αβvS vIh − µvIv, (3.1h)
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with the initial conditions:

S h(0) > 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Th(0) ≥ 0, Rh(0) ≥ 0, Ph(0) ≥ 0, S v(0) > 0, Iv(0) ≥ 0, (3.1i)

where 0 ≤ t ≤ t f < ∞. We suppose that

χ1(t, S h(t), Eh(t), Ih(t),Th(t),Rh(t), Ph(t), S v(t), Iv(t)) = λh − αβhS hIv − (τh + µh)S h,

χ2(t, S h(t), Eh(t), Ih(t),Th(t),Rh(t), Ph(t), S v(t), Iv(t)) = αβhS hIv − (ζh + µh)Eh,

χ3(t, S h(t), Eh(t), Ih(t),Th(t), Ph(t), Ph(t), S v(t), Iv(t)) = ζhEh − (vh + µh + dh1)Ih,

χ4(t, S h(t), Eh(t), Ih(t),Th(t),Rh(t), Ph(t), S v(t), Iv(t)) = vhIh − (ξh + µh + dh2)Th,

χ6(t, S h(t), Eh(t), Ih(t),Th(t),Rh(t), Ph(t), S v(t), Iv(t)) = τhS h + δhRh − µhPh,

χ5(t, S h(t), Eh(t), Ih(t),Th(t),Rh(t), Ph(t), S v(t), Iv(t)) = ξhTh − (δh + µh)Rh,

χ7(t, S h(t), Eh(t), Ih(t),Th(t),Rh(t), Ph(t), S v(t), Iv(t)) = λv − αβvS vIh − µvS v,

χ8(t, S h(t), Eh(t), Ih(t),Th(t),Rh(t), Ph(t), S v(t), Iv(t)) = αβvS vIh − µvIv.

The compact form of the above model is

ABC
0 D

ρ
t η(t) = χ(t, η(t)), η(0) = η0 ≥ 0. (3.2)

Since the given system of differential equations is an autonomous system, it can be written as:

ABC
0 Dρ

t η(t) = χ(η(t)), η(0) = η0, (3.3)

where η(t) =
(
S h(t), Eh(t), Ih(t),Th(t),Rh(t), Ph(t), S v(t), Iv(t)

)T
∈ R8 and

η0(t) =
(
S h(0), Eh(0), Ih(0), Th(0), Rh(0), Ph(0), S v(0), Iv(0)

)T is the initial vector.

4. Existence and uniqueness of solutions

In this section, we prove the existence and uniqueness of solutions with the help of theorems
from functional analysis and fractional calculus. Some relevant material in the form of definitions
and theorems from fractional calculus and functional analysis is also given in this section to assist in
proving the stated theorems.

Definition 4.1. [48] A sequence (xn) in a metric space X = (X, d) is said to be convergent to x if for
every ε > 0, there is an N = N(ε) such that

d(xn, x) < ε f or every n > n0 ∈ N.

Definition 4.2. [48] A sequence (xn) in a metric space X = (X, d) is said to be a Cauchy sequence if
for every ε > 0, there is an N = N(ε) such that

d(xn, xm) < ε f or every m, n > n0 ∈ N.

Definition 4.3. [48] A metric space X is known as a complete metric space if every Cauchy sequence
is convergent in X.
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Definition 4.4. [48] The space of bounded and continuous functions C[a, b] is a complete metric
space with the metric defined as:

d(x, y) = S upt∈[a,b] | f (t) − g(t) | .

Definition 4.5. [48] A sequence (xn) is contractive in a metric space X if a constant C ∈ (0, 1) such
that

d(xn, xn−1) < Cd(xn−1, xn−2),

for all n ∈ N. C is called the contractive constant of the sequence.

Theorem 4.1. [48] A sequence is convergent in a complete metric space X if and only if it is Cauchy
sequence.

Theorem 4.2. [51] Every contractive sequence is a Cauchy sequence, and therefore, convergent in
complete metric space.

Theorem 4.3. [49] Let φ : D → Rn with φ ∈ C1(D) and x ∈ D ⊆ R. Then φ fulfills a Lipschitz
condition on each convex compact setD ⊆ D with Lipchitz constant K > 0 such that

K = sup
x∈D
|

dφ
dx
| .

Theorem 4.4. The function χ(η) in Eq (3.3) is Lipschitz continuous.

Proof. Let S = {(t, η)| 0 ≤ t ≤ t f , η ∈ R8
+} and U ⊆ S be convex compact.

Let η1, η2 ∈ S , then by Mean Value Theorem ∃ γ ∈ (η1, η2) such that

χ(η1(t)) − χ(η2(t))
η1(t) − η2(t)

=χ
′

(γ(t)),

or

χ(η1(t)) − χ(η2(t)) =χ
′

(γ(t)) (η1(t) − η2(t)) ,

| χ(η1(t)) − χ(η2(t)) | =| χ
′

(γ(t)). (η1(t) − η2(t)) |,

≤ ‖χ
′

(γ)‖∞‖η1 − η2‖∞.

Since χ ∈ C1[0, t f ], over convex compact set U, ∃ a constant θ > 0 such that

‖χ
′

(γ)‖∞ ≤ θ,

hence,

| χ(η1(t)) − χ(η2)(t) | ≤ θ‖η1 − η2‖∞,

sup
t∈[0,t f ]

| χ(η1) − χ(η2) | ≤ θ‖η1 − η2‖∞,

‖χ(η1) − χ(η2)‖∞ ≤ θ‖η1 − η2‖∞.

Hence, χ(η) is Lipschitz. �
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Theorem 4.5. We suppose that the function χ(η) satisfies the Lipschitz condition

‖χ(η2) − χ(η1)‖∞ ≤ θ‖η2 − η1‖∞,

then the problem (3.3) has a unique solution for

θ
(1 − ρ

M(ρ)
+

ρ

M(ρ)Γ(ρ)
T ∗

)
< 1.

Proof. We prove that the function η(t) satisfies Eq (3.3) if and only if the equation

η(t) =ABC
a Iρt χ(η(t)),

is satisfied by it.
Let η(t) satisfy Eq (3.3). Applying the Atangana-Baleanu fractional integral to Eq (3.3), that is,

ABC
a Iρt

[ABC

a
Dρ

t η(t)
]

=ABC
a Iρt χ(η(t)).

After simplification, we obtain the following integral equation:

η(t) = η(0) +
1 − ρ
M(ρ)

χ(η(t)) +
ρ

M(ρ)Γ(ρ)

∫ t

a
(t − γ)ρ−1χ(γ)dγ. (4.1)

For the converse implication, we let ηn be a sequence of solutions which converges to the solution (4.1)
with Picard successive iteration, defined as follows:

ηn(t) = η(t0) +
1 − ρ
M(ρ)

χ(ηn(t)) +
ρ

M(ρ)Γ(ρ)

∫ t

0
(t − γ)ρ−1χ(ηn)dγ, with η(t0) = η0. (4.2)

First, we show that the sequence (4.2) is contractive if:

k = θ
(1 − ρ

M(ρ)
+

ρ

M(ρ)Γ(ρ)
T ∗

)
< 1,

where T ∗ = t f Υ and Υ = supt∈[0,t f ](t − γ)ρ−1.

|ηn(t) − ηn−1(t) |=|
1 − ρ
M(ρ)

[χ(ηn−1(t)) − χ(ηn−2(t))]

+
ρ

M(ρ)Γ(ρ)

∫ t

0
(t − χ)ρ−1[χ(ηn−1(t)) − χ(ηn−2(t))]dγ |,

≤
1 − ρ
M(ρ)

|χ(ηn−1(t)) − χ(ηn−2(t)) |

+
ρ

M(ρ)Γ(ρ)

∫ t

0
|(t − χ)ρ−1||χ(ηn−1(x)) − χ(ηn−2)|dγ.

Using the Lipchitz property of function χ(η), we obtain the following expression:

|ηn(t) − ηn−1(t) | ≤
1 − ρ
M(ρ)

θ|ηn−1(t) − ηn−2(t) |
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+
ρ

M(ρ)Γ(ρ)

∫ t

0
|(t − χ)ρ−1|θ|ηn−1(t) − ηn−2(t) | dγ,

≤
1 − ρ
M(ρ)

θ sup
t∈[0,t f ]

|ηn−1(t) − ηn−2(t) |

+
ρ

M(ρ)Γ(ρ)

∫ t

0
θ sup

t∈[0,t f ]
|(t − χ)ρ−1| sup

t∈[0,t f ]
|ηn−1(t) − ηn−2(t)|dγ,

|ηn(t) − ηn−1(t) | ≤ θ
(1 − ρ

M(ρ)
+

ρ

M(ρ)Γ(ρ)
T ∗

)
‖ηn−1 − ηn−2‖∞,

sup
t∈[0,t f ]

|ηn(t) − ηn−1(t) | ≤ θ
(1 − ρ

M(ρ)
+

ρ

M(ρ)Γ(ρ)
T ∗

)
‖ηn−1 − ηn−2‖∞,

‖ηn − ηn−1‖∞ ≤ k‖ηn−1 − ηn−2‖∞,

which implies
d(ηn, ηn−1) ≤ k d(ηn−1, ηn−2). (4.3)

Thus, from Eq (4.3), the sequence (4.2) is contractive; hence, Theorem 4.2 implies that the sequence
is Cauchy sequence. Now for m, n ∈ N and m > n,

|ηm − ηn |=|ηm − ηm−1 + ηm−1 − ηm−2 + ηm−2... − ηn+1 + ηn+1 − ηn |,

≤ |ηm − ηm−1 | +|ηm − 1 − ηm−2 | +... + |ηn+1 − ηn |,

≤ km−1|η1 − η0 | +km−2|η1 − η0 | +... + km−n|η1 − η0 |,

≤ [km−1 + km−2 + ... + kn]|η1 − η0 |,

where
k = θ

(1 − ρ
M(ρ)

+
ρ

M(ρ)Γ(ρ)
T ∗

)
< 1.

Hence, the right-hand side is a geometric series that is always convergent for 0 < k < 1.

|ηm − ηn |≤kn 1 − km−n

1 − k
|η1 − η0 | ≤kn 1

1 − k
|η1 − η0 | .

Since 0 < k < 1, lim(kn) = 0. Therefore, we infer that the sequence (ηn) is Cauchy, and hence, from
Theorem 4.1, it is convergent. Let lim(ηn) = y; then, Eq (4.2) gives

limn→∞ηn(t) = η(t) = η(0) +
1 − ρ
M(ρ)

χ(η(t)) +
ρ

M(ρ)Γ(ρ)

∫ t

0
(t − γ)ρ−1χ(η(γ))dγ. (4.4)

Equation (4.4) is the required solution.

Uniqueness: To prove the uniqueness of the solution, we suppose on contrary that the sequence (ηn)
converges to two different limits η1 and η2. Then, there exist n1 and n2 ∈ N such that

|ηn − η1 |< ε1, n ≥ n1,

|ηn − η2 |< ε2, n ≥ n2.
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Let n = max{n1, n2}

|η1 − η2 |= |η1 − ηn + ηn − η2 |≤ |η1 − ηn | +|ηn − η2 |< ε1 + ε2 = ε,

which implies,

|η1 − η2 |= 0⇒ η1 = η2.

Hence, we have proved that solution (4.4) is a unique solution of (3.3). �

4.1. Invariant region

In this subsection, we determine the feasible region of solutions (S h, Eh, Ih,Th,Rh, Ph, S v, Iv) of the
system of Eq (3.1) with initial data having nonnegative values. Here, our focus is to prove that the
feasible region lies in R8

+, which is a positive invariant region with respect to the model (3.1).

Theorem 4.6. For the Atangana-Baleanu fractional model (3.1), the epidemiological feasible region
is given by

Π =
{
y = (S h, Eh, Ih,Th,Rh, Ph, S v, Iv) ∈ R8

+ : 0 ≤ P ≤
λ

µ

}
, (4.5)

where λ = λh + λv and µ = min (µh, µv) .

We have already proven the existence and uniqueness of solutions of model (3.1) in the last section;
it remains to be proven that the set Π is positively invariant with respect to initial data S h(0) > 0,
Eh(0) ≥ 0, Ih(0) ≥ 0, Th(0) ≥ 0, Rh(0) ≥ 0, Ph(0) ≥ 0, S v(0) > 0, Iv(0) ≥ 0. The following Lemma
proves Theorem 4.6.

Lemma 4.1. System (3.1) has bounded solutions.

Proof. Adding equations of the fractional model (3.1), we have

ABC
0 Dρ

tP(t) =ABC
0 Dρ

t S h(t) +ABC
0 Dρ

t Eh(t) +ABC
0 Dρ

t Ih(t) +ABC
0 Dρ

t Th(t) +ABC
0 Dρ

t Rh(t) +ABC
0 Dρ

t Ph(t)
+ABC

0 Dρ
t S v(t) +ABC

0 Dρ
t Iv(t),

= λh + λv − µh(S h(t) + Eh(t) + Ih(t) + Th(t) + Rh(t) + Ph(t)) + µv(S v(t) + Iv(t))
− dh1 Ih(t) − dh2Th(t),

where P(t) is the total of the host and vector populations. Clearly,

ABC
0 Dρ

tP(t) ≤ λ − µP(t) − dh1 Ih(t) − dh2Th(t) ≤ λ − µP(t),

where λ = λh + λv and µ = min(µh, µv). Therefore, it follows that

ABC
0 Dρ

tP(t) ≤ λ − µP(t).

By applying the Laplace transform on both sides:

L [ABC
0 Dρ

tP(t)](s) ≤
λ

s
− µL [P(t)](s),
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or

M(ρ)sρ

ρ + (1 − ρ)sρ
P(s) + µP(s) ≤ λsρ−(ρ+1) +

M(ρ)P(0)sρ−1

ρ + (1 − ρ)sρ
, (4.6)

where P(s) = [P(t)](s) and P(0) is the total initial population. Solving inequality (4.6) for P(s), we
obtain the following expanded expression:

P(s) ≤
λρ

(1 − ρ)µ + M(ρ)
sρ−(ρ+1)

sρ +
ρµ

(1 − ρ)µ + M(ρ)

+

[
λ(1 − ρ)

(1 − ρ)µ + M(ρ)
+

M(ρ)P(0)
(1 − ρ)µ + M(ρ)

]
sρ−1

sρ +
ρµ

M(ρ)+(1−ρ)µ

.

Applying the inverse Laplace, we obtain

P(t) ≤
λρtρ

(1 − ρ)µ + M(ρ)
Eρ,ρ+1(−Ωtρ) +

[
λ(1 − ρ)

(1 − ρ)µ + M(ρ)
+

M(ρ)P(0)
M(ρ) + (1 − ρ)µ

]
Eρ,1(−Ωtρ), (4.7)

where Ω =
ρµ

M(ρ) + (1 − ρ)µ
, and Eα,β is the ML function with two nonnegative parameters α and β,

which are defined by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn + β)
.

The following Laplace transform exists:

L
[
tβ−1Eα,β(±Λtα)

]
=

sα−β

sα ∓ Λ
,

provided that s > |Λ|1/α. For nonnegative α, β, the ML function satisfies

Eα,β(z) =
1
z

[
Eα,β−α(z) −

1
Γ(β − α)

]
,

and in the case α = ρ, β = ρ + 1 and z = −Ωtρ, we obtain

Eρ,ρ+1(−Ωtρ) =
1

Ωtρ
[
1 − Eρ,1(−Ωtρ)

]
. (4.8)

The ML function is bounded for all t > 0 and behaves asymptotically [32]. By using the

expression (4.8) in inequality (4.7), so we obtain P(t) ≤
λ

µ
as t → ∞. Thus, P(t) is bounded in a

region Π, and hence, all the state variables of model (3.1) are bounded. �

Thus, for any set of nonnegative initial data in Π, the corresponding solution y(t) of model (3.1) in
R8

+ approach asymptotically in finite time t to enter and remain in Π. This means that the region Π

attracts all solutions in R8
+. Therefore, the region Π is a positively invariant [34,50] for the model (3.1)

and hence, the proposed model (3.1) is epidemiologically correct.
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4.2. Positivity of solutions

In this subsection, we prove that the state variables S h, Eh, Ih, Th, Rh, Ph, S v, and Iv are greater
than or equal to zero for any t ∈ R+. This implies that solution y(t) of model (3.1) remains positive
corresponding to any initial data in R8

+. The proof of this property shows that model (3.1) is physically
realizable.

Theorem 4.7. The solution y(t) = (S h, Eh, Ih,Th,Rh, Ph, S v, Iv) of the model (3.1) always remains
positive against any positive initial data.

Proof. Let Eq (3.1a) be rearranged to write

ABC
0 Dρ

t S h(t) ≥ −αβhS hIv − (τh + µh)S h. (4.9)

Since all the solutions are bounded, Eq (4.9) can be rewritten as

ABC
0 Dρ

t S h(t) ≥ −c S h(t), (4.10)

where we take c = αβhIv +(τh +µh) as a constant. With the Laplace transform, inequality (4.10) reduces
to

M(ρ)sρ

ρ + (1 − ρ)sρ
L [S h(t)](s) −

M(ρ)sρ−1

ρ + (1 − ρ)sρ
S h(0) ≥ −c L [S h(t)](s),

[
M(ρ)sρ + cρ + c(1 − ρ)sρ

]
L [S h(t)](s) ≥ M(ρ)sρ−1S h(0),

L [S h(t)](s) ≥
M(ρ)S h(0)

M(ρ) + c(1 − ρ)
sρ−1

sρ +
cρ

M(ρ)+c(1−ρ)

.

Applying the inverse Laplace transform to the above inequality, we obtain

S h(t) ≥
M(ρ)S h(0)

M(ρ) + c(1 − ρ)
Eρ,1

(
−

cρ
M(ρ) + c(1 − ρ)

tρ
)
. (4.11)

Since both terms on the right-hand side of (4.11) are positive, the solution S h(t) remains positive for all
t ≥ 0. Following a similar technique, it can be proven that other states are positive for all t ≥ 0 against
any initial data in Π. Thus, the solutions in R8

+ always remain positive. �

5. Existence of equilibrium points

In this section, we describe the existence of disease-free and endemic points for our Atangana-
Baleanu fractional order dengue fever model (3.1) to discuss the stability and dynamical behavior of
the epidemic.
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5.1. Dengue fever free equilibrium point

The human population and the vector population free of dengue fever virus can be represented
by the disease-free point, which is obtained by considering ABC

0 D
ρ
t ηi(t) = 0 for each state variable

ηi, i = 1, 2, . . . , 8 and substituting E0
h = I0

h = R0
h = P0

h = I0
v = 0. Therefore, with these substitutions,

model (3.1) gives:

S 0
h =

λh

τh + µh
, P0

h =
τhλh

µh(τh + µh)
, S 0

v =
λv

µv
.

Thus, the disease-free point, denoted by Q0
h, can be written as:

Q0
h = (S 0

h, E
0
h, I

0
h ,T

0
h ,R

0
h, P

0
h, S

0
v , I

0
v ) =

( λh

τh + µh
, 0, 0, 0, 0

τhλh

µh(τh + µh)
,
λv

µv
, 0

)
.

Before describing the dynamics of model (3.1), we first determine the reproduction number in the next
subsection.

5.2. Computation of threshold parameter R0

The reproduction number, denoted by R0, is a basic measure in epidemiology that shows the total
number of secondary cases produced by a single infected person in a fully susceptible population
during an infectious period. We focus on fractional differential equations associated with the
compartments of exposed Eh, infected Ih and receiving treatment Th human population and the infected
vector (mosquitoes) population Iv. Here, we used the next generation method strategy to compute the
value of R0. The column matrix of the rate of arrival of new infections denoted by F is written as

F =



αβhS hIv

0

0

αβvS vIh


,

and the column matrix of transitional terms in Eh, Ih, Th and Iv compartments is given by

V =



(ζh + µh)Eh

−ζhEh + (vh + µh + dh1)Ih

−vhIh + (ξh + µh + dh2)Th

µvIv


.
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Jacobian of the matrices F and V at point Q0
h are calculated to give

F =



0 0 0 αβhS 0
h

0 0 0 0

0 0 0 0

0 αβvS 0
v 0 0


, V =



ζh + µh 0 0 0

−ζh vh + µh + dh1 0 0

0 −vh ξh + µh + dh2 0

0 0 0 µv


.

Then,

FV−1 =



0 0 0 L1

0 0 0 0

0 0 0 0

0 L2 0 0





1
C2

0 0 0

ζh
C2C3

1
C3

0 0

ζhvh
C2C3C4

vh
C3C4

1
C4

0

0 0 0 1
µv


,

where L1 =
(αβh)λh
τh+µh

and L2 =
(αβv)λv
µv

and C2 = ζh + µh and C3 = vh + µh + dh1 and C4 = ξh + µh + dh2 .
After multiplication, we compute the reproduction number R0 as the spectral radius of the matrix

FV−1, which is given as:

R0 =
αβvλvζh

µvC2C3
.

5.3. Dengue fever endemic equilibrium point

Endemic equilibrium point of the fractional order model (3.1), denoted by Q1
h, is obtained by

considering ABC
0 D

ρ
t ηi(t) = 0 for each state variable ηi, i = 1, 2, . . . , 8 and by solving the resultant

equations to produce:

Q1
h = (S 1

h, E
1
h, I

1
h ,T

1
h ,R

1
h, P

1
h, S

1
v , I

1
v ),

where

S 1
h =

C2N1(µvαβvI1
h + µ2

v)
α2βhβvλv

,

I1
h =

λhα
2βhβvλv −C1µ

2
v

C2N1α2βhβvλv + C1C2N1µvαβv
,

E1
h = N1I1

h ,

T 1
h = N2I1

h ,

R1
h = N2N3I1

h ,
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P1
h =

τhαβvλvI1
h + δhN2N3I1

h(µvαβvI1
h + µ2

v)

µhµvαβvI1
h + µhµ2

v + µh
,

S 1
v =

λv

αβvI1
h + µv

,

I1
v =

αβvλvI1
h

µv(αβvI1
h + µv)

,

where N1 = C3
ζh

, N2 = vh
C4

, N3 =
ξh
C5

.

6. Stability investigation

In this section, we describe the dynamics of the model (3.1) at disease-free equilibrium point and
the endemic equilibrium point with the help of the following analysis. In that analysis, we present
the local and global stabilities of model (3.1) at both equilibrium points with the help of reproduction
number R0.

6.1. Local behavior

Theorem 6.1. The equilibrium point Q0
h is locally asymptotically stable (LAS) when R0 < 1 and

unstable otherwise provided R0 , 1.

Proof. We compute the Jacobian of system (3.1) at Q0
h to obtain

J(Q0
h) =



−C1 0 0 0 0 0 0 −L1

0 −C2 0 0 0 0 0 L1

0 ζh −C3 0 0 0 0 0

0 0 vh −C4 0 0 0 0

τh 0 0 0 −µh δh 0 0

0 0 0 ξh 0 −C5 0 0

0 0 −L2 0 0 0 −µv 0

0 0 L2 0 0 0 0 −µv



. (6.1)

The disease-free Jacobian matrix (6.1) has the following eigenvalues:
λ̄1 = −µv, λ̄2 = −µh, λ̄3 = −C3, λ̄4 = −C2, λ̄5 = −

C2C3µv−L1L2ζh
C2C3

, λ̄6 = −C5, λ̄7 = −C4,
λ̄8 = −C1. As we can see that C1,C2,C3,C4,C5 are positive so λ̄1, λ̄2, λ̄3, λ̄4, λ̄6, λ̄7, λ̄8 are negative. λ̄5

can be written as λ̄5 = µv(R0 − 1) < 0. Therefore, λ̄5 < 0 as R0 < 1. Therefore, the proposed model is
locally asymptotically stable where all the eigenvalues are negative when R0 < 1. �
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Theorem 6.2. A dengue fever present equilibrium Q1
h is LAS whenever R0 > 1 and unstable whenever

R0 < 1.

Proof. Jacobian for the system (3.1) at Q1
h is computed to obtain

J(Q1
h) =



−M1 −C1 0 0 0 0 0 0 −L1

M1 −C2 0 0 0 0 0 L1

0 ζh −C3 0 0 0 0 0

0 0 vh −C4 0 0 0 0

0 0 0 ξh −C5 0 0 0

τh 0 0 0 δh −µh 0 0

0 0 −L2 0 0 0 −M2 − µv 0

0 0 L2 0 0 0 M2 −µv



.

The following eigenvalues have been computed for matrix J(Q1
h).

λ̄1 = −µh,

λ̄2 = −M2 − µv,

λ̄3 = −C3,

λ̄4 = −C2,

λ̄5 = −M1 −C1,

λ̄6 = −
(µv)

[
C1C2C3M2 + C1C2C3µv + C2C3M1M2 + C2C3M1µv −C1C2L2ζh

]
C2C3

[
C1M2 + C1µv + M1M2 + M1µv

] ,

λ̄7 = −C5,

λ̄8 = −C4,

where M1 = αβhI1
v , M2 = αβvI1

h , L1 = αβhS 1
h and L2 = αβvS 1

v . Therefore, λ̄1 is negative and λ̄2 =

−αβvIh − µv which is negative. We observe that λ̄3, λ̄4, λ̄7, λ̄8 are all negative as C2,C3,C4,C5 are
positive. Therefore, λ̄6 = −µv +

µvC1C2L2ζh
C1 M2+C1µv+M1 M2+M1µv

which is negative if and only if µvC1C2L2ζh
C1 M2+C1µv+M1 M2+M1µv

is Positive that is true. Thus, all the eigenvalues of the Jacobian matrix J(Q1
h) are less than zero, so the

system is LAS at Q1
h = (S 1

h, E
1
h, I

1
h ,T

1
h ,R

1
h, P

1
h, S

1
v , I

1
v ). �

6.2. Global behavior

Theorem 6.3. A dengue fever free equilibrium Q0
h is globally asymptotically stable (GAS) in the region

Π when R0 < 1.
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Proof. Here, we use the disease-free value S 0
h =

λh

τh + µh
and construct a candidate Lyapunov function

Y0 : Π→ R [50–52] such that

Y0(S h, Eh, Ih,Th,Rh, Ph, S v, Iv) =

(
S h − S 0

h − S 0
h ln

S h

S 0
h

)
+ Eh + Ih + Th + Rh + Ph + S v + Iv.

By applying the Atangana-Baleanu fractional derivative, i.e., ABC
0 Dρ

t , we have

ABC
0 Dρ

t Y0 =
(
1 −

S 0
h

S h

)
ABC
0 Dρ

t S h +ABC
0 Dρ

t Eh +ABC
0 Dρ

t Ih + ABC
0 Dρ

t Th

+ABC
0 Dρ

t Rh +ABC
0 Dρ

t Ph + ABC
0 Dρ

t S v +ABC
0 Dρ

t Iv.

Now, from system (3.1), we substitute the values of all fractional derivatives to have

ABC
0 D

ρ
t Y0 =

(
1 −

S 0
h

S h

)[
λh − αβhS hIv − (τh + µh)S h

]
+

[
αβhS hIv − (ζh + µh)Eh

]
+

[
ζhEh − (vh + µh + dh1)Ih

]
+

[
vhIh − (ξh + µh + dh2)Th

]
+

[
ξhTh − (δh + µh)Rh

]
+

[
τhS h + δhRh − µhPh

]
+

[
λv − αβvS vIh − µvS v

]
+

[
αβvS vIh − µvIv

]
.

This implies that

ABC
0 D

ρ
t Y0 = λh − λh

S 0
h

S h
+ µS 0

h − µS h + S 0
h(αβvIv + τh) + µ(Eh + Ih + Th + Rh + Ph)

−(dh1 Ih + dh2Th) + λv + µv(S v + Iv).

Clearly, S 0
h(αβvIv + τh) ≥ 0; therefore,

ABC
0 D

ρ
t Y0 ≤ −

(µh + τh)
S h

(S h − S 0
h)2 − µh(Eh + Ih + Th + Rh + Ph)

−µv(S v + Iv) − (Ihdh1 + Thdh1) − λv + τhS h.

Then, ABC
0 D

ρ
t Y0 ≤ 0. We see that ABC

0 D
ρ
t Y0 = 0 if and only if S h = S 0

h, Eh = E0
h = 0, Ih = I0

h = 0,
Th = T 0

h , Rh = R0
h, Ph = P0

h, S v = S 0
v , Iv = I0

v . Hence, by LaSalle’s invariance principle [58, 59],
Q0

h is globally asymptotically stable in Π. Therefore, we have the result that the very dangerous virus
disappears from the human population. �

Theorem 6.4. Dengue fever present steady state Q1
h is GAS in the positively invariant region Π if

R0 > 1.

Proof. To show the global stability at Q1
h, we consider a Lyapunov function Y1 : Π→ R [50–52] such

that

Y1 = S h − S 1
h − S 1

h ln
S h

S 1
h

+ Eh − E1
h − E1

h ln
Eh

E1
h

+ Ih − I1
h − I1

h ln
Ih

I1
h

+ Th − T 1
h − T 1

h ln
Th

T 1
h
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+ Rh − R1
h − R1

h ln
Rh

R1
h

+ Ph − P1
h − P1

h ln
Ph

P1
h

+ S v − S 1
v − S 1

v ln
S v

S 1
v

+ Iv − I1
v − I1

v ln
Ih

I1
h

.

The Atangana-Baleanu fractional derivative of Y1 can be written as

ABC
0 Dρ

t Y1 =
(
1 −

S 1
h

S h

)
ABC
0 Dρ

t S h +
(
1 −

E1
h

Eh

)
ABC
0 Dρ

t Eh +
(
1 −

I1
h

Ih

)
ABC
0 Dρ

t Ih +
(
1 −

T 1
h

Th

)
ABC
0 Dρ

t Th

+
(
1 −

R1
h

Rh

)
ABC
0 Dρ

t Rh +
(
1 −

P1
h

Ph

)
ABC
0 Dρ

t Ph +
(
1 −

S 1
v

S v

)
ABC
0 Dρ

t S v +
(
1 −

I1
v

Iv

)
ABC
0 Dρ

t Iv.

Utilizing the equations of model (3.1), we obtain

ABC
0 Dρ

t Y1 =
(
1 −

S 1
h

S h

)[
λh − (αβhIv + τh + µh)(S h − S 1

h) − (τh + µh)S 1
h

]
+

(
1 −

E1
h

Eh

)[
αβhS hIv − (ζh + µh)(Eh − E1

h) − (ζh + µh)E1
h

]
+

(
1 −

I1
h

Ih

)[
ζhEh − (vh + µh + dh1)(Ih − I1

h) − (vh + µh + dh1)I
1
h

]
+

(
1 −

T 1
h

Th

)[
vhIh − (ξh + µh + dh2)(Th − T 1

h ) − (ξh + µh + dh2)T
1
h

]
+

(
1 −

R1
h

Rh

)[
ξhTh − (δh + µh)(Rh − R1

h) − (δh + µh)R1
h

]
+

(
1 −

P1
h

Ph

)[
τhS h + δhRh − µh(Ph − P1

h) − µhP1
h

]
+

(
1 −

S 1
v

S v

)[
λv − αβv(S v − S 1

v)Ih − µv(S v − S 1
v) − αβvS 1

v Ih − µvS 1
v

]
+

(
1 −

I1
v

Iv

)[
αβvS vIh − µv(Iv − I1

v ) − µvI1
v

]
.

Rearrangement of the terms yields us

ABC
0 Dρ

t Y1 = σ1 − σ2,

where

σ1 = λh + λv + (αβhS hIv + τh + µh)
(S 1

h)2

S h
+ (ζh + µh)

(E1
h)2

Eh
+ (vh + µh + dh1)

(I1
h)2

Ih

+ (ξh + µh + dh2)
(T 1

h )2

Th
+ (δh + µh)

(R1
h)2

Rh
+ µh

(P1
h)2

Ph
+ (αβvIv + µv)

(S 1
v)2

S v
+ µv

(I1
v )2

Iv

+ (αβhS hIv + ζhEh + υhIh + τhS h + δhRh + ξhTh + αβvS vIh),

and

σ2 = λh
S 1

h

S h
+ (αβhS hIv + τh + µh)

(S h − S 1
h)2

S h
+ (αβhS hIv + τh + µh)S 1

h
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+ (ζh + µh)
(Eh − E1

h)2

Eh
+ (ζh + µh)E1

h + αβhS hIv
E1

h

Eh

+ (vh + µh + dh1)
(Ih − I1

h)2

Ih
+ (vh + µh + dh1)I

1
h + ζhEh

I1
h

Ih

+ (ξh + µh + dh2)
(Th − T 1

h )2

Th
+ (ξh + µh + dh2)T

1
h + υhIh

T 1
h

Th

+ (δh + µh)
(Rh − R1

h)2

Rh
+ (δh + µh)R1

h + ξhTh
R1

h

Rh

+ +µh
(Ph − P1

h)2

Ph
+ µhP1

h + (τhS h + δhRh)
P1

h

Ph

(αβvIv + µv)
(S v − S 1

v)2

S v
+ (αβvIv + µv)S 1

v + λv
S 1

v

S v

+ µv
(Iv − I1

v )2

Iv
+ µvI1

v + αβvS vIv
I1
v

Iv
.

As each parameter of the model (3.1) is positive, ABC
0 Dρ

t Y1 ≤ 0 for σ1 ≤ σ2. The equality ABC
0 Dρ

t Y1 = 0
holds if and only if S h = S 1

h, Eh = E1
h, Ih = I1

h , Th = T 1
h , Rh = R1

h, Ph = P1
h, S v = S 1

v , Iv = I1
v . Implies

{Q1
h} is the maximum invariant set contained in

B1 =
{
(S h, Eh, Ih,Th,Rh, Ph, S v.Iv) ∈ Π : ABC

0 Dρ
t Y1 = 0

}
.

Hence, by LaSalle’s invariance principle [50], the disease present point Q1
h is GAS in Π. �

7. Numerical study

To obtain a numerical solution for the Atangana-Baleanu fractional order model of dengue fever for
the various values of ρ, we implement the Toufik-Atangana scheme [53,54] with the help of MATLAB
code. We use the scheme to study the dynamical behavior of The dengue fever epidemic over time t for
various values of fractional order ρ. Furthermore, the validity of treatment program given to infected
people is analyzed numerically for various treatment levels.

7.1. Toufik-Atangana method for the fractional-order model

To discuss the numerical stability of the dengue fractional model (3.1), we present here a finite
difference scheme that is based on the Toufik-Atangana scheme [53] for fractional models. First, we
present the development of the iterative method for fractional differential equations in brief and then
write each fractional equation of the model (3.1) in discrete form. We apply the fundamental theorem
of fractional calculus to system (3.2) to obtain:

η(t) − η(0) =
1 − ρ
M(ρ)

χ(t, η(t)) +
ρ

M(ρ)Γ(ρ)

∫ t

0
(t − γ)ρ−1χ(γ, η(γ))dγ.

In discrete form, we have

η(tq+1) − η(0) =
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)Γ(ρ)

∫ tq+1

0
(tq+1 − γ)ρ−1χ(γ, η(γ))dγ,
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where t = tq+1, q = 0, 1, . . . ,N with h =
T f

N . Equivalently,

η(tq+1) = η(0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)Γ(ρ)

q∑
p=0

∫ tq+1

0
(tq+1 − γ)ρ−1χ(γ, η(γ))dγ. (7.1)

The function χ(γ, η(γ)) can be approximated over [tp, tp+1], by using the interpolation polynomial

χ(γ, η(γ)) =
χ(tp, η(tp))

h
(t − tp−1) −

χ(tp−1, η(tp−1))
h

(t − tp).

Putting in (7.1), we obtain

η(tq+1) = η(0) +
1 − ρ
M(ρ)

χ(t, η(t)) +
ρ

M(ρ)Γ(ρ)

q∑
p=0

[χ(tp, η(tp))
h

∫ tp+1

tp

(tq+1 − t)ρ−1(t − tp−1)dt

−
χ(tp−1, η(tp−1))

h

∫ tp+1

tp

(tq+1 − t)ρ−1(t − tp)dt
]
.

Evaluation of the integrals results in the following numerical scheme for solving equations of type (3.2).

η(tq+1) = η(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ

−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
.

Hence, the discrete form of the equations of the model (3.1) are given as:

S h(tq+1) = S h(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ

−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
,

Eh(tq+1) = Eh(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ

−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
,

Ih(tq+1) = Ih(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ

−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
,

Th(tq+1) = Th(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ
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−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
,

Rh(tq+1) = Rh(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ

−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
,

Ph(tq+1) = Ph(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ

−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
,

S v(tq+1) = S v(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ

−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
,

Iv(tq+1) = Iv(t0) +
1 − ρ
M(ρ)

χ(tq, η(tq)) +
ρ

M(ρ)

q∑
p=0

[hρχ(tp, η(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ

−(q − p + 2 + 2ρ)(q − p)ρ
}
−

hρχ(tp−1, η(tp−1))
Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
.

7.2. Effect of fractional order on disease dynamics

We use the above approximations to present the graphical picture of the proposed fractional
model (3.1) and to observe the impact of memory on the dynamics of the disease, particularly on
affected individuals.

Figure 2 shows the graphical behavior of the state variables under the influence of arbitrary
fractional order ρ. We observe that all of the state variables of the host and the vector populations except
the susceptibles decrease when the fractional order ρ increases. Initially, the exposed humans increase
with order but later on start decreasing. Therefore, we conclude that the number of affected individuals
reduce with an increase in the fractional order from 0.6 to 1. However, we notice a significant increase
in the vector susceptible population with an increase in fractional order ρ.
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Figure 2. Dynamics of the state variables of the dengue fever epidemic model (3.1) for
various values of fractional order ρ.

7.3. Disease control with different treatment rates

In this section, we quantitatively investigate the influence of different treatment rates on the
dynamics of the dengue fever model (3.1). Figures 3–6 show the impact of different treatment rates to
control the disease for fractional order ρ taken as 0.4, 0.6, 0.8, and 1.0.

It is obvious from Figures 3–6 that the exposed humans Eh and the infected humans Ih decrease
with the rise in the treatment rate vh from 0.1 to 0.9. However, the reduction in infected humans
is comparatively higher than that in the exposed individuals. We also observe that the curve for
infected humans approaches its disease-free state when the fractional order ρ is increased along with
the treatment rate. A decrease in the infected vector population is also noticed when the treatment rate
is increased. For ρ = 0.4, the susceptible humans decrease by increasing the treatment rate, but this
behavior shifts to a rise in susceptibles when the fractional order moves to the higher value i. e., ρ = 1.
This analysis reveals that the infected host population decrease significantly to approach disease free
with a high treatment rate. However, the disease does not die out completely under the considered
treatment rates.
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Figure 3. Treatment impact on dengue fever flow for ρ = 0.4.
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Figure 4. Treatment impact on dengue fever flow for ρ = 0.6.
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Figure 5. Treatment impact on dengue fever flow for ρ = 0.8.
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Figure 6. Treatment impact on dengue fever flow for ρ = 1.0.
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7.4. Sensitivity analysis

Sensitivity analysis is used to determine those parameters of the model, which are highly sensitive
to R0. The parameters having a high sensitivity index are highly sensitive to R0. The approach is very
useful to design disease control strategies. The sensitivity index of a parameter ω is determined by
using the formula

IR0
ω =

∂R0

∂ω

ω

R0
,

where R0 is the basic reproduction number.
The sensitivity indices of each of the parameters of R0 have been determined by using this formula

and are listed in Table 2. Figure 7 shows the graphical representation of these values where the
upward and downward bars show, respectively the direct and indirect relationship of parameters with
reproduction number R0. Ignoring the sensitivity indices of parameters representing birth and death
rates, we observe that the parameters α, βv and ζh have high positive sensitivity impact on R0. This
means that a unit increase or decrease in the value of ζh causes an increase or decrease of 0.6250 in the
value of R0. The same logic applies to the parameters α and βv. The parameter νh has a negative high
sensitivity index of -0.3333. Thus, a unit increase in the value of νh causes a decrease of 0.3333 in the
value of R0.

From the above observations, we conclude that the disease can be controlled significantly if it
is possible to reduce the values of the parameters α, βv, ζh by some optimal strategy. However,
practically, it appears difficult to control these values. On the other hand, the treatment rate νh of
humans can be increased to reduce the impact of disease. Thus, this analysis suggests that we choose
the treatment rate νh as the control variable to control the disease optimally.

Table 2. Sensitivity index for R0.

Parameters Sensitivity Indices
µh -1.18055
ζh 0.6250
νh -0.3333
dh1 -0.1111
α 1.0
λv 0.9999
µv -1.0
βv 1.0
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8. Optimization of the dengue fever model

In this section, we optimize the dengue fever model. For optimization, we update the dengue
fever model (3.1) to adjust the control variable, and we define an optimal control problem by defining
an objective functional. Then, the adjoint variables are introduced to attach the updated system of
fractional differential equations to the objective functional, resulting in the formation of a function
called the Hamiltonian. We consider the treatment rate denoted by vh as a time-dependent control
variable denoted by u1(t) and develop optimality conditions from the Hamiltonian function by using
Pontryagin’s principle [55–57]. The conditions are calculated numerically to produce solutions of the
optimal control problem.

8.1. Optimal control problem and optimality conditions

The main purpose of introducing an optimal control problem is to optimally explore the effect of the
treatment on the spread of dengue fever by implementing the best optimal control strategy. Therefore,
we apply a control strategy for the maximization of recovered individuals and for the minimization of
exposed or infected individuals at a minimal cost of control.

The suggested epidemic model of FODEs with the inclusion of control is given by

ABC
0 Dρ

t S h(t) = λh − αβhS hIv − (τh + µh)S h, (8.1a)
ABC
0 Dρ

t Eh(t) = αβhS hIv − (ζh + µh)Eh, (8.1b)
ABC
0 Dρ

t Ih(t) = ζhEh − (u1(t) + µh + dh1)Ih, (8.1c)
ABC
0 Dρ

t Th(t) = u1(t)Ih − (ξh + µh + dh2)Th, (8.1d)
ABC
0 Dρ

t Rh(t) = ξhTh − (δh + µh)Rh, (8.1e)
ABC
0 Dρ

t Ph(t) = τhS h + δhRh − µhPh, (8.1f)
ABC
0 Dρ

t S v(t) = λv − αβvS vIh − µvS v, (8.1g)
ABC
0 Dρ

t Iv(t) = αβvS vIh − µvIv, (8.1h)
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and the initial conditions are

S h(0) > 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Th(0) ≥ 0, Rh(0) ≥ 0, Ph(0) ≥ 0, S v(0) > 0, Iv(0) ≥ 0. (8.1i)

The objective cost functional that consists of state and control variables may be defined as

J(Ih, u1) =

T f∫
0

[
κ1Ih(t) +

1
2
κ2u2

1(t)
]
dt, (8.2)

where T f is the fixed terminal time, and u1(t) is the control variable.
The optimal control problem is then defined as:

min
u1(t)∈U

J(Ih, u1) subject to model (8.1), (8.3)

whereU is the control space.
To apply Pontryagin’s maximum principle for optimality conditions, we constructed the

Hamiltonian for the control problem (8.3) as follows:

H(Θ, u1) =κ1Ih(t) +
1
2
κ2u2

1(t)+

+ G1

[
λh − αβhS hIv − (τh + µh)S h

]
+ G2(t)

[
αβhS hIv − (ζh + µh)Eh

]
+ G3

[
ζhEh − (u1(t) + µh + dh1)Ih

]
+ G4

[
u1(t)Ih − (ξh + µh + dh2)Th

]
+ G5

[
ξhTh − (δh + µh)Rh

]
+ G6

[
τhS h + δhRh − µhPh

]
+ G7

[
λv − αβvS vIh − µvS v

]
+ G8

[
αβvS vIh − µvIv

]
, (8.4)

where Θ = (S h, Eh, Ih,Th,Rh, Ph, S v, Iv) is a vector of state variables, Gi, i = 1, . . . , 8 are adjoint
variables associated with the state equations given in (8.1) and Ĝ = (G1,G2,G3,G4,G5,G6,G7,G8) is
called the adjoint vector.

Theorem 8.1. Let S̄ h, Ēh, Īh, T̄h, R̄h, P̄h, S̄ v and Īv be optimal state solutions for model (8.1) associated
with the optimal control variable u∗1 for the optimal control problem (8.3). Then, there exist an adjoint
system such that

ABC
t D

ρ
T f

G1(t) = −
∂H

∂S h
, (8.5a)

ABC
t D

ρ
T f

G2(t) = −
∂H

∂Eh
, (8.5b)

ABC
t D

ρ
T f

G3(t) = −
∂H

∂Ih
, (8.5c)

AIMS Mathematics Volume 8, Issue 7, 15499–15535.



15528

ABC
t D

ρ
T f

G4(t) = −
∂H

∂Th
, (8.5d)

ABC
t D

ρ
T f

G5(t) = −
∂H

∂Rh
, (8.5e)

ABC
t D

ρ
T f

G6(t) = −
∂H

∂Ph
, (8.5f)

ABC
t D

ρ
T f

G7(t) = −
∂H

∂S v
, (8.5g)

ABC
t D

ρ
T f

G8(t) = −
∂H

∂Iv
, (8.5h)

along with transversally conditions

G1(T f ) = G2(T f ) = G3(T f ) = G4(T f ) = G5(T f ) = G6(T f ) = G7(T f ) = G8(T f ) = 0,

and a control variable u∗1 characterized by

u∗1(t) = min
{
1,max

{G3 −G4

κ2
Ih(t), 0

}}
.

�
Differentiating the Hamiltonian (8.4) with respect to the state variables and then using (8.5), the adjoint
system of fractional-order differential equations is obtained as

ABC
t D

ρ
T f

G1 = (G1 −G2)αβhIv + G1(τh + µh) −G5τh, (8.6a)
ABC
t D

ρ
T f

G2 = (G2 −G3)ζh + G2µh, (8.6b)
ABC
t D

ρ
T f

G3 = −κ1 + (G3 −G4)u1 + G3(µh + dh1) + (G7 −G8)αβvS v, (8.6c)
ABC
t D

ρ
T f

G4 = (G4 −G5)ξh + G4(µh + dh2), (8.6d)
ABC
t D

ρ
T f

G5 = (G5 −G6)δh + G5µh, (8.6e)
ABC
t D

ρ
T f

G6 = µhG6, (8.6f)
ABC
t D

ρ
T f

G7 = (G7 −G8)αβvIh + G7µv, (8.6g)
ABC
t D

ρ
T f

G8 = (G1 −G2)αβhS h + G8µv, (8.6h)

with transversality conditions

G1(T f ) = G2(T f ) = G3(T f ) = G4(T f ) = G5(T f ) = G6(T f ) = G7(T f ) = G8(T f ) = 0. (8.6i)

Using the first condition of Pontryagin’s principle, we obtain an equation for the control, i.e.,

∂H

∂u1
= 0 ⇒ u1(t) =

G3 −G4

κ2
Ih(t).

Thus, the optimal control characterization for u∗ with bounds is given as

u∗1(t) = min
{
1,max

{G3 −G4

κ2
Ih(t), 0

}}
. (8.7)

For an approximate solution of the state system (8.1), we implement the Toufik-Atangana scheme
developed and explained in Subsection 7.1, and for the adjoint system (8.6), we make use of the
Toufik-Atangana method backward in time t, together with the transversality conditions (8.6i).
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8.2. Solution algorithm

We implement steps of the following algorithm to calculate the optimality conditions for the optimal
control problem (8.3). Here, Θ represents each of the state variables, the adjoint variables, the control
variable, and σ > 0 is the tolerance parameter.

1. Consider an initial control uk ∈ U for k = 0.
2. Solve the state system (8.1) forward in time and the adjoint system (8.6) backward in time for

approximate solutions using control uk.
3. Use (8.7) to determine u∗.
4. Update control uk by using uk = (uk + u∗)/2.
5. Stop the iterative process when ‖Θk − Θk−1‖ < σ‖Θk‖ for k > 0,

otherwise k + 1←− k and move to step 2.

8.3. Optimal solutions

In this section, we describe the simulation results obtained by solving the necessary optimality
conditions derived from the fractional order optimal control problem (8.3). Steps of the algorithm are
implemented through MATLAB code. To implement the Toufik-Atangana scheme for approximating
solutions of state and adjoint equations, we discretize the domain [0,T f ] into N + 1 discrete points
t j = jh, j = 0, 1, . . . ,N where h =

T f

N . The cost functional (8.2) is approximated at these discrete
points by using Simpson’s one by three rule. Simulation results are presented for different values of
fractional order, i.e., for ρ = 0.7, 0.8, 0.9, 1.

The main purpose of the study was to determine the optimal treatment rate vh(t) (control variable)
that minimizes the cost functional (dengue fever infection in the society). Figure 8 shows the plots of
optimal control variable and the corresponding cost functional for various values of fractional order ρ.
From the figure, we observe that each curve for the cost functional reaches its minimum corresponding
to each time-dependent optimal treatment rate vh(t) (control). We notice that the number of solution
iterations increases with the fractional order ρ.
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Figure 8. Optimal control and cost functional for the various values of fractional order ρ.
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Figure 9 shows the solution curves for the state variables before and after optimization at final
time T f . Solid lines represent the optimal solution curves for state variables, whereas the dashed lines
represent the curves before optimization. A remarkable decrease in exposed and infected humans is
observed after optimization for each of the fractional order ρ = 0.7, 0.8, 0.9, 1. Each of the optimal
curves for recovered and protected individuals rise after optimization. The number of susceptible and
treated humans also increases with time under the optimal treatment rate. With the given control
strategy, we also observe a significant decrease in the infected mosquitoes for each of the fractional
orders ρ. The decline in the infected mosquitoes is another achievement of the implemented control
strategy. Thus, we conclude that the fractional order ρ affects the dynamical behavior of the disease
for a longer time. The study also reveals that the cost of implementing a treatment strategy reduces
continuously with an increase in the value of fractional order ρ. This analysis gives us the importance
of considering a fractional order dengue fever model over an integer order model. Further analysis
can be done to see the impact of other fractional operators on dengue fever model in comparison to
Atangana-Baleanu fractional operator.
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Figure 9. State variables with and without controls for various ρ values.

9. Conclusions

In this study, we proposed a new ABC fractional-order model for dengue fever to analyze the disease
flow in the situation of protected travelers with proper treatment. We have proved that there exist a
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unique solution of the proposed fractional model that lies in a feasibly invariant region. The model
also satisfies both the local and global stability properties at the disease free and endemic equilibrium
points. All of these proofs conclude that the newly designed fractional model is well-posed. The
main objective of this study was to control the disease by minimizing the number of infected humans.
For this, we considered treatment rate vh as the control variable. First, we study the impact of the
memory index and the effect of different constant treatment rates on the control of disease. We noticed
that infected humans decrease by increasing the memory index (fractional order) and by increasing
the treatment rate of infected humans. The infected humans vanish with treatment rate vh = 0.5 for
fractional order ρ = 1. Later, we considered treatment rate vh(t) as the time-dependent control in
the proposed fractional model. We designed an optimal control problem by defining the objective
functional. Pontryagin’s maximum principle is used to establish optimality conditions for the solution
of the optimal control problem. Graphical results show the effectiveness of the strategy to determine
optimal treatment rates for various fractional orders that minimize the cost functional and significantly
reduce the number of exposed and infected humans. Numerical analysis of the study revealed that the
index of memory and the treatment rate can play a significant role in minimizing the impact of disease.
We also conclude that the time dependent control is more cost effective than the time independent
control. In future, we plan to consider different nonpharmaceutical control strategies to adjust in the
existing ABC fractional model for more reliable optimal control analysis. We are also working on a
dengue and COVID-19 coinfection model with an ABC derivative operator to develop various control
strategies with cost-effective analysis.
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