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1. Introduction

We consider the following system of ` ≥ 2 coupled singularly perturbed reaction-diffusion boundary
value problems. Find u ∈ (C2(0, 1) ∩C[0, 1])` such thatLu = −Eu′′ + Au = g in Ω = (0, 1),

u(0) = u0, u(1) = u1,
(1.1)

where E = diag(ε2
1, . . . , ε

2
`) with small perturbation parameters 0 < εi << 1, i = 1, 2 . . . , `, the

vector-valued function g = (g1, g2, . . . , g`)T and the reaction coefficients matrix A = (akl)`k,l=1 are twice
continuously differentiable on [0, 1] and the constants u0 and u1 are given. The exact solution of (1.1)
is the vector u = (u1, u2, . . . , u`)T . We assume that A : [0, 1] → R(`,`) and the vector valued function
g : [0, 1]→ R` are independent of the perturbation parameters E and the reaction matrix A is strongly
diagonally dominant with

∑̀
j=1
j,i

∥∥∥∥ai j

aii

∥∥∥∥
∞
< 1, for i = 1, 2, . . . , `. (1.2)

Then the condition (1.2) implies that A is an M-matrix and its inverse is positive definite and bounded
in the maximum norm (see e.g., [1]). Under these assumptions, the problem (1.1) has a unique solution
u = (u1, . . . , u`)T ∈ (C2(0, 1) ∩ C[0, 1])`. In this paper, without loss of generality we will assume the
most general case

0 < ε1 ≤ ε2 ≤ · · · ≤ ε` � 1, (1.3)

which always can be done, if necessary, by renumbering of the equations in the system.
It has been well-known that standard numerical methods including finite difference (FD) methods

and finite element methods (FEM) are inefficient and inaccurate when applied to singularly perturbed
problems (SPPs) on uniform meshes. The solutions of SPPs have boundary or/and interior layers
which are very thin regions in which the solution or its derivative change abruptly. The width of the
layers depends on the perturbation parameter and these layers are not resolved unless a large number of
mesh points are used which is computationally expensive. As a remedy, fitted mesh methods based on
layer-adapted meshes have been proposed and studied during recent years for solving boundary layer
problems. The construction of these meshes require a priori knowledge on the bounds for the solution
and its derivative. These meshes are finer in the part of boundary layers and coarser in the outside of
region of the boundary layers. The well-known layer-adapted meshes are piecewise uniform Shishkin
meshes [2] and Bakhvalov-type meshes [3]. We refer the readers to the books [1, 2, 4] and references
therein for more details.

Unlike the non-coupled SPPs, the boundary layer behaviour of the solution to each equation in
the system can be dramatically different and complicated. Each solution in the coupled system may
have a sublayer corresponding to each of the perturbation parameter in the domain if the perturbation
parameter in each equation has a different magnitude. This renders the construction of numerical
methods very subtle. Shiskin [5] considered coupled system of two reaction diffusion equations on
an infinite strip and he proved that the finite difference method is a robust method and has the rate
of convergence O(N−1/4) on piecewise uniform meshes when the perturbation parameters are small
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and different each other. Later, it is shown that the method has higher order convergence in [6–9]
using piecewise uniform Shishkin mesh. The finite element method has been developed and analyzed
for SPPs in the papers [7, 10, 11]. Recently, the numerical solution of system of reaction diffusion
problems have been presented in [12–14] and reference therein.

Although there has been increasing interest in the numerical solution of coupled system of two
singularly perturbed differential equations, few articles discuss the numerical solution of coupled
system of more than two singularly perturbed differential equations. Kellogg et al. [15] considered a
system of ` ≥ 2 reaction-diffusion equations in two dimension with the same perturbation parameter
for each equation in the system. A system of ` ≥ 2 reaction-diffusion equations each of which has a
different perturbation parameter has been studied and analyzed in one dimension in [9]. In general,
the reaction coefficient matrix A is assumed to be diagonally dominant with positive diagonal and
nonpositive off-diagonal elements in most of the papers. However, this condition is weakened in [9].
Usually, error analyses in FEMs or DG methods have been analyzed in the energy norms derived from
corresponding variational formulations. Unfortunately, these norms are too weak to capture the
boundary layers of SPPs of reaction-diffusion type, see, e.g., [14, 16–18]. Up to now, the only work
on the balanced error estimates of finite element method for a system of ` ≥ 2 coupled singularly
perturbed reaction-diffusion two-point boundary value problems is the paper of Lin and Stynes [14].
They have proved that the classical FEM using quadratic C1 splines is order of O(N−1 ln N) in the
balanced norm provided that each perturbation parameter is equal to the same small number. A new
FEM is presented for SPPs of reaction-diffusion type in the weighted and balanced norm in [19]. The
convergence analysis of the classical FEM in a balanced norm on Bakhvalov-type rectangular meshes
has been studied in [20]. The analysis is much more involved and complicated when each parameter
in the system is different. The error analysis in the balanced norm, to the best of the authors’
knowledge, is not studied in the literature when the perturbation parameters are different. In this
paper, to fill this gap, we derive the error estimates of a weak Galerkin method for a system of ` ≥ 2
coupled SPPs of reaction-diffusion type in the energy and balanced norms when each equation in the
system has a different parameter. The classical FEM on the balanced norm using C0-elements is
open [21].

Wang and Ye [22] first introduced the weak Galerkin finite element method (WG-FEM) and
presented for the second order elliptic equation. The key in the WG finite element scheme is to use
the weak functions and weak derivatives on the completely discontinuous piecewise polynomials
spaces. Since then, many papers have been devoted to WG finite element methods including the
implementation results in [23], parabolic problems in [24], the Maxwell equations [25], the Stokes
equations [26], the Helmholtz equations with high wave numbers in [27] and the multi-term time
fractional diffusion equations in [28]. In [29], a discrete gradient and divergence operators have been
introduced for convection-dominated problems. A uniformly convergent weak Galerkin finite element
method on Shishkin mesh for convection-diffusion problem in one dimension has been presented
in [30]. Uniform convergence of the WG-FEM on Shishkin mesh for SPPs of convection-dominated
type has been studied in 2D in [31] and in 1D in [32] and singularly perturbed
reaction-convection-diffusion problems with two parameters has been analyzed in [33]. Uniform
convergence of a weak Galerkin method on Bakhvalov-type mesh for singularly perturbed
convection-diffusion problem has been analyzed in [34, 35] and nonlinear singularly perturbed
reaction-diffusion problems in [36]. Supercloseness in an energy norm of a WG-FEM on a

AIMS Mathematics Volume 8, Issue 7, 15427–15465.



15430

Bakhvalov-type mesh for a singularly perturbed two-point boundary value problem has been
demonstrated in [37] and superconvergence results in [38]. The WG-FEM for two coupled system of
SPPs of reaction-diffusion type has been presented in the energy norm in [39]. We wish to study a
robust WG-FEM for the coupled systems of SPPs of reaction-diffusion type. Thus, the main aim of
this paper is to construct a uniformly convergent WG-FEM for the problem (1.1).

The paper is organized as follows. In Section 2, we present and study a decomposition of the exact
solution and a uniform Shishkin mesh. We introduce the WG-FEM in Section 3. Stability properties of
the proposed method have been demonstrated in Section 4. Error analysis in the energy and balanced
norm is presented in Sections 5 and 6, respectively. In Section 7, the numerical results are conducted
to confirm the theory in the previous sections. Finally. conclusion is given in Section 8.

In this work, by C we mean a generic constant independent of N and the perturbation parameters
εi, i = 1, . . . , ` which may not be the same at each occurrence. Constants with subscript such as Cc are
fixed numbers and also do not depend on εi, i = 1, . . . , `, and the mesh parameter N.

2. Preliminaries

In this section, we first give a decomposition of the analytical solution of the linear system (1.1).
Then we will derive the bounds for the solution and its derivatives. Next, a piecewise-uniform Shishkin
mesh is constructed. Sobolev spaces with the related norms and some basic notations are introduced at
the end of this section.

2.1. Properties of the solution

The solution of the system (1.1) can be decomposed as u = R + L where R is the regular solution
part and L is the layer parts. In light of (1.2), there is a constant ρ ∈ (0, 1) such that

∑̀
j=1
j,i

∥∥∥∥ai j

aii

∥∥∥∥
∞
< ρ, for i = 1, 2, . . . , `. (2.1)

Define α = α(ρ) by
α2 := (1 − ρ) min

i=1,...,`
min
0≤x≤1

aii(x).

For the future reference, we set
Bαµ(x) := e−αx/µ + e−α(1−x)/µ,

and define ` × ` matrix Γ = (ci j) by

cii = 1, and ci j = −‖
ai j

aii
‖∞ for i , j. (2.2)

We assume that the matrix Γ is inverse monotone, that is, Γ−1 exists and

Γ−1 ≥ 0. (2.3)

We first provide the stability of the solution of (1.1) from [9].
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Lemma 2.1. Assume that u is the solution of (1.1) and the reaction coefficient matrix A has strictly
positive diagonal elements aii > 0 for i = 1, 2, . . . , `. Let the matrix Γ be inverse monotone. Then the
solution to each equation in the system has the following bounds

|ui(x)| ≤
∑̀
j=1

(Γ−1)i j max
{∥∥∥∥ g j

a j j

∥∥∥∥, |u0,i|, |u1,i|
}
, i = 1, . . . , `.

Proof. We refer the reader to [9] for the detailed proof. �

The following theorem states that the coercivity of A and inverse monotone property (2.3) of the
matrix Γ are related.

Theorem 2.2. [40] Assume that the reaction coefficient matrix A has strictly positive diagonal
elements aii > 0 for i = 1, 2, . . . , ` and the matrix Γ is inverse monotone. Then, there is a constant
diagonal matrix D with positive elements and a positive constant β such that

vT D Av ≥ βvT v, ∀v ∈ R`, x ∈ [0, 1].

Remark 2.1.

(1) If the matrix A has the property (1.2), then the matrix Γ is a strongly diagonally dominant L0

matrix which implies that the matix Γ is inverse monotone.
(2) If A and g are twice continuously differentiable, then the above stability result guarantees the

existence of a unique solution u ∈ C4[0, 1]`.
(3) The reaction matrix is assumed to be strongly diagonally dominant with positive diagonal

elements and nonpositive off-diagonal elements in most of existence papers on coupled system of
SPPs with the exception [9, 41]. This assumption implies that the operator L is inverse
monotone and satisfies the maximum principle which is a useful tool in finite difference method.
In this paper, the assumptions on A are weakened and we consider problems in a more general
setting.

(4) Since the form of system (1.1) and the matrix Γ do not change when a constant positive diagonal
matrix is applied on the left, Theorem 2.2 implies that we can assume, without loss of generality,
the reaction matrix A is coercive if it has positive diagonal elements. That means that there exists
η > 0 such that

vT Av ≥ ηvT v, ∀v ∈ R`. (2.4)

We have to consider the solution decomposition consisting of smooth and layer components because
of the boundary layers. Thus, we will use the following decomposition of u in the forthcoming analysis.

u = R + LL + LR,

where R is the smooth part, LL and LR are the boundary layer parts, and satisfy the following boundary
value problems, respectively

LR = g on Ω and R(0) = A−1(0)g(0), R(1) = A−1(1)g(1), (2.5)
LLL = 0 on Ω and LL(0) = u0 − R(0), LL(1) = 0., (2.6)
LLR = 0 on Ω and LR(0) = 0, LR(1) = u1 − R(1). (2.7)

Here, the existence of the inverse matrix A−1 is guaranteed by the condition (1.2).
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Theorem 2.3. Assume that A and g are twice continuously differentiable. Then the solution u of the
system (1.1) can be decomposed as u = R + LL + LR, where R and L = LL + LR satisfy

|R(k)
i (x)| ≤ C, for k = 0, 1, . . . , 4, i = 1, . . . , ` (2.8)

|L(k)
i (x)| ≤ C

∑̀
m=i

ε−k
m B

α
εm

(x), for k = 0, 1, 2, i = 1, . . . , ` (2.9)

|L(k)
i (x)| ≤ Cε2−k

i

∑̀
m=1

ε−2
m B

α
εm

(x), for k = 3, 4, i = 1, . . . , ` (2.10)

Proof. A detailed proof can be found in [42]. �

2.2. Uniform Shishkin mesh

Let N be an integer divisible by 2(` + 1). We define the transition points

λ`+1 =
1
2
, λs = min

{ sλs+1

s + 1
,
σεs

α
ln N

}
, s = `, . . . , 1, and λ0 = 0,

where σ is a user-chosen constant with σ = O(1). In general, this parameter is chosen as σ ≥ k + 1
where k is the order of polynomials in the approximation space. Then we divide each of the intervals

Ωs := [λs, λs+1] and sΩ := [1 − λs+1, 1 − λs], s = 0, . . . , ` into
N

2(` + 1)
subintervals of equal mesh size

Hs = H2`+1−s =
2(` + 1)(λs+1 − λs)

N
, s = 0, . . . , `.

An example of a piecewise-uniform Shishkin mesh with N = 32 elements for a system of ` = 3
reaction-diffusion equations is shown in Figure 1.

0 1λ1 λ2 λ3 λ4 = 1
2

1-λ3 1-λ2 1-λ1

Figure 1. Piecewise-uniform Shishkin mesh for ` = 3 reaction-diffusion equations.

We next define the nodes recursively as

x0 = 0, xn = xn−1 + hn for n = 1, . . . ,N, where

hn =



H0, n = 1, . . . ,
N

2(` + 1)
,

H1, n =
N

2(` + 1)
+ 1, . . . ,

N

(` + 1)
,

...
...

H2`+1, n =
N(2` + 1)

2(` + 1)
, . . . ,N.
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We denote the mesh and a partition of the domain Ω by In = [xn−1, xn], n = 1, . . . ,N and TN =

{In : n = 1, . . . ,N}, respectively. For In ∈ TN , the outward unit normal nIn on In is defined as nIn(xn) = 1
and nIn(xn−1) = −1; for simplicity, we use n instead of nIn .

We use the following basic notations in the sequel. By L2(Ω), we denote the space of square
integrable functions on Ω with the norm ‖u‖2L2(Ω) =

∫
Ω

u2(x) dx and sometimes, we will use the
abbreviation ‖ · ‖ = ‖u‖2L2(Ω). The standard Sobolev space is denoted by Hk(Ω) with the norm ‖ · ‖k,Ω
and semi-norm | · |k,Ω given as

‖u‖2k,Ω =

k∑
j=0

‖u( j)‖2L2(Ω), |u|2k,Ω = ‖u(k)‖2L2(Ω).

We define the norm for a vector-valued function u as

‖u‖2k,Ω =
∑̀
i=1

‖ui‖
2
k,Ω.

For each interval In, the broken Sobolev space is defined by

Hk
N(Ω) = {u ∈ L2(Ω) : u|In ∈ Hk(In), ∀In ∈ TN},

and the corresponding norm and semi-norm

‖u‖2Hk
N (Ω) =

N∑
n=1

∑̀
i=1

‖ui‖
2
k,In
, |u|2Hk

N (Ω) =

N∑
n=1

∑̀
i=1

|ui|
2
k,In
.

For the future reference we use the following notations(
u, v

)
=

∑
In∈TN

(
u, v

)
In

=
∑

In∈TN

∫
In

u(x)v(x) dx,

〈
u, v

〉
=

∑
In∈TN

〈
u, v

〉
∂In

=
∑

In∈TN

(
u(xn)v(xn) + u(xn−1)v(xn−1)

)
,

‖u‖2 =

N∑
n=1

‖u‖2In
=

N∑
n=1

(
u, u

)
In
.

3. The WG-FEM method

This section is devoted to introduce novel concepts such as weak functions and weak derivatives
from which we define our method for the problem (1.1). For the rest of the paper, we denote by Pk(In)
the set of polynomials defined on In with degree at most k. The space of weak functionsW(In) on In

is defined by

W(In) = {u = {u0, ub} : u0 ∈ L2(In), vb ∈ L∞(∂In)}.

Here, a weak function u = {u0, ub} has two components and the first component u0 represents the value
of u in (xn−1, xn) and ub is interpreted as the value of u on ∂In = {xn−1, xn}. From now on, we assume
that k = 2 unless otherwise mentioned.
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Let S N(In) be a local weak Galerkin (WG) finite element space given by

S N(In) = {u = {u0, ub} : u0|In ∈ Pk(In), ub|∂In ∈ P0(∂In) ∀In ∈ TN}, (3.1)

where P0(∂In) stands for constant polynomials on ∂In. We remark that the results can be extended to Pk

elements when k > 2. However, in this case some additional compatibility conditions of the data will
be required in order to have (2.8).

Next, we define a global WG finite element space S N that comprises of weak functions u = {u0, ub}

such that u0|In ∈ Pk(In) and ub|xn is the constant for n = 0, . . . ,N.
Let S 0

N be the subspace of S N with zero boundary conditions, that is,

S 0
N = {u = {u0, ub} : u ∈ S N , ub(0) = ub(1) = 0}. (3.2)

The weak derivative dw,Inu ∈ Pk−1(In) of a function u ∈ S N(In) is defined to be the solution of the
following equation (

dw,Inu, v
)

In
= −

(
u0, v′

)
In

+
〈
ub,nv

〉
∂In
, ∀v ∈ Pk−1(In), (3.3)

where
(w, z)In =

∫
In

w(x)z(x) dx,

and 〈
w, zn

〉
∂In

= w(xn)z(xn) − w(xn−1)z(xn−1).

The discrete weak derivative dwu of the weak function u = {u0, ub} on the finite element space S N is
defined by

(dwu)|In
= dw,In

(
u|In

)
, ∀u ∈ S N .

Our WG-FEM scheme for the system of singularly perturbed reaction-diffusion problems (1.1) is
given as follows.

Algorithm 1 The weak Galerkin scheme for the linear system of singularly perturbed diffusion-
reaction problem.
The WG-FEM for the problem (1.1) is to find uN = (uN

1 , . . . , u
N
` ) ∈ [S 0

N]` which solves the following:

a(uN , vN) = L(vN), ∀vN = (vN
1 , . . . , v

N
` ) ∈ [S 0

N]`. (3.4)

Here, the bilinear and the linear forms are defined by, for any uN
i = {ui0, uib},

a(uN , vN) =
∑̀
i=1

ε2
i
(
dwuN

i , dwvN
i
)

+
∑̀
i=1

∑̀
j=1

(
ai ju j0, vi0

)
+

∑̀
i=1

s(uN
i , v

N
i ), (3.5)

s(uN
i , v

N
i ) =

N∑
n=1

〈
%n(ui0 − uib), vi0 − vib

〉
∂In
,

L(vN) =
∑̀
i=1

(
gi, vi0

)
,
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where %n ≥ 0, n = 1, . . .N is the penalization parameter associated with the node xn defined as follows:

%n =


1, for In ⊂ Ωλ = [λ`, 1 − λ`],

N

ln N
, for In ⊂ Ω \ Ωλ.

(3.6)

Choosing a penalty parameter in stabilized numerical methods is an important issue in uniform
convergence estimates. Usually, the penalization parameter will depend on the perturbation
parameters. For example, %n = ε2

`h
−1
n is taken in the WG finite element schemes [22, 26, 29]. However,

a uniform convergence rate can not be attained for a penalization constant depending on the
perturbation parameters.

4. Stability of the method

In the following analysis, we will recall the following multiplicative trace inequality and the inverse
inequality.

‖v‖2L2(∂In) ≤ C(h−1
n ‖v‖

2
L2(In) + ‖v‖L2(In)‖v′‖L2(In)), ∀v ∈ H1(In), (4.1)

‖vN‖Lp(∂In) ≤ Ch−1/p
n ‖vN‖Lp(In), ∀1 ≤ p ≤ ∞, ∀vN ∈ Pk(In). (4.2)

We introduce the E-weighted energy norm ‖| · ‖| in [S 0
N]` as follows: for v = (vN

1 , . . . , v
N
` )T =

({v10, v1b}, . . . , {v`0, v`b})T ∈ [S 0
N]`,

‖|v‖|2 =
∑̀
i=1

ε2
i ‖dwvN

i ‖
2 + η

∑̀
i=1

‖vi0‖
2 +

∑̀
i=1

s(vN
i , v

N
i ), (4.3)

where η is the coercivity constant of A.
We also introduce the discrete H1 energy-like norm ‖| · ‖|ε in S `

N + H1(Ω)` defined as

‖|v‖|2ε =
∑̀
i=1

ε2
i ‖v
′
i0‖

2 + η
∑̀
i=1

‖vi0‖
2 +

∑̀
i=1

s(vN
i , v

N
i ), (4.4)

where v′i0 is the ordinary derivative of a functions vi0(x).
We show that the norms ‖| · ‖| and ‖| · ‖|ε defined by (4.3) and (4.4), respectively are equivalent in the

weak Galerkin finite element space [S 0
N]` in the next lemma.

Lemma 4.1. Let vN ∈ [S 0
N]`. Then there are two positive constant Cl and Cs such that

Cl‖|vN‖| ≤ ‖|vN‖|ε ≤ Cs‖|vN‖|. (4.5)

Proof. For any vN
i = {vi0, vib} ∈ S 0

N , by the definition of weak derivative (3.3) and integration by parts
we arrive at (

dwvN
i ,w

)
In

=
(
v′i0,w

)
In

+
〈
vib − vi0,wn

〉
∂In
, ∀w ∈ Pk−1(In). (4.6)

Choosing w = dwvN
i in the above Eq (4.6) yields

‖dwvN
i ‖

2
In

=
(
v′i0, dwvN

i
)

In
+

〈
vib − vi0, dwvN

i n
〉
∂In
.
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Summing up the above equation over all In ∈ TN , and using the inverse inequality (4.2), we obtain

‖dwvN
i ‖

2 ≤ C(‖v′i0‖
2 +

N∑
n=1

h−1
n ‖vib − vi0‖

2
∂In

)1/2‖dwvN
i ‖.

Therefore, we have

‖dwvN
i ‖

2 ≤ C(‖v′i0‖
2 +

N∑
n=1

h−1
n ‖vib − vi0‖

2
∂In

). (4.7)

From the penalty parameter (3.6), we have

ε2
i h−1

n

%n
≤
εih−1

n

%n
≤ C, for n = 1, . . . ,N. (4.8)

To see this, the minimal possible hn = H0 =
2(` + 1)λ1

N
implies that

ε1h−1
n

%n
=

α

2(` + 1)σ
=: C. Hence

using (4.8), we obtain

N∑
n=1

ε2
i h−1

n ‖vib − vi0‖
2
∂In

=

N∑
n=1

ε2
i h−1

n

%n
%n‖vib − vi0‖

2
∂In
≤ Cs(vN

i , v
N
i ),

which together with (4.7) implies that

ε2
i ‖dwvN

i ‖
2 ≤ 2

(
ε2

i ‖v
′
i0‖

2 + s(vN
i , v

N
i )

)
. (4.9)

On the other hand, taking w = v′i0 in the Eq (4.6) yields

‖v′i0‖
2
In

=
(
v′i0, dwvN

i
)

In
−

〈
vib − vi0, v′i0n

〉
∂In
.

Summing up the above equation over all In ∈ TN , using the inverse inequality (4.2), we have

‖v′i0‖
2 ≤ C(‖dwvN

i ‖
2 +

N∑
n=1

h−1
n ‖vib − vi0‖

2
∂In

)1/2‖v′i0‖.

Therefore, we have

‖v′i0‖
2 ≤ C(‖dwvN

i ‖
2 +

N∑
n=1

h−1
n ‖vib − vi0‖

2
∂In

). (4.10)

With the help of (4.8), we result in

ε2
i ‖v
′
i0‖

2 ≤ C
(
ε2

i ‖dwvN
i ‖

2 + s(vN
i , v

N
i )

)
. (4.11)

We obtain the desired result (4.5) in view of the inequalities (4.9) and (4.11) and the definition of the
norms ‖| · ‖ and ‖| · ‖|ε. Thus we complete the proof. �
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We next show that the coercivity of the bilinear form a(·, ·) on [S 0
N]` in the energy norm ‖| · ‖| defined

by (4.3).

Lemma 4.2. Let vN ∈ [S 0
N]`. Then there holds

a(vN , vN) ≥ ‖|vN‖|
2. (4.12)

Proof. Using the coercivity (2.4) of the reaction matrix A, we have

a(vN , vN) =
∑̀
i=1

ε2
i ‖dwvN

i ‖
2 +

∑̀
i=1

∑̀
j=1

(
ai jv j0, vi0

)
+

∑̀
i=1

s(vN
i , v

N
i )

≥
∑̀
i=1

ε2
i ‖dwvN

i ‖
2 + η

∑̀
i=1

‖vi0‖
2 +

∑̀
i=1

s(vN
i , v

N
i )

= ‖|vN‖|
2.

The proof is completed. �

In light of Lemma 4.2, we deduce that

‖|uN‖| ≤ ‖g‖,

which in turn implies the problem (3.4) has a unique solution. The existence follows from the
uniqueness.

As a result of Lemma 4.1 and Lemma 4.2, we conclude that the bilinear form a(·, ·) is also coercive
in the energy like norm ‖| · ‖|ε defined by (4.4).

Lemma 4.3. Let vN ,wN ∈ [S 0
N]`. Then there exist positive constants Cc and Ce such that

a(vN ,wN) ≤ Cc‖|vN‖|ε‖|wN‖|ε, (4.13)
a(vN , vN) ≥ Ce‖|vN‖|

2
ε. (4.14)

5. Error analysis in the energy norm

In this section, we study the error analysis of the proposed numerical scheme applied to the
problem (1.1) in the energy norm associated with the bilinear form. We will show that the WG-FEM
solution converges uniformly in the energy norm with respect to the perturbation parameters. For the
uniform convergence analysis on Shishkin mesh, we will use a special interpolation operator given
in [11]. On each interval In, we introduce the set of k + 1 nodal functional N` defined as follows: for
any v ∈ C(In)

N0(v) = v(xn−1), Nk(v) = v(xn),

Nm(v) =
1

hm
n

∫ xn

xn−1

(x − xn−1)m−1v(x) dx, m = 1, . . . , k − 1.

A local interpolation I : H1(In)→ Pk(In) is now defined by

Nm(Iv − v) = 0, m = 0, 1, . . . , k. (5.1)
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The local interpolation operator I can used for constructing a continuous global interpolation.
Since Iv|In is continuous on In and is in the H1(In) space, we denote Iv|∂In by Iv|In , for simplicity.

Form this fact we observe that for any v ∈ H1(In) we have

dw(Iv) = (Iv)′. (5.2)

Lemma 5.1. [11] For any w ∈ Hk+1(In), In ∈ TN , the interpolation Iw defined by (5.1) has the
following estimates:

|w − Iw|l,In ≤ Chk+1−l
n |w|k+1,In , l = 0, 1, . . . , k + 1, (5.3)

‖w − Iw‖L∞(In) ≤ Chk+1
n |w|k+1,∞,In , (5.4)

where hn is the length of element In and C is independent of hn, and εi, i = 1, . . . , `.

Lemma 5.2. Let IR and IL be the interpolations of the regular part R and the layer part L of the
solution u ∈ Hk+1(Ω) on the piecewise-uniform Shishkin mesh, respectively. Assume also that ε` ln N ≤
`α/(2(`+ 1)σ) and let Ωλ = [λ`, 1− λ`]. Then, we have Iu = IR +IL and the following interpolation
estimates are satisfied for i = 1, . . . , `

‖(Ri − IRi)(l)‖L2(Ω) ≤ CN l−(k+1), l = 0, 1, 2, (5.5)
‖Li − ILi‖L2(Ω\Ωλ) ≤ Cε1/2(N−1 ln N)k+1, (5.6)

N−1‖(ILi)′‖L2(Ωλ) + ‖ILi‖L2(Ωλ) ≤ C(ε1/2 + N−1/2)N−σ, (5.7)
‖Li‖L∞(Ωλ) + ε−1/2‖Li‖L2(Ωλ) ≤ CN−σ, (5.8)

‖(Li)(l)‖L2(Ωλ) ≤ Cε1/2−lN−σ, l = 1, 2, (5.9)
‖Li − ILi‖L2(Ωλ) ≤ C(ε1/2 + N−1/2)N−σ, (5.10)

where ε1/2 := ε1/2
1 + . . . ,+ε1/2

` . Furthermore, the following estimates hold true

‖(Li − ILi)(l)‖L2(Ωλ) ≤ Cε1/2−lN−σ, l = 1, 2, (5.11)
‖(Li − ILi)(l)‖L2(Ω\Ωλ) ≤ Cε1/2−l(N−1 ln N)k+1−`, l = 1, 2. (5.12)

Proof. The linearity of the interpolation implies that Iu = I(R + L) = IR + IL. Applying the
estimate (5.3), the bounds for the derivatives of regular components Ri of the solution in Lemma 2.1
and using (2.8), we obtain

‖(Ri − IRi)(l)‖ ≤ CN l−3|Ri|k+1,Ω ≤ CN l−(k+1), l = 0, 1, 2, i = 1, . . . , `.

This completes the proof of estimates (5.5).

Using the fact that Bαεi
(x) ≤ Bαε`(x) for i = 1, . . . , ` and λ` =

σε`

α
ln N, we have

‖Li‖L∞(Ωλ) ≤ C max
[λ`,1−λ`]

∑̀
m=i

Bαεm
(x)

≤ C max
[λ`,1−λ`]

(
exp(−αx/ε`) + exp(−α(1 − x)/ε`)

)
≤ CN−σ.
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The L2- norm estimate of the layer part of the solution on the sub-interval Ωλ follows from

‖Li‖
2
L2(Ωλ) ≤ C

∫ 1−λ`

λ`

(
∑̀
m=i

Bαεm
(x))2 dx

≤ C
∑̀
m=i

∫ 1−λ`

λ`

(
exp(−2αx/εm) + exp(−2α(1 − x)/εm)

)
dx

≤ CεN−2σ.

Hence, from the above inequalities we have

‖Li‖L∞(Ωλ) + ε−1/2‖Li‖L2(Ωλ) ≤ CN−σ.

Thus, we complete the proof of the estimate (5.8).
We also have

‖(Li)(l)‖2L2(Ωλ) ≤ C
∫ 1−λ`

λ`

(
(
∑̀
m=i

Bαεm
(x))(l)

)2
dx

≤ C
∑̀
m=i

ε−2l
m

∫ 1−λ`

λ`

(
exp(−2αx/εm) + exp(−2α(1 − x)/εm)

)
dx

≤ Cε1−2lN−2σ.

This proves the estimate (5.9).
Due to (5.3) of Lemma 5.1 and the bounds for derivatives (2.9), we obtain at once

‖Li − ILi‖
2
L2(Ω\Ωλ) =

∑
In⊂Ω\Ωλ

‖Li − ILi‖
2
L2(In) ≤

∑
In⊂Ω\Ωλ

h2(k+1)
n ‖L(k+1)

i ‖2L2(In)

≤C
`−1∑
s=0

H2(k+1)
s ε−2

i

( ∫ λs+1

λs

( ∑̀
m=1

ε−2
m B

α
εm

(x)
)2

dx +

∫ 1−λ`−1−s

1−λ`−s

( ∑̀
m=1

ε−2
m B

α
εm

(x)
)2

dx
)

≤C
∑̀
m=1

`−1∑
s=0

[2(` + 1)(λs+1 − λs)

N

]2(k+1)
ε−2(k+1)

m εm ≤ Cε(N−1 ln N)2(k+1).

Thus, the estimate (5.6) is proved.
For the proof of (5.7) we follow [11]. An inverse estimate yields that

N−1‖(ILi)′‖L2(Ωλ) ≤ C‖ILi‖L2(Ωλ).

We will derive a bound for ‖ILi‖L2(Ωλ). For the interval In = (xn−1, xn), we have the estimate for the
local nodal functional Nm(Li) as

|Nm(Li)| ≤ C
∑̀
p=i

(
exp(−αxn−1/εp) + exp(−α(1 − xn)/εp)

)
.
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The local representation

ILi|In =

k∑
m=0

Nm(Li)φm

implies that

‖ILi‖
2
L2(In) ≤

k∑
m=0

|Nm(Li)|2‖φm‖
2
L2(In)

≤ CN−1
∑̀
p=i

(
exp(−2αxn−1/εp) + exp(−2α(1 − xn)/εp)

)
,

(5.13)

where we use the fact ‖φm‖L2(In) ≤ CN−1. Summing up over all In ⊂ Ωλ yields that

(`+2)N
2(`+1)∑

n= `N
2(`+1) +1

‖ILi‖
2
L2(In) ≤ CN−1

(`+2)N
2(`+1)∑

n= `N
2(`+1) +1

∑̀
p=i

(
exp(−2αxn−1/εp) + exp(−2α(1 − xn)/εp)

)
.

Since the mesh size on Ωλ is H` = H`+1, the term in the parenthesis on the right hand side of the above
inequality can be written as

exp(−2αxn−1/εp) + exp(−2α(1 − xn)/εp)
= exp((−2αxn−1 + 2αxn − 2αxn)/εp) + exp((−2α(1 − xn) + 2αxn−1 − 2αxn−1)/εp)

≤ exp(2H`α/εp)
(

exp(−2αx/εp) + exp(−2α(1 − x)/εp)
)

for xn−1 < x < xn.

Integrating the above inequality on In ⊂ Ωλ and using the fact that H` = O(N−1), we have

N−1
(

exp(−2αxn−1/εp) + exp(−2α(1 − xn)/εp)
)

≤ exp(2H`α/εp)
∫ xn

xn−1

(
exp(−2αx/εp) + exp(−2α(1 − x)/εp)

)
dx.

Summing up the above inequality for n = `N
2(`+1) + 1, . . . , (`+2)N

2(`+1) − 1 leads to

N−1

(`+2)N
2(`+1) −1∑

n= `N
2(`+1) +1

∑̀
p=i

(
exp(−2αxn−1/εp) + exp(−2α(1 − xn)/εp)

)
≤CεN−2σ.

It remains to bound on the last interval (x (`+2)N
2(`+1) −1, x (`+2)N

2(`+1)
). From the inequality (5.13), we have

‖ILi‖
2
L2
(

I (`+2)N
2(`+1)

) ≤ N−1
∑̀
p=i

(
exp(−2αx (`+2)N

2(`+1) −1/εp) + exp(−2α(1 − x (`+2)N
2(`+1)

)/εp)
)

≤ CN−(1+2σ).

These two last estimates give the desired estimate. Thus the estimate (5.7) is proved.
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From (5.7) and (5.8), we get

‖Li − ILi‖L2(Ωλ) ≤ ‖Li‖L2(Ωλ) + ‖ILi‖L2(Ωλ) ≤ C(ε1/2 + N−1/2)N−σ,

which completes the proof of (5.10).
Using the triangle inequality and (5.7) and (5.9), we have

‖(Li − ILi)′‖L2(Ωλ) ≤ ‖L′i‖L2(Ωλ) + ‖(ILi)′‖L2(Ωλ) ≤ Cε−1/2N−σ.

Similarly, using the inverse estimate, we get

‖(Li − ILi)′′‖L2(Ωλ) ≤ ‖L′′i ‖L2(Ωλ) + CN‖(ILi)′‖L2(Ωλ)

≤ Cε−3/2[1 + (εN)3/2 + (εN)2]N−(k+1)

≤ Cε−3/2N−σ.

Hence, we complete the proof of (5.11).
By (5.3) and (2.10), we have for l = 1, 2,

‖(Li − ILi)(l)‖2L2(Ω\Ωλ)

=
∑

In⊂Ω\Ωλ

‖(Li − ILi)(l)‖2L2(In) ≤
∑

In⊂Ω\Ωλ

Ch2(k+1−l)
n ‖L(k+1)

i ‖2L2(In)

≤C
`−1∑
s=0

H2(k+1−l)
s ε−2

i

( ∫ λs+1

λs

( ∑̀
m=1

ε−2
m B

α
εm

(x)
)2

dx +

∫ 1−λ`−1−s

1−λ`−s

( ∑̀
m=1

ε−2
m B

α
εm

(x)
)2

dx
)

≤C
∑̀
m=1

`−1∑
s=0

[2(` + 1)(λs+1 − λs)

N

]2(k+1−l)
ε−2(k+1)

m εm ≤ Cε1−2l(N−1 ln N)2(k+1−l),

which shows (5.12). Thus we complete the proof.
�

The exact solution of problem (1.1) does not satisfy the WG-FEM scheme (3.4) and hence the
WG-FEM lacks of consistency. Consequently, inconsistency leads to loss of the classical Galerkin
orthogonality. As a result, we follow different techniques from the ones used in the standard finite
element procedure to derive the error estimates.

Now Strang’s second lemma provides a quasi-optimal bound for ‖|u − uN‖|ε.

Theorem 5.3. Let u and uN be the solutions of problems (1.1) and (3.4) respectively. Then there exists
a positive constant C independent of N and εi such that

‖|u − uN‖|ε ≤ C
(

inf
vN∈[S 0

N ]`
‖|u − vN‖|ε + sup

wN∈[S 0
N ]`

|a(u,wN) − L(wN)|

‖|wN‖|ε

)
, (5.14)

where a(·, ·) is the bilinear form given by (3.5).

First, we will establish some error equations which will be needed in the error analysis below.
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Lemma 5.4. Let u = (u1, . . . , u`) be the solution of the problem (1.1). Then for any vN = (vN
1 , . . . , v

N
` ) =

({v10, v1b}, . . . , {v`0, v`b}) ∈ [S 0
N]`, we have

−ε2
i

(
u′′i , vi0

)
= ε2

i

(
dw(Iui), dwvN

i

)
− T1(ui, vN

i ), i = 1, . . . , `, (5.15)∑̀
i=1

∑̀
j=1

(
ai ju j, vi0

)
=

∑̀
i=1

∑̀
j=1

(
ai jIu j, vi0

)
− T2(u, vN), (5.16)

where

T1(ui, vN
i ) = ε2

i
〈
(ui − Iui)′, (vi0 − vib)n

〉
, (5.17)

T2(u, vN) =
∑̀
i=1

∑̀
j=1

(
ai j(Iu j − u j), vi0

)
. (5.18)

Proof. For any vN ∈ [S 0
N]`, using the commutative property (5.2) of the interpolation operator we have(

dw(Iui), dwvN
i

)
In

=
(
(Iui)′, dwvN

i

)
In
, ∀In ∈ TN . (5.19)

Using the definition of the weak derivative (3.3) and integration by parts, we have(
dwvN

i , (Iui)′
)

In
= −

(
vi0, (Iui)′′

)
In

+
〈
vib,n(Iui)′

〉
∂In

=
(
v′i0, (Iui)′

)
In
−

〈
vi0 − vib,n(Iui)′

〉
∂In
. (5.20)

From the definition of the interpolation and integration by parts, we obtain(
(ui − Iui)′, v′i0

)
In

= −
(
ui − Iui, v′′i0

)
In

+
〈
ui − Iui,nv′i0

〉
∂In

= 0,

which implies that (
(Iui)′, v′i0

)
In

=
(
u′i , v

′
i0

)
In
. (5.21)

We infer from the Eqs (5.19)–(5.21) that(
dw(Iui), dwvN

i

)
In

=
(
u′i , v

′
i0

)
In
−

〈
vi0 − vib,n(Iui)′

〉
∂In
. (5.22)

Summing up the Eq (5.22) over all interval In ∈ TN , we find(
dw(Iui), dwvN

i

)
=

(
u′i , v

′
i0

)
−

〈
vi0 − vib,n(Iui)′

〉
. (5.23)

Using integration by parts, one can show that

−
(
u′′i , vi0

)
In

=
(
u′i , v

′
i0

)
In
−

〈
u′i ,nvi0

〉
∂In
.

Summing up the above equation over all interval In ∈ TN , we get(
u′i , v

′
i0

)
= −

(
u′′i , vi0

)
+

〈
u′i ,n(vi0 − vib)

〉
, (5.24)

where we used the fact that
〈
u′i ,nvib

〉
= 0. Finally, by plugging the Eq (5.24) into (5.23), we arrive at

the desired result (5.15).
Lastly, the Eq (5.18) clearly holds. We complete the proof.

�
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The following lemma will be useful in the error analysis.

Lemma 5.5. Assume that u = (u1, . . . , u`),with ui ∈ Hk+1(Ω) is the solution of the problem (1.1). Then
we have the following estimate

∑
In⊂Ω

‖θ′i‖
2
L2(∂In) ≤

Cε−2
i (N−1 ln N)2k−1, In ⊂ Ω \ Ωλ,

Cε−2
i N−2(k+1), In ⊂ Ωλ,

where θi = ui − Iui for i = 1, . . . , `.

Proof. From the trace inequality (4.1), we can write

‖θ′i‖
2
L2(∂In) ≤ C(h−1

n ‖θ
′
i‖

2
L2(In) + ‖θ′i‖L2(In)‖θ

′′
i ‖L2(In)).

It remains to estimate ‖θ′i‖L2(In) and ‖θ′′i ‖L2(In), individually. From the estimate (5.5), one has

‖(Ri − IRi)′‖L2(Ω) ≤ CN−k, i = 1, 2, . . . , `,
‖(Ri − IRi)′′‖L2(Ω) ≤ CN1−k, i = 1, 2, . . . , `.

(5.25)

With the help of the estimate (5.11) and (5.12) one can show that

‖(Li − ILi)′‖L2(Ωλ) ≤ Cε−1/2
i N−σ, i = 1, 2, . . . , `,

‖(Li − ILi)′′‖L2(Ωλ) ≤ Cε−3/2
i N−σ, i = 1, 2, . . . , `,

‖(Li − ILi)′‖L2(Ω\Ωλ) ≤ Cε−1/2
i (N−1 ln N)k, i = 1, 2, . . . , `,

‖(Li − ILi)′′‖L2(Ω\Ωλ) ≤ Cε−3/2
i (N−1 ln N)k−1, i = 1, 2, . . . , `.

(5.26)

With the help of the above estimates, the fact that σ ≥ k + 1, and the triangle inequality, one can
conclude that ∑

In⊂Ω

‖θ′i‖L2(In) ≤

Cε−1/2
i N−k(ε1/2

i + lnk N), In ⊂ Ω \ Ωλ,

Cε−1/2
i N−k(ε1/2

i + N−1), In ⊂ Ωλ,
(5.27)

and ∑
In⊂Ω

‖θ′′i ‖L2(In) ≤

Cε−3/2
i N1−k(ε3/2

i + lnk−1 N), In ⊂ Ω \ Ωλ,

Cε−3/2
i N1−k(ε3/2

i + N−2), In ⊂ Ωλ.

The desired result follows from combining the above estimates and the mesh size hn. Thus, we
complete the proof. �

Lemma 5.6. Assume that ui ∈ Hk+1(Ω) and the penalization parameter %n is given by (3.6). Ifσ ≥ k+1,
then we have

T (u, vN) ≤ C(ε1/2(N−1 ln N)k + N−(k+1))‖|vN‖|ε, (5.28)

where T (u, vN) =
∑`

i=1 T1(ui, vN
i ) + T2(u, vN) and C is independent of N and εi, i = 1, . . . , `.
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Proof. It follows from Cauchy-Schwarz inequality, Lemma 5.5 and the penalization parameter (3.6)
that

|T1(ui, vN
i )| ≤

N∑
n=1

ε2
i |
〈
(ui − Iui)′, vi0 − vib

〉
∂In
|

≤

N∑
n=1

ε2
i ‖(ui − Iui)′‖L2(∂In)‖vi0 − vib‖L2(∂In)

≤

 N∑
n=1

ε3
i

%n
‖(ui − Iui)′‖2L2(∂In)


1/2  N∑

n=1

%n‖vi0 − vib‖
2
L2(∂In)


1/2

≤
{ ∑

In∈Ω\Ωλ

ε3
i

%n
‖(ui − Iui)′‖2L2(∂In)

+
∑
In∈Ωλ

ε3
i

%n
‖(ui − Iui)′‖2L2(∂In)

}1/2
s1/2(vN

i , v
N
i )

≤ Cε1/2(N−1 ln N)ks1/2(vN
i , v

N
i ).

As a result

|T1(u, vN)| ≤
∑̀
i=1

T1(ui, vN
i ) ≤ Cε1/2(N−1 ln N)k‖|vN‖|ε. (5.29)

We next bound the term T2(u, vN). We need to estimate ‖ui − Iui‖, i = 1, . . . , `. Using the
estimates (5.5)–(5.8) of Lemma 5.2 and Cauchy-Schwarz inequality, taking σ ≥ k + 1, we get

‖ui − Iui‖L2(Ω) ≤ ‖Ri − IRi‖L2(Ω) + ‖Li − ILi‖L2(Ω\Ωλ)

+ ‖Li‖L2(Ωλ) + ‖ILi‖L2(Ωλ)

≤ CN−(k+1)[1 + ε1/2
` (ln N)k+1

+ ε1/2
` N−(σ−3) + N−(σ−5/2)]

≤ CN−(k+1)(1 + ε1/2
` (ln N)k+1)

≤ CN−(k+1).

(5.30)

The above estimate (5.30) and Cauchy-Schwarz inequality yield the following bound

∑̀
i=1

∑̀
j=1

(
ai j(Iu j − u j), vi0

)
≤ C

∑̀
i=1

∑̀
j=1

‖u j − Iu j‖‖vi0‖ ≤ CN−(k+1)‖vi0‖.

From the above estimate, we have

|T2(u, vN)| ≤ CN−(k+1)‖|vN‖|ε. (5.31)

From the estimates (5.29) and (5.31), we have the desired result. Thus we complete the proof. �
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Theorem 5.7. Let u = (u1, . . . , u`) = R + L with ui ∈ Hk+1(Ω) be the solution of the problem (1.1) and
assume that the conditions of Lemma 5.2 hold with σ ≥ k + 1. Then, the following estimates hold true:

‖|R − IR‖|ε ≤CN−(k+1) and ‖|L − IL‖|ε ≤ C(ε1/2
` (N−1 ln N)k + N−(k+1)), (5.32)

where C is independent of N and εi, i = 1, . . . , `.

Proof. Since θR
i := Ri − IRi and θL

i := Li − ILi are continuous on Ω, we get s(θR
i , θ

R
i ) = s(θL

i , θ
L
i ) = 0

for i = 1, . . . , `. Then we have

‖|Ri − IRi‖|
2
ε =

∑̀
i=1

ε2
i ‖(θ

R
i )′‖2 + η

∑̀
i=1

‖θR
i ‖

2, (5.33)

‖|Li − ILi‖|
2
ε =

∑̀
i=1

ε2
i ‖(θ

L
i )′‖2 + η

∑̀
i=1

‖θL
i ‖

2. (5.34)

In the light of the interpolation errors (5.5) and (2.8), we obtain for i = 1, . . . , `

ε2
i ‖(θ

R
i )′‖2 ≤ ε2

i (N−k|Ri|3,Ω)2 ≤ Cε2
i N−2k,

‖θR
i ‖

2 ≤ CN−2(k+1),

which together with (5.33) yields
‖|R − IR‖|ε ≤ CN−(k+1).

Using the inequalities (5.11), (5.12) and (5.30), we have

∑̀
i=1

ε2
i ‖(θ

L
i )′‖2 ≤

∑̀
i=1

ε2
i

(
‖(θL

i )′‖2L2(Ω\Ωλ) + ‖(θL
i )′‖2L2(Ωλ)

)
≤ Cε((N−1 ln N)2k + N−2σ),

‖θL
i ‖

2 ≤ N−2(k+1),

which together with (5.34) gives the desired result

‖|L − IL‖|ε ≤ C(ε1/2(N−1 ln N)k + N−(k+1)),

where we have used σ ≥ k + 1. The proof is completed. �

We next estimate the consistency error supwN∈[S 0
N ]`
|a(u,wN) − L(wN)|

‖|wN‖|ε
.

Lemma 5.8. Assume that u = (u1, . . . , u`), ui ∈ Hk+1(Ω), i = 1, . . . , ` is the solution of (1.1). Ifσ ≥ k+1,
then the following estimate holds true:

sup
wN∈[S 0

N ]`

|a(u,wN) − L(wN)|

‖|wN‖|ε
≤ C(ε1/2(N−1 ln N)k + N−(k+1)),

where C is independent of N, and εi, i = 1, . . . , `.
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Proof. Using the definition of bilinear form (3.4), the fact that s(ui,wN
i ) = s(ui − Iui,wN

i ) = 0 for
i = 1, . . . , ` and Lemma 5.4, we have

Eu(wN) :=a(u,wN) − L(wN) = a(Iu,wN) + a(u − Iu,wN) − L(wN)

=
∑̀
i=1

(
− ε2u′′i +

∑̀
j=1

ai ju j − gi,wi0
)

+ T (u,wN) + a(u − Iu,wN)

=T (u,wN) + a(u − Iu,wN),

where T (u,wN) = T1(u,wN)+T2(u,wN) and T1(u,wN) =
∑`

i=1 T1(ui,wN
i ) with T1(ui,wN

i ) and T2(u,wN)
are given in (5.17) and (5.18), respectively. By Lemma 5.6, if σ ≥ k + 1, the first term on the right side
of the above equation can be estimated as

T (u,wN) ≤ C(ε1/2(N−1 ln N)k + N−(k+1))‖|wN‖|ε. (5.35)

For the second term, we use the continuity property (4.14) of bilinear form a(·, ·) and again the fact that
s(ui − Iui,wN

i ) = 0, i = 1, . . . , ` and we obtain

a(u − Iu,wN) ≤Cc‖|u − Iu‖|ε‖|wN‖|ε

=Cc

∑̀
i=1

(
ε2

i ‖(ui − Iui)′‖2 + η‖ui − Iui‖
2
)1/2
‖|wN‖|ε

≤C
∑̀
i=1

(
ε2

i ‖(Ri − IRi)′‖2 + ε2
i ‖(Li − ILi)′‖2L2(Ω\Ωλ)

+ ε2
i ‖(Li − ILi)′‖2L2(Ωλ) + η‖ui − Iui‖

2
)1/2
‖|wN‖|ε.

Appealing the estimates (5.5), (5.11), (5.12), (5.30) and using (2.8), if σ ≥ k + 1 we obtain

a(u − Iu,wN) ≤C
(
ε2N−2k + ε2ε−1(N−1 ln N)2k + ε2ε−1N−2(k+1) + N−2(k+1)

)1/2
‖|wN‖|ε

≤C(ε1/2(N−1 ln N)k + N−(k+1))‖|wN‖|ε.
(5.36)

From (5.35) and (5.36), we arrive at

sup
wN∈[S 0

N ]`

|Eu(wN)|

‖|wN‖|ε
≤ C(ε1/2(N−1 ln N)k + N−(k+1)),

which is the desired result. We complete the proof. �

Theorem 5.9. Assume that u = (u1, . . . , u`), ui ∈ Hk+1(Ω), i = 1, . . . , ` is the exact solution and uN ∈

[S 0
N]` is the WG-FEM solution given by (3.4) on the uniform Shishkin mesh for the problem (1.1),

respectively. If σ ≥ k + 1, then we have the following estimate

‖|u − uN‖|ε ≤ C(ε1/2(N−1 ln N)k + N−(k+1)),

where C is independent of N and εi, i = 1, . . . , `.
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Proof. Using Theorem 5.7, if σ ≥ k + 1 we have

‖|R − IR‖|ε ≤ CN−(k+1)

‖|L − IL‖|ε ≤ C(ε1/2(N−1 ln N)k + N−(k+1)).

Hence, we obtain

‖|u − Iu‖|ε ≤ ‖|R − IR‖|ε + ‖|L − IL‖|ε ≤ C(ε1/2(N−1 ln N)k + N−(k+1)).

Note that IR and IL are both in [S 0
N]`, the set of piecewise discontinuous polynomials of degree at

most k, and that IR+IL ∈ [S 0
N]`. Take vN = (IR1 +IL1, . . . ,IR`+IL`) ∈ S `

N . Invoking Theorem 5.3
and Lemma 5.8, the desired result follows.

�

6. Balanced norm estimates

As stated in the introduction, error estimates in the corresponding energy norm of FEMs not
adequate. The reason arises from the fact that the energy norm of the boundary layer functions
exp(−x

ε`
) and exp(−(1−x)

ε`
) are of order O(ε1/2

` ). Therefore, the error estimates in the energy norm is not
much strong than the L2-norm if ε` � 1. A stronger norm obtained by scaling of the coefficient of the
H1-seminorm captures correctly the boundary layers. This norm is called the balanced norm defined
as follows. For v = (vN

1 , . . . , v
N
` )T = ({v10, v1b}, . . . , {v`0, v`b})T ∈ [S 0

N]`,

‖v‖2b =
∑̀
i=1

εi‖dwvN
i ‖

2 + η
∑̀
i=1

‖vN
i ‖

2 + sb(vN , vN), (6.1)

where sb(uN , vN) is given by

sb(uN , vN) =
∑̀
i=1

〈
%b

n(ui0 − uib), vi0 − vib
〉
. (6.2)

Here, the penalization parameter %b
n is now defined as

%b
n =


ε, on Ωλ,

εN

ln N
, on Ω \ Ωλ,

(6.3)

where ε =
∑`

i=1 εi.
We note that the error bound N−(k+1) independent of ε1/2 in Theorem 5.9 comes from the estimate of

the L2-norm of u−Iu in the energy norm error estimates. These terms can be handled by replacing the
special interpolation operator I defined by (5.1) with a projection operator Qh : H1(In) → S N defined
as follows.

Let Ph : L2(In)→ Pk(In) be the local weighted L2-projection restricted to interval In defined by

(
∑̀
i=1

aii(Phui − ui), v)In = 0, ∀v ∈ Pk(In), n = 1, 2, . . . ,N. (6.4)
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This weighted L2-projection is well-defined because we assume that the diagonal elements are positive
and the reaction coefficient matrix is strongly diagonally dominant matrix. With the aid of the Bramble-
Hilbert lemma, one can show that for i = 1, . . . , `

‖ui − Phui‖L2(In) + hn ‖(ui − Phui)′‖L2(In) ≤ Chs+1
n |ui|s+1,In , 0 ≤ s ≤ k. (6.5)

We introduce the projection operator Qh : H1(In)→ S N such that

Qhui|In = {Q0ui,Qbui} = {Phui, {ui(xn−1), ui(xn)}} , n = 1, 2, . . . ,N. (6.6)

Clearly, Qhui ∈ S 0
N if ui ∈ H1

0(In) for i = 1, . . . , `. By (6.5), we have

‖Q0ui − ui‖L2(In) ≤ Chs+1
n |ui|s+1,In , 0 ≤ s ≤ k, i = 1, . . . , `. (6.7)

The following trace and inverse inequalities will be used in the forthcoming analysis [43]. For any
function φ ∈ H(In), we have

‖φ‖2L2(∂In) ≤ C(h−1
n ‖φ‖

2
L2(In) + hn‖φ

′‖2L2(In)), (6.8)

‖v′N‖L2(∂In) ≤ Ch−1
n ‖vN‖L2(In), ∀vN ∈ Pk(In). (6.9)

We would like to derive similar estimates as Lemma 5.2 for the projection operator Q0 which is
essentially the generalized L2-projection. The following lemma will serve this purpose.

Lemma 6.1. Assume that the conclusions of Lemma 5.2 hold. Then we have the following error
estimates for the operator Q0 on the uniform Shishkin mesh.

‖ui − Q0ui‖L∞(Ω) ≤ C‖ui − Iui‖L∞(Ω), (6.10)∑
In⊂Ωλ

‖ui − Q0ui‖
2
L2(In) ≤ CN−2k−3 (6.11)∑

In⊂Ω\Ωλ

‖ui − Q0ui‖
2
L2(In) ≤ Cε(N−1 ln N)2(k+1), (6.12)∑

In⊂Ωλ

‖(ui − Q0ui)′‖2L2(In) ≤ Cε−1/2N−2k, (6.13)∑
In⊂Ω\Ωλ

‖(ui − Q0ui)′‖2L2(In) ≤ Cε−1N−2k ln2k+1 N. (6.14)

Proof. It is known that the L2-projection Q0 is L∞-stable [44]. Therefore, by the triangle inequality we
have

‖ui − Q0ui‖L∞(Ω) ≤ ‖ui − Iui‖L∞(Ω) + ‖Q0(ui − Iui)‖L∞(Ω)

≤ C‖ui − Iui‖L∞(Ω),

which proves (6.10). Using this inequality, we get∑
In⊂Ωλ

‖ui − Q0ui‖
2
L2(In) ≤

∑
In⊂Ωλ

hn‖ui − Q0ui‖
2
L∞(In)
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≤ C
∑

In⊂Ωλ

hn‖ui − Iui‖
2
L∞(In)

≤ CN−2k−3,

where we used Lemma 5.2 and the fact that hn = O(N−1) in Ωλ. It follows from (6.7) that∑
In⊂Ω\Ωλ

‖Q0ui − ui‖L2(In) ≤ C
∑

In⊂Ω\Ωλ

hk+1
n |ui|k+1,In

≤ C
∑

In⊂Ω\Ωλ

hk+1
n (‖R(k+1)

i ‖L2(In) + ‖L(k+1)
i ‖L2(In)).

The first term on the right side of the above inequality can be bounded as∑
In∈Ω\Ωλ

h2(k+1)
n ‖R(k+1)

i ‖2L2(In) ≤
∑

In∈Ω\Ωλ

h2(k+1)
n

∫ xn

xn−1

|R(k+1)(x)|2dx

≤ C
∑

In∈Ω\Ωλ

h2k+3
n ≤ Cε(N−1 ln N)2k+3.

(6.15)

Next, we estimate the layer parts on Ω \ Ωλ.∑
In∈Ω\Ωλ

h2(k+1)
n ‖L(k+1)

i ‖2L2(In) ≤C
`−1∑
s=0

H2(k+1)
s ε−2(k−1)

i

( ∫ λs+1

λs

( ∑̀
m=1

ε−2
m B

α
εm

(x)
)2

dx

+

∫ 1−λ`−1−s

1−λ`−s

( ∑̀
m=1

ε−2
m B

α
εm

(x)
)2

dx
)

≤C
∑̀
m=1

`−1∑
s=0

[2(` + 1)(λs+1 − λs)

N

]2(k+1)
ε−2(k+1)

m εm

≤Cε(N−1 ln N)2(k+1).

(6.16)

From (6.15) and (6.16), we get∑
In⊂Ω\Ωλ

‖Q0ui − ui‖
2
L2(In) ≤ Cε(N−1 ln N)2(k+1),

which completes the proof of (6.12).
With the help of an inverse inequality on Ωλ, we obtain

‖(Iui − Q0ui)′‖L2(In) ≤ CN‖Iui − Q0ui‖L2(In)

= CN
(
‖Iui − ui‖L2(In) + ‖ui − Q0ui‖L2(In)

)
≤ CN−k,

because ‖Iui − ui‖L2(In) and ‖Q0ui − ui‖L2(In) are both of order O(N−(k+1)) on Ωλ. By Lemma 5.2 and the
above estimate, we arrive at ∑

In⊂Ωλ

‖(Iui − Q0ui)′‖2L2(In) ≤ CN−2k. (6.17)
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On the other hand, from Lemma 5.2, we have

ε‖(Iui − ui)′‖2L2(Ωλ) ≤ ε‖(Ri − IRi)′‖2L2(Ωλ) + ε‖(Li − ILi)′‖2L2(Ωλ) ≤ Cε1/2N−2k. (6.18)

Combining (6.17) and (6.18) gives the desired result (6.13). Finally, using an inverse estimate we
obtain at once ∑

In⊂Ω\Ωλ

‖(Iui − Q0ui)′‖2L2(In) ≤ C|Ω \ Ωλ|
∑

In⊂Ω\Ωλ

‖(Iui − Q0ui)′‖2L∞(In)

≤ C
∑

In⊂Ω\Ωλ

|Ω \ Ωλ|

h2
n
‖Iui − Q0ui‖

2
L∞(In)

≤ C
ε ln N

ε2(N−1 ln N)2(N−1 ln N)2(k+1)

≤ Cε−1N−2k(ln N)2(k+1),

which proves (6.14). Thus, we complete the proof. �

We derive the following error equations involving the projection Qh which are similar to ones in
Lemma 5.4. To this end, we still need another special projection operator defined as follows. We refer
interested readers to [45] for details.

Lemma 6.2. [45] For ui ∈ H1(Ω), there is a projection operator πhui ∈ H1(0, 1), restricted on element
In, πhui ∈ Pk+1(In) satisfies

((πhui)′, q) = (u′i , q)In , ∀q ∈ Pk(In), i = 1, 2, . . . , `, (6.19)
πhui(xn) = ui(xn), n = 1, . . . ,N, i = 1, . . . , `, (6.20)
‖ui − πhui‖L2(In) + hn‖u′i − (πhui)′‖L2(In) ≤ Chs+1

n ‖ui‖s+1, 0 ≤ s ≤ k.

Lemma 6.3. Let u = (u1, . . . , u`) be the solution of the problem (1.1). Then for any vN = (vN
1 , . . . , v

N
` ) =

({v10, v1b}, . . . , {v`0, v`b}) ∈ [S 0
N]`, we have

−ε2
i

(
u′′i , vi0

)
= ε2

i

(
dw(Qhui), dwvN

i

)
− T b

1 (ui, vN
i ), i = 1, . . . , `, (6.21)∑̀

i=1

∑̀
j=1

(
ai ju j, vi0

)
=

∑̀
i=1

∑̀
j=1

(
ai jQ0u j, vi0

)
− T b

2 (u, vN), (6.22)

where

T b
1 (u, vN) =

∑̀
i=1

ε2
i
〈
(ui − πhui)′, (vi0 − vib)n

〉
, (6.23)

T b
2 (u, vN) =

∑̀
i=1

∑̀
j=1

(
ai j(Q0u j − u j), vi0

)
. (6.24)
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Proof. Using the definition of the operator Qh, the weak derivative (3.3), integration by parts and (6.19),
we have (

dw(Qhui), q
)

In
= −

(
Q0ui, q′

)
In

+ (Qhu)nqn − (Qhu)n−1qn−1

= −
(
ui, q′

)
In

+ unqn − un−1qn−1

=
(
u′i , q

)
In

=
(
(πhui)′, q

)
In
, ∀q ∈ P2(In), ∀In ∈ TN ,

where vn = v(xn) and vn−1 = v(xn−1) for a function v. This implies that(
dw(Qhui), dwvN

i
)

In
=

(
(πhui)′, dwvN

i
)

In
, ∀In ∈ TN . (6.25)

Following the same procedures as in the energy norm estimates, we prove (6.21). Clearly, we have the
Eq (6.24). We complete the proof. �

Lemma 6.4. Assume that u = (u1, . . . , u`), with ui ∈ Hk+1(Ω) is the solution of the problem (1.1) and
the penalization parameter %b

n is given by (6.3). Then we have

|T b(u, vN)| ≤ Cε1/2(N−1 ln N)k‖|vN‖|ε, (6.26)
|sb(Qhui, vN)| ≤ Cε1/2N−k(ln N)k+1/2‖|vN‖|ε, (6.27)

where C is independent of N and εi, i = 1, . . . , `, T b(u, vN) = T b
1 (u, vN) + T b

2 (u, vN), and sb(Qhui, vN) is
given by (6.2).

Proof. Note that T b
2 (u, vN) = 0 due to the definition of the projection Qh. By the inverse estimate (6.9),

Lemma 5.5 and Lemma 6.2, we obtain at once∑
In⊂Ω

‖ξ′i‖
2
L2(∂In) ≤

∑
In⊂Ω

‖θ′i‖
2
L2(∂In) +

∑
In⊂Ω

‖(Iui − πhui)′‖2L2(∂In)

≤
∑
In⊂Ω

‖θ′i‖
2
L2(∂In) + C

∑
In⊂Ω

h−2
n ‖Iui − πhui‖

2
L2(In)

≤

Cε−2
i (N−1 ln N)2k−1, In ⊂ Ω \ Ωλ,

Cε−2
i N−2(k+1), In ⊂ Ωλ,

where ξi = ui − πhui and θi = ui − Iui for i = 1, . . . , `.
İmitating the arguments in the energy norm estimates and using the above fact, one can prove that

T b(u, vN) = T b
1 (u, vN) ≤ Cε1/2(N−1 ln N)k‖|vN‖|ε.

It follows from Cauchy–Schwarz inequality, the trace inequality (6.8) and Lemma 6.1 that

|sb(Qhui, vN)| ≤
N∑

n=1

%b
n|〈Q0ui − Qbui, v0 − vb〉∂In |

=

N∑
n=1

%b
n|〈Q0ui − ui, v0 − vb〉∂In |
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≤ C
( N∑

n=1

ε%b
n‖ui − Q0ui‖

2
L2(∂In)

)1/2( N−1∑
n=0

ε−1%b
n‖v0 − vb‖

2
L2(∂In)

)1/2

≤ C
( N∑

n=1

ε%b
n(h−1

n ‖ui − Q0ui‖
2
L2(In) + hn‖(ui − Q0ui)′‖2L2(In))

)1/2
‖|vN‖|ε

≤ C
[( ∑

In⊂Ωλ

ε%b
n(h−1

n ‖ui − Q0ui‖
2
L2(In) + hn‖(ui − Q0ui)′‖2L2(In))

)1/2
‖|vN‖|ε

+
( ∑

In⊂Ω\Ωλ

ε%b
n(h−1

n ‖ui − Q0ui‖
2
L2(In) + hn‖(ui − Q0ui)′‖2L2(In))

)1/2]
‖|vN‖|ε

≤ C
[(
ε2(NN−(2k+3) + N−1ε−1/2N−2k)

)1/2

+
(ε2N
ln N

(
N

ε ln N
ε(N−1 ln N)2(k+1) +

ε ln N
N

ε−1(N−2k ln2k+1 N)
)1/2]
‖|vN‖|ε

≤ Cε1/2N−k(ln N)k+1/2‖|vN‖|ε.

Here, we used the fact that ε−1%b
n = %n. Therefore, we complete the proof. �

The main result of this section is the following theorem.

Theorem 6.5. Assume that u = (u1, . . . , u`), ui ∈ Hk+1(Ω), i = 1, . . . , ` is the exact solution and uN =

{uN
1 , . . . , u

N
` } ∈ [S 0

N]` is the WG-FEM solution given by (3.4) on the uniform Shishkin mesh for the
problem (1.1), respectively. If σ ≥ k + 1, then we have the following improved balanced error estimate

‖u − uN‖b ≤ CN−k(ln N)k+1/2,

where C is independent of N and εi, i = 1, . . . , `.

Proof. From Lemma 6.1 and Lemma 6.4, we obtain at once

‖u − Qhu‖2b ≤ C
[ ∑̀

i=1

εi‖(ui − Q0ui)′‖2 +
∑̀
i=1

‖ui − Q0ui‖
2

+
∑̀
i=1

s(ui − Qhui, ui − Qhui)
]

=
[ ∑̀

i=1

εi‖(ui − Q0ui)′‖2 +
∑̀
i=1

‖ui − Q0ui‖
2

+
∑̀
i=1

sb(Qhui,Qhui)
]

≤ C
[
εε−1/2N−2k + εε−1N−2k ln2k+1 N + ε(N−1 ln N)2(k+1)

+ N−(2k+3) + εN−2k(ln N)2k+1
]

≤ CN−2k(ln N)2k+1,

(6.28)
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where we have used that sb(ui, ui) = 0. Imitating the analyses in the energy norm estimates and using
again Lemma 6.4, we have

‖|uN − Qhu‖|2ε ≤a(uN − Qhu,uN − Qhu)

≤
∑̀
i=1

(
T b

1 (uN
i − Qhui, uN

i − Qhui) + sb(uN
i − Qhui, uN

i − Qhui)
)

≤ε1/2N−k(ln N)k+1/2‖|uN − Qhu‖|ε.

Therefore, we obtain

‖uN − Qhu‖2b ≤ Cε−1‖|uN − Qhu‖|2ε ≤ CN−2k(ln N)2k+1.

Next, using the triangle inequality and combining the above estimate with (6.28) yield

‖u − uN‖b ≤ CN−k(ln N)k+1/2.

The proof is now completed. �

7. Numerical experiment

We present various numerical experiments to show the performance of the WG-FEM in this section.
All the integration was calculated by using 5-point Gauss-Legendre quadrature integral formula.

Example 7.1. Consider the following coupled system of reaction-diffusion problem with constant
coefficients {

−Eu′′ + Au = g in Ω = (0, 1),
u(0) = 0, u(1) = 0, (7.1)

where E = diag(ε2
1, ε

2
2) with 0 < ε1 ≤ ε2 << 1, g = (g1, g2)T , A =

[
2 −1
−1 2

]
and g1, g2 are chosen

such that

u1(x) =
e−x/ε1 + e−(1−x)/ε1

1 + e−1/ε1
+

e−x/ε2 + e−(1−x)/ε2

1 + e−1/ε2
− 2,

u2(x) =
e−x/ε2 + e−(1−x)/ε2

1 + e−1/ε2
− 1,

is the exact solution u(x) = (u1(x), u2(x)) of the system of reaction-diffusion problem (7.1). Note that
Ri(x), i = 1, 2 is constant and (2.8) holds. We know that the solution has exponential layers of width
O(ε2| ln ε2|) at x = 0 and x = 1, while only u1(x) has an additional sublayer of width O(ε1| ln ε1|). We
take ρ > 1/2, α = 0.99 and σ = 3 for this problem.

We applied the WG-FEM (3.4) for solving the problem (7.1). The numerical errors e := u − uN are
computed in the energy norm by

eN
ε1,ε2

= |||e|||2ε =

2∑
i=1

ε2
i ‖dweN

i ‖
2 + η

2∑
i=1

‖ei0‖
2 +

2∑
i=1

s(eN
i , e

N
i ),
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for a fixed ε1, ε2 and N. We report the numerical experiments for the uniform error calculated by

eN = max
ε1,ε2=1,10−1,...,10−10

eN
ε1,ε2

in Table 1. The order of convergence rε is computed using mesh levels (N1, |||eN1 |||ε) and (N2, |||eN2 |||ε):

rε =
ln(|||eN1 |||ε/|||eN2 |||ε)

ln(N−1
1 ln N1) − ln(N−1

2 ln N2)
. (7.2)

Table 1 shows that the energy norm error estimates exhibit k-order convergence which agrees perfectly
with the theoretical error estimates.

Table 1. History of convergence of the WG-FEM in the energy norm ||| · |||ε for Example 7.1.

N
k = 1 k = 2

eN rε eN rε
6 1.1284e-01 - 4.2924e-02 -
12 5.6774e-02 1.46 2.1549e-02 1.46
24 2.8440e-02 1.35 9.0168e-03 1.70
48 1.4228e-02 1.28 3.2876e-03 1.87
96 7.1152e-03 1.23 1.1018e-03 1.95
192 3.5577e-03 1.20 3.5170e-04 1.98
384 1.7888e-03 1.17 1.0885e-04 1.99
768 9.4867e-04 1.10 3.4639e-05 1.99

In order to pay attention to the dependency of the energy norm on the parameters, we compute
the energy norm estimates for a fixed ε1 and different values of ε2. For instance, we first fixed ε1 =

10−10 and take different values of ε2 = 10−4, . . . , 10−9. The results are presented in Table 2, Table 4,
Figures 2a and 2b. These results verify that the method is robust on the uniform Shishkin mesh and
the order of convergence is of O(ε1/2(N−1 ln N)k), where ε1/2 = ε1/2

1 + ε1/2
2 using the linear k = 1 and

quadratic k = 2 element functions, which is in excellent agreement with the main result of Theorem 5.9.

Moreover, we infer from Table 2 that
|||u − uN |||ε j

|||u − uN |||ε j+2

≈

√
10− j

10−( j+2) for ε j = {10−10, 10− j}, j = 4, . . . , 9,

where |||u − uN |||
2
ε j

= (10−10)2‖dweN
1 ‖

2 + (10− j)2‖dweN
2 ‖

2 + η
∑2

i=1 ‖ei0‖
2 +

∑2
i=1 s(eN

i , e
N
i ).

This implies that the errors might be affected by a term involving
√
ε2. We observe almost linear

convergence up to a logarithmic factor using the linear elements and almost quadratic convergence
using the quadratic elements if N gets larger. Hence, for larger N ≥ 64, the rate of convergence is of
order O(ε1/2

2 (N−1 ln N)k) which agrees with the theory indicated by Theorem 5.9. Table 2 shows that
the errors and the order of convergence are dominated by the term N−(k+1) when N and ε are smaller.
We also observe that if ε2 decreases for a fixed ε1, the energy norm error estimates get smaller. These
observations suggest that the main result of Theorem 5.9 is sharp.
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Table 2. Energy norm error estimates and order of convergence with ε1 = 10−10, ε2 =

10−4, . . . , 10−9, k = 1, 2, for Example 7.1.

ε2/k = 1
N

6 12 24 48 96 192 384 768
10−4 5.2495e-03 3.1587e-03 1.8429e-03 1.0531e-03 5.9237e-04 3.2910e-04 1.8100e-04 9.8729e-05
r10−4 - 0.97 0.99 1.00 1.00 1.00 1.00 1.00
10−5 1.6076e-03 9.6196e-04 5.5992e-04 3.1967e-04 1.7976e-04 9.9856e-05 5.4919e-05 2.9956e-05
r10−5 - 0.99 1.01 1.00 1.00 1.00 1.00 1.00
10−6 5.0801e-04 3.0395e-04 1.7690e-04 1.0098e-04 5.6778e-05 3.1536e-05 1.7342e-05 9.4732e-06
r10−6 - 0.99 1.01 1.00 1.00 1.00 1.00 1.00
10−7 1.5949e-04 9.5331e-05 5.5419e-05 3.1598e-05 1.7744e-05 9.8436e-06 5.4068e-06 2.9644e-06
r10−7 - 0.99 1.01 1.01 1.00 1.00 1.00 0.99
10−8 4.6992e-05 2.7802e-05 1.5980e-05 9.0030e-06 4.9943e-06 2.7368e-06 1.4915e-06 9.0148e-07
r10−8 - 1.01 1.03 1.03 1.03 1.02 1.02 0.90
10−9 1.5921e-05 9.5379e-06 5.5415e-06 3.1571e-06 1.7716e-06 9.8469e-07 5.4071e-07 2.9678e-07
r10−9 - 0.99 1.01 1.01 1.00 1.00 1.00 0.99
ε2/k = 2
10−4 2.0323e-03 8.3959e-04 3.0403e-04 1.0161e-04 3.2400e-05 1.0025e-05 3.0394e-06 9.8278e-07
r10−4 - 1.73 1.88 1.96 1.99 2.00 2.00 1.99
10−5 6.4261e-04 2.6547e-04 9.6128e-05 3.2126e-05 1.0244e-05 3.1701e-06 9.7357e-07 3.0816e-07
r10−5 - 1.73 1.88 1.96 1.99 2.00 2.00 1.99
10−6 2.0300e-04 8.3843e-05 3.0354e-05 1.0142e-05 3.2335e-06 1.0005e-06 3.2525e-07 1.0300e-07
r10−6 - 1.73 1.88 1.96 1.99 2.00 2.00 1.99
10−7 6.3520e-05 2.6183e-05 9.4607e-06 3.1550e-06 1.0041e-06 3.1010e-07 9.6874e-07 3.0022e-07
r10−7 - 1.73 1.88 1.96 1.99 2.00 2.00 1.99
10−8 1.8097e-05 7.3152e-06 2.5923e-06 8.4824e-07 2.6607e-07 9.0074e-08 2.9335e-08 9.2754e-09
r10−8 - 1.77 1.92 2.00 2.02 2.00 2.00 2.00
10−9 2.7387e-06 1.0380e-06 3.5300e-07 1.1388e-07 3.8601e-08 1.2545e-08 4.0893e-09 1.2875e-09
r10−9 - 1.74 1.90 2.00 2.02 2.00 2.00 2.00
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(a) Energy norm using P1 element with ε1 =

10−8, ε2 = 10−3, . . . , 10−8.
(b) Energy norm using P2 element with ε1 =

10−8, ε2 = 10−8, 10−3, . . . , 10−8.

(c) Balanced norm using P1 element with
ε1 = 10−12, ε2 = 10−12, 10−3, . . . , 10−8.

(d) Balanced norm using P2 element with
ε1 = 10−8, ε2 = 10−12, 10−3, . . . , 10−8.

Figure 2. Convergence curve of the errors in the energy norm for Example 7.1 with fixed
ε1 = 10−8 and varying ε2 = 10−3, . . . , 10−8 using linear elements in Figure 2a and quadratic
elements in Figure 2b. Figures 2c and 2d depict the error curves in the balanced norm with
fixed ε1 = 10−12 and varying ε2 = 10−3, . . . , 10−8 using linear elements in and quadratic
elements, respectively.

On the other hand, we compute the numerical errors e := u − uN with respect to the balanced norm
by

eN,b
ε1,ε2

= ‖e‖b =

2∑
i=1

εi‖dweN
i ‖

2 + η

2∑
i=1

‖ei0‖
2 +

2∑
i=1

s(eN
i , e

N
i ),

for a fixed ε1, ε2 and N. We list the uniform balanced error bounds eN,b calculated as before in Table 3.
We also report the numerical results in the balanced norm in Table 4 and we notice that the error
estimates in the balanced norm remain almost unchanged as ε2 decreases for a fixed ε1 unlike the
estimates in the energy norm. This confirms the theory stated in Theorem 6.5. We have plotted the
balanced norm error estimates for a fixed ε and varying ε2 on log-log scale in Figures 2c and 2d
for a viewable illustrations. Evidently, the errors stay almost constant while the parameters vary and
behave like

‖u − uN‖b ≤ C(N−1 ln N)k.
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This confirms the result of Theorem 6.5 up to a root of ln N.

Table 3. History of convergence of the WG-FEM in the balanced norm ‖ · ‖b norm for
Example 7.1.

N
k = 1 k = 2

eN,b rε eN,b rε

6 6.4414e-01 - 2.6892e-01 -
12 4.1317e-01 0.87 1.1638e-01 1.64
24 2.4710e-01 0.95 4.2967e-02 1.85
48 1.4238e-01 0.99 1.4454e-02 1.95
96 8.0297e-02 1.00 4.6177e-03 1.98
192 4.4646e-02 1.00 1.4293e-03 2.00
384 2.4561e-02 1.00 4.4355e-04 1.96
768 1.3400e-02 1.00 1.4159e-04 1.98

Table 4. Balanced norm error estimates and order of convergence with ε1 = 10−10, ε2 =

10−4, . . . , 10−9, k = 1, 2, for Example 7.1.

ε2/k = 1
N

6 12 24 48 96 192 384 768
10−4 6.4390e-01 4.1311e-01 2.4709e-01 1.4237e-01 8.0296e-02 4.4645e-02 2.4561e-02 1.3398e-02
r10−4 - 0.87 0.95 0.99 1.00 1.00 1.00 1.00
10−5 6.4387e-01 4.1309e-01 2.4707e-01 1.4236e-01 8.0291e-02 4.4643e-02 2.4559e-02 1.3397e-02
r10−5 - 0.87 0.95 0.99 1.00 1.00 1.00 1.00
10−6 6.4366e-01 4.1292e-011 2.4696e-01 1.4229e-01 8.0244e-02 4.4613e-02 2.4542e-02 1.3387e-02
r10−6 - 0.87 0.95 0.99 1.00 1.00 1.00 1.00
10−7 6.4316e-01 4.1272e-01 2.4665e-01 1.4251e-01 8.0228e-02 4.4608e-02 2.4536e-02 1.3376e-02
r10−7 - 0.87 0.95 0.99 1.00 1.00 1.00 1.00
10−8 6.4319e-01 4.1270e-01 2.4566e-01 1.4251e-01 8.0225e-02 4.4607e-02 2.4528e-02 1.3373e-02
r10−8 - 0.87 0.95 0.99 1.00 1.00 1.00 1.00
10−9 6.4317e-01 4.1267e-01 2.4565e-01 1.4247e-01 8.0217e-02 4.4603e-02 2.4524e-02 1.3370e-02
r10−9 - 0.87 0.95 0.99 1.00 1.00 1.00 1.00
ε2/k = 2
10−4 2.6883e-01 1.1637e-01 4.2964e-02 1.4453e-02 4.6176e-03 1.4294e-03 4.3370e-04 1.3180e-04
r10−4 - 1.64 1.85 1.95 1.98 1.99 1.99 1.97
10−5 2.6881e-01 1.1636e-01 4.2961e-02 1.4452e-02 4.6172e-03 1.4293e-03 4.3366e-04 1.3175e-04
r10−4 - 1.64 1.85 1.95 1.98 1.99 1.99 1.97
10−6 2.6880e-01 1.1634e-01 4.2960e-02 1.4449e-02 4.6170e-03 1.4292e-03 4.3365e-04 1.3173e-04
r10−6 - 1.64 1.85 1.95 1.98 1.99 1.99 1.97
10−7 2.6878e-01 1.1632e-01 4.2961e-02 1.4449e-02 4.6168e-03 1.4290e-03 4.3362e-04 1.3171e-04
r10−7 - 1.64 1.85 1.95 1.98 1.99 1.99 1.97
10−8 2.6879e-01 1.1631e-01 4.2960e-02 1.4450e-02 4.6167e-03 1.4287e-03 4.3360e-04 1.3170e-04

- 1.64 1.85 1.95 1.98 1.99 1.99 1.97
10−9 2.6877e-01 1.1630e-01 4.2958e-02 1.4448e-02 4.6166e-03 1.4288e-03 4.3359e-04 1.3170e-04
r10−9 - 1.64 1.85 1.95 1.98 1.99 1.99 1.97
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Example 7.2. We next consider the problem (1.1) with variable coefficients

A =


3 1 − x x − 1
2 4 + x −1
2 0 3

 and g =


1
x

1 + x2

 .
We take ρ = 3/4, α = 0.80 and σ = 3. The exact solution is unknown. Hence a finer mesh constructed
as below is used for estimating the numerical errors.

We compute the errors e = uN − u2N where u2N is our numerical solution computed on a mesh
consisting of the initial uniform Shishkin mesh and the midpoints xn+1/2 = xn+xn+1

2 , n = 0, . . . ,N − 1.
Therefore we calculate

eN
ε1,ε2,ε3

= |||e|||ε =

3∑
i=1

ε2
i ‖dweN

i ‖
2 + η

2∑
i=1

‖ei0‖
2 +

2∑
i=1

s(eN
i , e

N
i ),

for a fixed ε1, ε2, ε3 and N. The numerical results are listed in Tables 5 and 6 for the uniform errors in
the energy and balanced norms, respectively

eN = max
ε1,ε2,ε3=1,10−1,...,10−10

eN
ε1,ε2,ε3

,

eN,b = max
ε1,ε2,ε3=1,10−1,...,10−10

eN,b
ε1,ε2,ε3

,

where eN,b
ε1,ε2,ε3 is defined as before and the order for convergence is calculated by (7.2). The results

clearly suggest that the k-order uniform convergence in the energy norm, which is in good agreement
with the main result of Theorem 5.9. The errors in the balanced norm behave like O(N−1 ln N)k which
agrees with the results of Theorem 6.5 up to a square root of ln N. As before, we observe from Table 7
and Figures 3a and 3b that the energy norm estimates depend on ε1/2 = ε1/2

1 + ε1/2
2 + ε1/2

3 and errors
change decreasingly as ε→ 0 while the balanced norm estimates do not depend on the parameters and
the errors remain almost unchanged as seen from Table 8 and Figures 3c and 3d.

Table 5. History of convergence of the WG-FEM in the energy norm ||| · |||ε for Example 7.2.

N
k = 1 k = 2

eN rε eN rε

16 4.1486e-01 - 2.6801e-01 -
32 2.9723e-01 0.71 1.6172e-01 1.07
64 1.9341e-01 0.84 7.8526e-02 1.41
128 1.1715e-01 0.93 3.1321e-02 1.71
256 6.7975e-02 0.97 1.0951e-02 1.88
512 3.8480e-02 0.99 3.5564e-03 1.95
1024 2.1446e-02 0.99 1.1086e-03 1.98
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Table 6. History of convergence of the WG-FEM in the balanced norm ‖ ·‖b for Example 7.2.

N
k = 1 k = 2

eN,b rε eN,b rε

16 3.1691e00 - 2.5247e00 -
32 2.8939e00 0.19 1.8568e00 0.65
64 2.1681e00 0.57 1.0458e00 1.12
128 1.4063e00 0.80 4.6494e-01 1.50
256 8.3916e-01 0.92 1.7412e-01 1.76
512 4.7971e-01 0.97 5.8437e-02 1.90
1024 2.6815e-01 0.99 1.8476e-02 2.00

Table 7. Energy norm error estimates and order of convergence with ε1 = 10−10, ε2 =

10−3, . . . , 10−8, k = 1, 2, for Example 7.2.

ε2/k = 1
N

16 32 64 128 256 512 1024
10−3 1.3469e-01 1.0211e-01 6.9269e-02 4.2854e-02 2.5059e-02 1.4210e-02 7.9163e-03
r10−3 - 0.59 0.76 0.89 0.96 0.99 1.00
10−4 4.2826e-02 3.2265e-02 2.1878e-02 1.3535e-02 7.9145e-03 4.4877e-03 2.4997e-03
r10−4 - 0.60 0.76 0.89 0.96 0.99 1.00
10−5 1.4555e-02 1.0287e-02 6.9246e-03 4.2798e-03 2.5021e-03 1.4187e-03 7.9017e-04
r10−5 - 0.74 0.77 0.89 0.96 0.99 1.00
10−6 7.0511e-03 3.5121e-03 2.2119e-03 1.3538e-03 7.9006e-04 4.4773e-04 2.4931e-04
r10−6 - 1.48 0.91 0.91 0.96 0.99 1.00
10−7 5.7885e-03 1.7282e-03 7.6617e-04 4.2944e-04 2.4621e-04 1.3883e-04 7.7093e-05
r10−7 - 2.57 1.59 1.07 0.99 1.00 1.00
10−8 5.6470e-03 1.4335e-03 3.9795e-04 1.4327e-04 6.8296e-05 3.6229e-05 1.9525e-05
r10−8 - 2.91 2.50 1.90 1.32 1.10 1.02
ε2/k = 2
10−3 9.1950e-02 6.0047e-02 3.1457e-02 1.3221e-02 4.7423e-03 1.5542e-03 4.8544e-04
r10−3 - 0.91 1.27 1.61 1.83 1.94 1.98
10−4 2.9024e-02 1.8958e-02 9.9341e-03 4.1758e-03 1.4979e-03 4.9086e-04 1.5329e-04
r10−4 - 0.91 1.27 1.61 1.83 1.94 1.98
10−5 9.1767e-03 5.9932e-03 3.1404e-03 1.3200e-03 4.7348e-04 1.5515e-04 4.8452e-05
r10−5 - 0.91 1.27 1.61 1.83 1.94 1.98
10−6 2.9026e-03 1.8921e-03 9.9100e-04 4.1640e-04 1.4930e-04 4.8908e-05 1.5269e-05
r10−6 - 0.91 1.27 1.61 1.83 1.94 1.98
10−7 9.2029e-04 5.8861e-04 3.0694e-04 1.2848e-04 4.5896e-05 1.4982e-05 4.6637e-06
r10−7 - 0.95 1.27 1.62 1.84 1.95 1.99
10−8 3.0336e-04 1.5840e-04 7.8929e-05 3.1821e-05 1.0972e-05 3.4626e-06 1.0673e-06
r10−8 - 1.38 1.37 1.69 1.90 2.00 2.00
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Table 8. Balanced norm error estimates and order of convergence with ε1 = 10−10, ε2 =

10−3, . . . , 10−8, k = 1, 2, for Example 7.2.

ε2/k = 1
N

16 32 64 128 256 512 1024
10−3 3.1062e00 2.8495e00 2.1418e00 1.3911e00 8.3003e-01 4.7414e-01 2.6477e-01
r10−3 - 0.18 0.56 0.80 0.92 0.97 0.99
10−4 3.0996e00 2.8450e00 2.1391e00 1.3895e00 8.2909e-01 4.7356e-01 2.6442e-01
r10−4 - 0.18 0.56 0.80 0.92 0.97 0.99
10−5 3.0987e00 2.8445e00 2.1390e00 1.3892e00 8.2907e-01 4.7348e-01 2.6440e-01
r10−5 - 0.18 0.56 0.80 0.92 0.97 0.99
10−6 3.0980e00 2.8442e00 2.1387e00 1.3891e00 8.2903e-01 4.7342e-01 2.6436e-01
r10−6 - 0.18 0.56 0.80 0.92 0.97 0.99
10−7 3.0978e00 2.8440e00 2.1384e00 1.3890e00 8.2901e-01 4.7340e-01 2.6433e-01
r10−7 - 0.18 0.56 0.80 0.92 0.97 0.99
10−8 3.0975e00 2.8438e00 2.1382e00 1.3888e00 8.2888e-01 4.7338e-01 2.6430e-01
r10−8 - 0.18 0.56 0.80 0.92 0.97 0.99
ε2/k = 2
10−3 2.4792e00 1.8292e00 1.0335e00 4.6054e-01 1.7262e-01 5.7921e-02 1.8266e-02
r10−3 - 0.65 1.12 1.50 1.75 1.90 1.96
10−4 2.4790e00 1.8291e00 1.0333e00 4.6052e-01 1.7261e-01 5.7920e-02 1.8263e-02
r10−4 - 0.65 1.12 1.50 1.75 1.90 1.96
10−5 2.4785e00 1.8288e00 1.0330e00 4.6050e-01 1.7258e-01 5.7917e-02 1.8260e-02
r10−5 - 0.65 1.12 1.50 1.75 1.90 1.96
10−6 2.4776e00 1.8282e00 1.0325e00 4.6047e-01 1.7255e-01 5.7913e-02 1.8256e-02
r10−6 - 0.65 1.12 1.50 1.75 1.90 1.96
10−7 2.4765e00 1.8277e00 1.0322e00 4.6043e-01 1.7252e-01 5.7910e-02 1.8252e-02
r10−7 - 0.65 1.12 1.50 1.75 1.90 1.96
10−8 2.4754e00 1.8270e00 1.0315e00 4.6036e-01 1.7247e-01 5.7906e-02 1.8245e-02
r10−8 - 0.65 1.12 1.50 1.75 1.90 1.96
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(a) Energy norm using P1 element with ε1 =

10−8, ε2 = 10−3, . . . , 10−8.
(b) Energy norm using P2 element with ε1 =

10−8, ε2 = 10−8, 10−3, . . . , 10−8.

(c) Balanced norm using P1 element with ε1 =

10−12, ε2 = 10−12, 10−3, . . . , 10−8.
(d) Balanced norm using P2 element with ε1 =

10−8, ε2 = 10−12, 10−3, . . . , 10−8.

Figure 3. Convergence curve of the errors in the energy norm for Example 7.2 with fixed
ε1 = 10−10, ε2 = 10−8 and varying ε3 = 10−3, . . . , 10−8 using linear elements in Figure 2a and
quadratic elements in Figure 2b. Figures 2c and 2d depict the error curves in the balanced
norm with fixed ε1 = 10−10, ε2 = 10−8 and varying ε3 = 10−3, . . . , 10−8 using linear elements
in and quadratic elements, respectively.

8. Conclusions

In this paper, we studied the WG-FEM for system of SPPs of reaction-diffusion type in which
the equations have diffusion parameters of the different magnitudes on a piecewise uniform Shishkin
mesh. With the help of a special interpolation operator, we derived optimal and uniform error bounds
in the energy and the balanced norms up to a logarithmic factor. The proposed WG-FEM uses the
procedure of elimination of the interior unknowns from the discrete linear system and thus the method
is comparable with the classical FEM. We will investigate sharper error bounds in balanced norm and
extend these results to to high dimensional problem on a tensor product meshes in the future work.
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