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Abstract: Across many real-world problems, crossover tendencies are seen. Piecewise differential
operators are constructed by using different kernels that exhibit behaviors arising in several real-
world problems; thus, crossover behaviors could be well modeled using these differential and integral
operators. Power-law processes, fading memory processes and processes that mimic the generalized
Mittag-Leffler function are a few examples. However, the use of piecewise differential and integral
operators cannot be applied to all processes involving crossovers. For instance, a considerable
alteration eventually manifests when groundwater over-abstraction causes it to flow from confined
to unconfined aquifers. The idea of piecewise differential equations, which can be thought of as an
extension of piecewise functions to the framework of differential equations, is introduced in this work.
While we concentrate on ordinary differential equations, it is important to note that partial differential
equations can also be constructed with the same technique. For both integer and non-integer instances,
piecewise differential equations have been introduced. We have explained the usage of the Laplace
transform for the linear case and demonstrated how a new class of Bode diagrams could be produced.
We have provided some examples of numerical solutions as well as conditions for the existence and
uniqueness of their solutions. We discussed a few scenarios in which we used chaos and non-linear
ordinary differential equations to produce novel varieties of chaos. We believe that this idea could lead
to some significant conclusions in the future.
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1. Introduction

Chaotic behaviors can be seen throughout nature, and some of them have recently been replicated
using mathematical models. Existing models, in particular chaotic processes with crossover
characteristics, nevertheless fail to account for some phenomena. When the idea of piecewise
differentiation and integration was first presented, this category of chaotic processes received very little
attention [1]. With this idea, a differential operator in a chaotic model is changed by replacing it with
a piecewise derivative that entails defining an alternative differential operator in an interval. The use
of this idea has, in fact, opened up more research directions toward a revolution in the study of chaos,
and new chaotic attractors have been found. However, in this instance, the only thing that changes is
differentiation. Thus, crossovers are caused by the characteristics of the kernels utilized, which can
be the power-law [2], generalized Mittag-Leffler [3], exponential decay function [4] or the Dirac delta
function. A novel concept is required because some crossover phenomena cannot be described using
piecewise differential operators. As an example, nowadays people can envisage worlds that may exist
but are not present in their daily lives thanks to the cinema industry; for instance, a horse with a human
head, people with long tails, like in the movie Avatar, and several other examples that can be listed.
Perhaps the core sciences could benefit from using this creativity to combine two concepts into one
new thought. This idea could be used to address a particular procedure in the actual world. To address
a particular real-world process that could not be recreated using current theories, such a concept might
be put forth. This ought to apply to the study of mathematics and its applications [5–19]. For instance,
one may consider a high level of crossover that could consist of describing the chaos processes at
various intervals to capture crossings that cannot be replicated using piecewise differential operators.
Piecewise differential equations will be used to refer to this idea where the processes governing the
function fluctuate with time. This idea can be seen as a piecewise function application, which has
various uses in simulating human behavior and other real-world problems. Piecewise functions have
only been utilized in differential equations to change parameters and source procedures. Although
there are references to these processes in the literature, an overarching theory has yet to be created.
The problem of the movement of groundwater provides a vivid illustration. This problem has been
described as a piecewise differential equation system, where the first portion takes into account flow in
a confined aquifer, and the second part takes into account flow in an open aquifer. It is important to note
that this approach differs greatly from the notion of an equation system in which all of the variables
behave within the same time interval and with the same sub-governing functions. In this paper, we
look into several practical uses for this family of differential equations.

2. Definition of Cauchy piecewise problem

In this section, we present some cases of the piecewise Cauchy problems where different piecewise
derivatives are used.

Case 1: Classical Cauchy piecewise problem

Let f1, f2, ..., fn be linear or non-linear, bounded and continuous functions. A piecewise ordinary
differential equation is defined as
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d
dt

u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

f2 (t, u (t)) if t1 ≤ t ≤ t2
...

fn (t, u (t)) if tk−1 ≤ t ≤ tk

. (2.1)

Case 2: Cauchy piecewise problem with power-law

Let f1, f2, ..., fn be linear or non-linear bounded and continuous functions; let the function u (t) be
differentiable. A piecewise problem with the power-law [2] is represented by

C
0 Dα

t u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

f2 (t, u (t)) if t1 ≤ t ≤ t2
...

fn (t, u (t)) if tk−1 ≤ t ≤ tk

. (2.2)

Case 3: Cauchy piecewise problem with Mittag-Leffler

Let f1, f2, ..., fn be linear or non-linear bounded and continuous functions; let the function u (t) be
differentiable. A piecewise problem with the Mittag-Leffler function [3] is defined by

ABC
0 Dα

t u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

f2 (t, u (t)) if t1 ≤ t ≤ t2
...

fn (t, u (t)) if tk−1 ≤ t ≤ tk

. (2.3)

Case 4: Cauchy piecewise problem with exponential decay

Let f1, f2, ..., fn be linear or non-linear bounded and continuous functions; let the function u (t) be
differentiable. A piecewise problem with exponential decay [4] can be written as

CF
0 Dα

t u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

f2 (t, u (t)) if t1 ≤ t ≤ t2
...

fn (t, u (t)) if tk−1 ≤ t ≤ tk

. (2.4)
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Remark. More generally, the following piecewise differential system can be written as

u′ (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

f2 (t, u (t)) if t1 ≤ t ≤ t2
...

fn1 (t, u (t)) if tk−1 ≤ t ≤ tk

, if 0 ≤ t ≤ t̃1

CF
t̃1

Dα
t u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

f2 (t, u (t)) if t1 ≤ t ≤ t2
...

fn2 (t, u (t)) if tk−1 ≤ t ≤ tk

, if t̃1 ≤ t ≤ t̃2

...

...

ABC
t̃k−1

Dα
t u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

f2 (t, u (t)) if t1 ≤ t ≤ t2
...

fnl (t, u (t)) if tk−1 ≤ t ≤ tk

, if t̃k−1 ≤ t ≤ t̃k

. (2.5)

3. Laplace transform with examples

When the functions fi are linear, the solution can be derived by using the Laplace transform. We
give an example of course using the same technique for a piecewise function. We shall present the
Laplace transform of Example 1; indeed, the rest can be done similarly.

d
dt

u (t) = (u (t) − u (t − t1)) f1 (t, u (t)) (3.1)

+ (u (t − t2) − u (t − t3)) f2 (t, u (t))

+... + u (t − tn) fn (t, u (t)) .

We can apply the Laplace transform on both sides to obtain

s̃u (s) − u (0) =

n∑
j=1

 e−st j L
(

f j

(
t + t j, u

(
t + t j

)))
−e−st j−1 L

(
f j−1

(
t + t j−1, u

(
t + t j−1

)))  . (3.2)

Our next challenge is to find L
(

f j

(
t + t j, u

(
t + t j

)))
.

In the case of the power-law, we have

sαũ (s) − sα−1u (0) =

n∑
j=1

 e−st j L
(

f j

(
t + t j, u

(
t + t j

)))
−e−st j−1 L

(
f j−1

(
t + t j−1, u

(
t + t j−1

)))  . (3.3)

In the case of the Mittag-Leffler function, we have

1
1 − α

sαũ (s) − sα−1u (0)
sα + α

1−α

=

n∑
j=1

 e−st j L
(

f j

(
t + t j, u

(
t + t j

)))
−e−st j−1 L

(
f j−1

(
t + t j−1, u

(
t + t j−1

)))  . (3.4)
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In the case of exponential decay, we have

1
1 − α

sαũ (s) − u (0)
s + α

1−α

=

n∑
j=1

 e−st j L
(

f j

(
t + t j, u

(
t + t j

)))
−e−st j−1 L

(
f j−1

(
t + t j−1, u

(
t + t j−1

)))  . (3.5)

We present some simple examples:

dy (t)
dt

=


t + 1 if t ∈ [0,T ]

et + t if t ∈ [T,T1]
t2 if t > T1

. (3.6)

Thus, we write

dy (t)
dt

= (t + 1) [u (t) − u (t − T )] +
(
et + t

)
[u (t − T ) − u (t − T1)] (3.7)

+t2u (t − T1) .

Applying the Laplace transform yields

s̃u (s) − u (0) = L (t + 1) − e−sT L (t + T + 1) + e−sT L
(
et+T + t + T

)
(3.8)

−e−sT1 L
(
et+T1 + t + T1

)
+ e−sT1 L

(
(t + T1)2

)
=

1
s

+
1
s2 − e−sT

(
1
s2 +

T + 1
s

)
+ e−sT

(
eT

1 + s
+

1
s2 +

T
s

)
−e−sT1

(
eT1

1 + s
+

1
s2 +

T1

s

)
+ e−sT1

(
T 2

1

s
+

2T1

s2 +
2
s3

)
.

Therefore, we can have

ũ (s) =
u (0)

s
+

1
s2 +

1
s3 − e−sT

(
1
s3 +

T + 1
s2

)
+ e−sT

(
eT

s2 + s
+

1
s3 +

T
s2

)
(3.9)

−e−sT1

(
eT1

s2 + s
+

1
s3 +

T1

s2

)
+ e−sT1

(
T 2

1

s2 +
2T1

s3 +
2
s4

)
.

In the case of the power-law, one can obtain

ũ (s) =
u (0)
sα−1 +

1
sα

+
1

sα+1 − e−sT

(
1

sα+1 +
T + 1

sα

)
+ e−sT

(
eT

sα + sα−1 +
1

sα+1 +
T
sα

)
(3.10)

−e−sT1

(
eT1

sα + sα−1 +
1

sα+1 +
T1

sα

)
+ e−sT1

(
T 2

1

sα
+

2T1

sα+1 +
2

sα+2

)
.

For this example, we can now introduce the Bode diagram and phase diagram associated with this
piecewise Laplace transform. In the case of the classical derivative, we consider T = 3 and T1 = 5.
The Bode diagram and phase diagram are presented in Figures 1 and 2 below.
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Figure 1. Bode and phase diagrams for the transfer function in Eq (3.9).
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Figure 2. Bode and phase diagrams for the transfer function in Eq (3.10).

4. Some illustrative examples of piecewise differential equations

The translation of observable facts into mathematical models is one of the major limits of
mathematical models. A good mathematical model should be thorough and contain practically all
of the information found in the actual scenario. Some of these features were frequently left out of
mathematical formulations by most mathematicians, and as a result, the conclusions of these models do
not always match the data that have been seen, leading non-mathematicians to question the usefulness
of mathematics. There is a need for a new class of ordinary and partial differential equations since
differentiation, whether classical or piecewise, cannot capture these subtleties in its mathematical
description. We give a few piecewise ordinary and partial differential equations in this section together

AIMS Mathematics Volume 8, Issue 7, 15352–15382.



15359

with their solutions and their graphical depictions.

dy
dt

=


{

2 cos t − 9y cos t, if t ∈ [0, 3] ,
y (0) = 0,{

1

(2t2+7)2 −
8ty

2t2+7 , if t ∈ [3, 30]
. (4.1)

Using the Green’s function technique yields

y (t) =


{ 2

9 + c exp (−9 sin t) , if t ∈ [0, 3] ,
y (0) = 0,{ c+t

2t2+7 , if t ∈ [3, 30] ,
y (3) = 2

9 −
2
9 exp (−9 sin 3)

. (4.2)

Applying the initial conditions, we obtain

y (t) =

 2
9 −

2
9 exp (−9 sin t) , if t ∈ [0, 3] ,

1
2t2+7

(
23
9 −

50
9 exp (−9 sin 3) + t

)
, if t ∈ [3, 5]

. (4.3)

In Figure 3, we present the solution of the above Cauchy problem. We present an example with the
power-law

C
0 Dα

t y (t) =


−λy (t) , if t ∈ [0, 1] ,

exp (−γt) , if t ∈ [1, t)
. (4.4)

Figure 3. Solution of the piecewise Cauchy problem.

The solution is given as:

y (t) =


y (0) Eα (−λtα) , if t ∈ [0, 1] ,

y (0) + 1
Γ(α)

t∫
1

e−γτ (t − τ)α−1 dτ, if t ∈ [1, t) , (4.5)
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and

y (t) =


y (0) Eα (−λtα) , if t ∈ [0, 1] ,

1
Γ(α)

∞∑
j=1

(−γ) j

j!

 t j+αB ( j + 1, α)
−t j+αB

(
1
t , j + 1, α

)  , if t ∈ [1, t)
. (4.6)

For γ = 0, we can consider the following problem:

y (t) =


y (0) Eα (−λtα) , if t ∈ [0, 1] ,

y (0) = 11,
y(1) + tα−1

Γ(α+1) , if t ∈ [1, 10] ,
y(1) = y (0) E (−λ)

. (4.7)

In Figure 4, we present the numerical simulation for the solution of the piecewise fractional differential
equation where λ = 1 and γ = 1.

Figure 4. Solution of the piecewise Cauchy problem for different values of fractional order.

The findings shown in Figure 4 are quite fascinating and instructive since they show two different
crossover tendencies. The idea of a piecewise differential equation whereby Mittag-Leffler decay is
observed in the first portion and power-law growth is observed in the second induces the first crossover
behaviors. In fact, this kind of crossover occurs frequently in real-world problems, even in ordinary
human existence. The crossovers caused by the kernels are the second crossovers. After a crossover
from stretched exponential to short memory power law decay in the first section, there are two crossings
from short memory power law in the second portion. We now consider a piecewise partial differential
equation where the first part is the heat equation and the second part is the advection-diffusion equation.

∂

∂t
u (x, t) =


{
k ∂2

∂x2 u (x, t) , if t ∈ [0, 0.8] ,{
∂2

∂x2 u (x, t) − a ∂
∂xu (x, t) , if t ∈ [0.8, 2] ,

(4.8)
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where k = 1 and a = 1. The solution is obtained as

u (x, t) =



 66 sin πx exp
(
−π2t

)
, if t ∈ [0, 0.8] ,

u (x, 0) = 66 sin πx, u (0, t) = 0
1/33 exp (2t)

(
exp (x) + exp (−2x)

)
, if t ∈ [0.8, 2]

u (x, 0.8) = 1/33e1.6 (
exp (x) + exp (−2x)

)
,

u (0.5, t) = 1/33 exp (2t)
(
e0.5 + e−1

)
u (1, t) = 1/33 exp (2t)

(
e + e−2

)
. (4.9)

In Figure 5, the solution of the piecewise partial differential equation (4.9) is depicted.

Figure 5. Solution of the piecewise partial differential equation (4.9).

4.1. Piecewise system: existence, uniqueness and numerical solution

If fi is non-linear, the analytical methods may not be appropriate, while the numerical methods are
suitable candidates to solve these problems. Nevertheless, to proceed with numerical analysis, it is
worth proving that the piecewise ordinary differential equations admit unique solutions. One can find
several approaches in the available literature; however, in this work, we only list the following. It is
required that ∀i ≥ 1, ( fi) satisfies the following conditions:

1) | fi (t, u (t))|2 < ki

(
1 + |u|2

)
, which is known as the growth condition,

2) | fi (t, u (t)) − fi (t, v (t))|2 < k̃i |u − v|2 , which is known as the Lipschitz condition.
Take

K = max
1≤i≤n
|ki| and K̃ = max

1≤i≤n

∣∣∣∣̃ki

∣∣∣∣ . (4.10)

Then, the equation admits a unique piecewise solution. The proof will not be presented here, as it
can be found in several textbooks and published papers.

Having the conditions under which these equations admit exact piecewise solutions, owing to the
fact that these equations are non-linear, there is no suitable analytical method that can be used to
derive their exact solutions. In the following section, we shall derive their numerical solutions using
the existing and modified numerical schemes. We shall start with a piecewise Cauchy problem in the
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classical case,

d
dt

u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

...

fn (t, u (t)) if tk−1 ≤ t ≤ tk

. (4.11)

Applying the classical integral on both sides leads to

u (t) =



u (0) +
t∫

0
f1 (τ, u (τ)) dτ, if 0 ≤ t ≤ t1

...

u (tk−1) +
t∫

tk−1

fn (τ, u (τ)) dτ if tk−1 ≤ t ≤ tk

. (4.12)

The integrand in the above equation can be approximated using the Adams-Bashforth approach to
obtain

u (tk+1) =


u (tk) + h

2

[
3 f1 (tk, u (tk)) − f1 (tk−1, u (tk−1))

]
...

u (tk) + h
2

[
3 fn (tk, u (tk)) − fn (tk−1, u (tk−1))

] . (4.13)

The same procedure can be repeated in the case of a piecewise non-linear ordinary differential equation
with the Atangana-Baleanu fractional derivative, as presented below:

ABC
0 Dα

t u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

...

fn (t, u (t)) if tk−1 ≤ t ≤ tk

. (4.14)

We apply the Atangana-Baleanu integral on both sides to have

u (t) =



u (0) + (1 − α) f1 (t, u (t)) + α
Γ(α)

t∫
0

f1 (τ, u (τ)) (t − τ)α−1 dτ,

if 0 ≤ t ≤ t1
...

u (tk−1) + (1 − α) fn (t, u (t)) + α
Γ(α)

t∫
tk−1

fn (τ, u (τ)) (t − τ)α−1 dτ

if tk−1 ≤ t ≤ tk

. (4.15)

At this stage, several methods can be applied. For example, one can approximate these functions using
polynomials. The following numerical scheme based on Newton polynomials [5] can be constructed
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for the piecewise system with ABC derivative:

u (tk+1) =





u (0) + (1 − α) f1 (tk, u (tk))

+



α(∆t)α

Γ(α+1)

∑l1
m1=2 f1

(
tm1−2, um1−2

)
{(l1 − m1 + 1)α − (l1 − m1)α}

+
α(∆t)α

Γ(α+2)

∑l1
m1=2

[
f1

(
tm1−1, um1−1

)
− f1

(
tm1−2, um1−2

)]
×

{
(l1 − m1 + 1)α (l1 − m1 + 3 + 2α)
− (l1 − m1)α (l1 − m1 + 3 + 3α)

}
+

α(∆t)α

2Γ(α+3)

∑l1
m1=2

 f1
(
tm1 , u

m1
)
− 2 f1

(
tm1−1, um1−1

)
+ f1

(
tm1−2, um1−2

) 
×


(l1 − m1 + 1)α

[
2 (l1 − m1)2 + (3α + 10) (l1 − m1)

+2α2 + 9α + 12

]
− (l1 − m1)α

[
2 (l1 − m1)2 + (5α + 10) (l1 − m1)

+6α2 + 18α + 12

]




,

if 0 ≤ t ≤ t1
...

u (tk−1) + (1 − α) fn (tk, u (tk))

+



α(∆t)α

Γ(α+1)

∑lk
mk=l(k−1)+2 f1

(
tmk−2, umk−2

)
{(lk − mk + 1)α − (lk − mk)α}

+
α(∆t)α

Γ(α+2)

∑lk
mk=l(k−1)+2

[
f1

(
tmk−1, umk−1

)
− f1

(
tmk−2, umk−2

)]
×

{
(lk − mk + 1)α (lk − mk + 3 + 2α)
− (lk − mk)α (lk − mk + 3 + 3α)

}
+

α(∆t)α

2Γ(α+3)

∑lk
mk=l(k−1)+2

 f1
(
tmk , u

mk
)
− 2 f1

(
tmk−1, umk−1

)
+ f1

(
tmk−2, umk−2

) 
×


(lk − mk + 1)α

[
2 (lk − mk)2 + (3α + 10) (lk − mk)

+2α2 + 9α + 12

]
− (lk − mk)α

[
2 (lk − mk)2 + (5α + 10) (lk − mk)

+6α2 + 18α + 12

]



if tk−1 ≤ t ≤ tk

. (4.16)

Similarly, the same procedure is adopted when replacing the classical derivative with the Caputo-
Fabrizio fractional derivative to obtain

CF
0 Dα

t u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

...

fn (t, u (t)) if tk−1 ≤ t ≤ tk

. (4.17)

Thus, approximating the integrand using the well-known piecewise interpolation together with the
parametrized concept [6], we obtain

u (tk+1) =



 u (tk) + (1 − α) ( f1 ((tk+1, ũk+1)) − f1 (tk, uk))
+αh

{(
1 − 1

2ρ

)
f1 (tk, uk) + 1

2ρ f1 (tk+1, ũk+1)
} , if 0 ≤ t ≤ t1

 ,
... u (tk) + (1 − α) ( fn ((tk+1, ũk+1)) − fn (tk, uk))

+αh
{(

1 − 1
2ρ

)
fn (tk, uk) + 1

2ρ fn (tk+1, ũk+1)
} , if tk−1 ≤ t ≤ tk


(4.18)
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where

ũk+1 = u0 + (1 − α) fi (tk, uk) + αh
k∑

j=0

fi

(
t j, u j

)
, i = 1, .., n. (4.19)

Finally, we consider the following system with Caputo derivative:

C
0 Dα

t u (t) =


f1 (t, u (t)) if 0 ≤ t ≤ t1

...

fn (t, u (t)) if tk−1 ≤ t ≤ tk

. (4.20)

For this case, we derive the numerical solution using the Lagrange polynomial approach [7] to obtain

u (tk+1) =



 u (0) +


(∆t)α

Γ(α+2)

∑l1
m1=1 f1

(
tm1 , u

m1
) { (l1 − m1 + 1)α (l1 − m1 + 2 + α)
− (l1 − m1)α (l1 − m1 + 2 + 2α)

}
−

(∆t)α

Γ(α+2)

∑l1
m1=1

[
f1

(
tm1−1, um1−1

)] { (l1 − m1 + 1)α

− (l1 − m1)α (l1 − m1 + 1 + α)

}
 ,

if 0 ≤ t ≤ t1
... u (tk−1) +


(∆t)α

Γ(α+2)

∑lk
mk=l(k−1)+1 fn

(
tmk , u

mk
) { (lk − mk + 1)α (lk − mk + 2 + α)
− (lk − mk)α (lk − mk + 2 + 2α)

}
−

(∆t)α

Γ(α+2)

∑lk
mk=l(k−1)+1 fn

(
tmk−1, umk−1

) { (lk − mk + 1)α

− (lk − mk)α (lk − mk + 1 + α)

}


if tk−1 ≤ t ≤ tk

.

(4.21)
We provide numerous real-world examples, spanning from epidemiological modeling to chaos, in the
next part to demonstrate the utility of the suggested notion in practice. However, it should be noted
that this idea will be applied to a number of other real-world problems. To identify these crossover
behaviors, a preliminary inquiry should be conducted.

5. Applications to mathematical biology

5.1. Tumor growth model: chemotherapy and radiotherapy

Every cancer kind calls for a different treatment plan, and thus, a precise cancer diagnosis is crucial
for the right kind of treatment. Typically, systemic therapy, radiation and/or surgery are used in the
treatment (chemotherapy, hormonal treatments, targeted biological therapies). The right choice of a
treatment plan takes into account the patient as well as the malignancy. To obtain the anticipated
therapeutic outcome, it is critical to complete the treatment procedure within the allotted period.
Setting treatment objectives is a crucial first step. Typically, the main objective is to eradicate cancer
or significantly extend life. A key objective is enhancing the patient’s quality of life. Support for the
patient’s physical, emotional, and spiritual well-being as well as palliative care throughout the latter
phases of cancer treatment might help achieve this. When discovered early and treated in accordance
with best standards, some common cancer types, including breast cancer, cervical cancer, oral cancer
and colorectal cancer, have high cure prospects. Even when malignant cells are present in other parts of
the body, several cancer types, such as testicular seminoma and other forms of leukemia and lymphoma
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in children, have excellent cure rates if adequate therapy is given. However, mathematical models have
been used to assist in resolving these problems. Again, it remains very difficult to translate what is
seen in a particular patient into a mathematical model. This may be because mathematicians do not
fully comprehend biological processes or because biologists do not communicate with mathematicians
using suitable mathematical words, which makes numerous mathematical models created for these
circumstances less effective. We will discuss the potential use of the piecewise ordinary differential
equations with a cancer model in this part.

Think about a woman who has breast cancer. Assume that surgery, chemotherapy, and radiation are
also used in instances when cancer cells are more prone to spread throughout the body [8–10]. The
piecewise system that models the two processes, in which chemotherapy is applied in the first process,
and chemotherapy and radiotherapy are applied in the second process [9], is obtained as follows in
order to model the change in cancer cells when these two treatment methods are used consecutively in
the patient: 

dT
dt = aT (1 − bT ) − EcCT

dEc
dt = dcEc (1 − Ec)

dC
dt = −γC

if 0 ≤ t ≤ t1 (5.1)



dT
dt = aT (1 − bT ) − E1 (ErDT + EcCT )

dEr
dt = drEr (1 − Er)

dEc
dt = dcEc (1 − Ec)

dE1
dt = d1E1 (1 − E1)

dC
dt = −γC

if t1 ≤ t ≤ T̃ .

Here, the function T is the number of tumor cells, a is the tumor growth rate, and b is the reciprocal of
the tumor carrying capacity. The function Ec describes the efficacy of the chemotherapy, the function
C is the concentration of the chemotherapy, γ is the decay rate of the concentration, D is the amount
of radiation, Er is the efficacy of the radiotherapy, E1 is the efficacy of the combined radiotherapy and
chemotherapy, and the constants dc, dr and d1 are the growth rates of the efficacy.

5.1.1. Numerical solution of the tumor growth model

The resultant model cannot be solved analytically due to its non-linearity; thus, a precise numerical
method known as the predictor-corrector will be used and modified within the framework of the
piecewise differential equations to solve the model. The graphical representation will be depicted
in Figure 6.


dT
dt = aT (1 − bT ) − EcCT

dEc
dt = dcEc (1 − Ec)

dC
dt = −γC

if 0 ≤ t ≤ t1 (5.2)



dT
dt = aT (1 − bT ) − E1 (ErDT + EcCT )

dEr
dt = drEr (1 − Er)

dEc
dt = dcEc (1 − Ec)

dE1
dt = d1E1 (1 − E1)

dC
dt = −γC

if t1 ≤ t ≤ T̃ .
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We shall use some notations for simplicity:

X =
(
T j, Ec j,C j

)
, (5.3)

Y =
(
T j, Er j, Ec j, E j,C j

)
,

F∗i =


aT (1 − bT ) − EcCT

dcEc (1 − Ec)
−γC

 ,

G∗m =


aT (1 − bT ) − E1 (ErDT + EcCT )

drEr (1 − Er)
dcEc (1 − Ec)
d1E1 (1 − E1)
−γC


,

such that i = 1, .., 3,m = 1, ..., 5. The numerical solution of the above system is obtained as X (tk+1) = X (tk) + h
2

[
F∗i (tk, Xk, ) + F∗i

(
tk+1, X

p
k+1

)]
, 0 ≤ t ≤ t1,

Y (tk+1) = Y (tk) + h
2

[
G∗m (tk, Xk, ) + G∗m

(
tk+1,Y

p
k+1

)]
, t1 ≤ t ≤ T̃

, (5.4)

where

X∗
(
tk+1, X

p
k+1

)
= X (tk) + hF∗i (tk, Xk) , (5.5)

Y∗
(
tk+1,Y

p
k+1

)
= Y (tk) + hG∗m (tk,Yk) .

Figure 6. The numerical simulation for the tumor growth model.
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In Figure 6, the numerical simulations are presented for the following initial data:

x(0) = 700, y(0) = 0.1, z(0) = 0.1, u(10) = 0, v(10) = 0, (5.6)

and the parameters are chosen as

a = 5 × 10−11, b = 0.0002,D = 100, dc = 0.18, (5.7)
dr = 0.19, d1 = 0.22, γ = 0.009, t1. = 10,T = 30.

6. Applications to chaos

Nature is filled with chaos or exponential sensitivity to minor disturbances. Chaos is also expected
to serve a variety of functional purposes in biological systems. Recently, with certain restrictions,
methods for identifying chaos from empirical observations have developed. Such techniques need to
be a crucial part of the biologist’s repertoire. However, conventional algorithms for chaos identification
are very sensitive to measurement noise and dissect typical edge situations, making it challenging to
find chaos in fields like biology where data is noisy. Mathematical models are intended to simulate
these observable phenomena. While some of these processes have been successfully replicated using
current mathematical techniques, others still require proper modeling. The piecewise idea is used in
this section to illustrate an expanded class.

6.1. Hybrid chaos: Arneodo and Bouali chaotic model

We consider a piecewise differential system where the first part is the Arneodo chaotic model that
describes the dynamics of triple convection [12], and the second part is the Bouali chaotic system [11].


dx
dt = y
dy
dt = z

dz
dt = ax + by + cz − x3.

if 0 ≤ t ≤ t1 (6.1)


dx
dt = a1x (1 − y) − βz

dy
dt = −b1y

(
1 − x2

)
dz
dt = µx

if t1 ≤ t ≤ T

where initial conditions are taken as

x (0) = 1, y (0) = 1, z (0) = −0.02. (6.2)

The parameters are chosen as

a = 0.8, b = −1.1, c = −0.45, a1 = 0.003, β = 1.2, b1 = 0.1, µ = 0.7. (6.3)

6.1.1. Numerical solution of the hybrid chaotic system

In this subsection, a hybrid chaotic model will be considered. In particular, we shall combine the
Arneodo and Bouali models, the well-known chaotic models.
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dx
dt = y
dy
dt = z

dz
dt = ax + by + cz − x3

if 0 ≤ t ≤ t1 (6.4)

x (0) = 0.1, y (0) = 0.1, z (0) = 0.1,
dx
dt = px (1 − y) − βz

dy
dt = −by

(
1 − x2

)
dz
dt = µx

if t1 ≤ t ≤ T,

x (t1) = 0.1, y (t1) = 0.1, z (t1) = 0.1.

The initial conditions are taken as

x (0) = 1, y (0) = 1, z (0) = −0.02. (6.5)

The numerical simulations are depicted for the parameters p = 0.003, β = 1.2, b = 0.1, µ = 0.7, a =

0.8, b = −1.1, c = −0.45, t1 = 1000.
Using the Newton polynomial approach, the numerical solution of the Arneodo-Bouali chaotic

system is obtained as:

x (tn+1) =


yn +

∑i
k=2

{ 5
12yk−2∆t − 4

3yk−1∆t
+23

12yk∆t

}
, if 0 ≤ t ≤ t1x1 +

∑n
k=i+2


5

12

(
a1xk−2

(
1 − yk−2

)
− βzk−2

)
∆t

−4
3

(
a1xk−1

(
1 − yk−1

)
− βzk−1

)
∆t

+23
12

(
a1xk

(
1 − yk

)
− βzk

)
∆t


 , if t1 ≤ t ≤ T

, (6.6)

y (tn+1) =


zn + α

M(α)

∑i
k=2

{ 5
12zk−2∆t − 4

3zk−1∆t
+23

12zk∆t

}
, if 0 ≤ t ≤ t1y1 +

∑n
k=i+2


5

12

(
−b1yk−2

(
1 − x2k−4

))
∆t

−4
3

(
−b1yk−1

(
1 − x2k−2

))
∆t

+23
12

(
−b1yk

(
1 − x2k

))
∆t


 , if t1 ≤ t ≤ T

, (6.7)

z (tn+1) =



axn + byn + czn − x3n

+
∑i

k=2


5

12

(
axk−2 + byk−2 + czk−2 − x3k−6

)
∆t

−4
3

(
axk−1 + byk−1 + czk−1 − x3k−3

)
∆t

+23
12

(
axk + byk + czk − x3k

)
∆t

 , if 0 ≤ t ≤ t1

[
z1 +

∑n
k=i+2

{ 5
12µxk−2∆t − 4

3µxk−1∆t
+23

12µxk∆t

}]
, if t1 ≤ t ≤ T

. (6.8)

The numerical simulations for the above hybrid chaotic model are given in Figure 7.
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Figure 7. The numerical simulation for the Arneodo-Bouali chaotic system.

Replacing the first equation with the second one, the modified piecewise system called the Bouali-
Arneodo chaotic model can be written as


dx
dt = px (1 − y) − βz
dy
dt = −b1y

(
1 − x2

)
dz
dt = µx

if 0 ≤ t ≤ t1 (6.9)

x (0) = 1, y (0) = 1, z (0) = −0.02,
dx
dt = y
dy
dt = z

dz
dt = ax + by + cz − x3.

if t1 ≤ t ≤ T,

x (t1) = 0.1, y (t1) = 0.1, z (t1) = 0.1.

In Figure 8, the numerical simulations are depicted for the parameters p = 3, β = 2.2, b = −1.1, µ =

0.001, a = 0.3, b1 = 0.1, c = −0.45, t1 = 800.
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Figure 8. The numerical simulation for the Arneodo-Bouali chaotic system.

6.2. Hybrid chaos: King Cobra and Wang-Sun chaotic models

In this subsection, we shall consider the well-known King Cobra [13] and Wang-Sun [14] models
to obtain a piecewise hybrid chaos model:


dx
dt = a (y − x) + byz2

dy
dt = cx + dxz2

dz
dt = ez + f x

if 0 ≤ t ≤ t1 (6.10)


dx
dt = a1x + b1yz

dy
dt = c1x + d1y − xz

dz
dt = e1xy + f1z

if t1 ≤ t ≤ T.

The parameters are chosen as a = 0.05, b = 1, c = 1, d = 0.5, e = −2, f = −1, a1 = 0.2, b1 = 1, c1 =

−7, d1 = 0.0001, e1 = 0.7, f1 = 0.4.

6.2.1. Numerical solution of the hybrid chaotic system

In this subsection, we deal with a hybrid chaotic system where King Cobra and Wang-Sun chaotic
systems are considered.
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dx
dt = a (y − x) + byz2

dy
dt = cx + dxz2

dz
dt = ez + f x

if 0 ≤ t ≤ t1 (6.11)

x (0) = 0.1, y (0) = 0.1, z (0) = 0.1,
dx
dt = a1x + b1yz

dy
dt = c1x + d1y − xz

dz
dt = e1xy + f1z

if t1 ≤ t ≤ T,

x (t1) = 0.1, y (t1) = 0.1, z (t1) = 0.1.

The associated numerical solution using the Newton polynomial is presented as:

x (tn+1) =



(
a (yn − xn) + bynz2n

)
+

∑i
k=2


5

12

(
a
(
yk−2 − xk−2

)
+ byk−2z2k−4

)
∆t

−4
3

(
a
(
yk−1 − xk−1

)
+ byk−1z2k−2

)
∆t

+23
12

(
a
(
yk − xk

)
+ bykz2k

)
∆t

 , if 0 ≤ t ≤ t1

x1 +
∑n

k=i+2


5

12

(
a1xk−2 + b1yk−2zk−2

)
∆t

−4
3

(
a1xk−1 + b1yk−1zk−1

)
∆t

+23
12

(
a1xk + b1ykzk

)
∆t


 , if t1 ≤ t ≤ T

, (6.12)

y (tn+1) =



(
cxn + dxnz2n

)
+ α

M(α)

∑i
k=2


5
12

(
cxk−2 + dxk−2z2k−4

)
∆t

−4
3

(
cxk−1 + dxk−1z2k−2

)
∆t

+23
12

(
cxk + dxkz2k

)
∆t

 , if 0 ≤ t ≤ t1

y1 +
∑n

k=i+2


5

12

(
c1xk−2 + d1yk−2 − xk−2zk−2

)
∆t

−4
3

(
c1xk−1 + d1yk−1 − xk−1zk−1

)
∆t

+23
12

(
c1xk + d1yk − xkzk

)
∆t


 , if t1 ≤ t ≤ T

, (6.13)

z (tn+1) =



(ezn + f xn) +
∑i

k=2


5
12

(
ezk−2 + f xk−2

)
∆t

−4
3

(
ezk−1 + f xk−1

)
∆t

+23
12

(
ezk + f xk

)
∆t

 , if 0 ≤ t ≤ t1

z1 +
∑n

k=i+2


5

12

(
e1xk−2yk−2 + f1zk−2

)
∆t

−4
3

(
e1xk−1yk−1 + f1zk−1

)
∆t

+23
12

(
e1xkyk + f1zk

)
∆t


 , if t1 ≤ t ≤ T

. (6.14)

In Figure 9, we depict the numerical simulations for the above hybrid chaotic model.
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Figure 9. The numerical simulation for the King-Cobra-Wang-Sun chaotic system.

6.3. Hybrid chaos: Chen-Lee and Labyrinth chaotic models

In this subsection, the Chen-Lee system, which is based on the Euler equations for the motion of a
rigid body [15], and the Labyrinth system, which describes the movement of a particle which moves in
a labyrinth under the influence of some external source of energy [16], are represented by the following
piecewise differential system:


dx
dt = ax − yz
dy
dt = by + xz
dz
dt = cz +

xy
3

if 0 ≤ t ≤ t1, (6.15)


dx
dt = − sin y (at) − bx (t)
dy
dt = − sin z (at) − by (t)
dz
dt = − sin x (at) − bz (t)

if t1 ≤ t ≤ T,

where the initial conditions are taken as:

x (0) = 1, y (0) = 1, z (0) = −0.02. (6.16)

The parameters are a = 3, β = 2.2, b = 1, µ = 0.001.
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6.3.1. Numerical solution of the hybrid chaotic system

In this subsection, we shall consider the well-known Chen-Lee [13] and Labyrinth [14] models to
obtain a piecewise hybrid chaos model:


dx
dt = ax − yz
dy
dt = by + xz
dz
dt = cz +

xy
3

if 0 ≤ t ≤ t1 (6.17)

x (0) = 0.1, y (0) = 0.1, z (0) = 0.1,
dx
dt = − sin y (a1t) − b1x (t)
dy
dt = − sin z (a1t) − b1y (t)
dz
dt = − sin x (a1t) − b1z (t)

if t1 ≤ t ≤ T,

x (t1) = 0.1, y (t1) = 0.1, z (t1) = 0.1,

where the initial conditions are taken as:

x (0) = 1, y (0) = 1, z (0) = −0.02. (6.18)

The parameters are taken as p = 0.003, β = 1.2, b = 0.1, µ = 0.7, a = 0.8, b = −1.1, c = −0.45, t1 =

1000.
Using the Newton polynomial approach, the numerical solution of the Chen-Lee-Labyrinth chaotic

system is given by:

x (tn+1) =



(axn − ynzn)

+
∑i

k=2


5

12

(
axk−2 − yk−2zk−2

)
∆t

−4
3

(
axk−1 − yk−1zk−1

)
∆t

+23
12

(
axk − ykzk

)
∆t

 , if 0 ≤ t ≤ t1

x1 +
∑n

k=i+2


5
12

(
− sin y (a1tk−2) − b1xk−2

)
∆t

−4
3

(
− sin y (a1tk−1) − b1xk−1

)
∆t

+23
12

(
− sin y (a1tk) − b1xk

)
∆t


 , if t1 ≤ t ≤ T

, (6.19)

y (tn+1) =



(bxn + xnzn)

+ α
M(α)

∑i
k=2


5
12

(
bxk−2 + xk−2zk−2

)
∆t

−4
3

(
bxk−1 + xk−1zk−1

)
∆t

+23
12

(
bxk + xkzk

)
∆t

 , if 0 ≤ t ≤ t1

y1 +
∑n

k=i+2


5
12

(
− sin z (a1tk−2) − b1yk−2

)
∆t

−4
3

(
− sin z (a1tk−1) − b1yk−1

)
∆t

+23
12

(
− sin z (a1tk) − b1yk

)
∆t


 , if t1 ≤ t ≤ T

, (6.20)
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z (tn+1) =



(
czn +

xnyn

3

)
+

∑i
k=2


5

12

(
czk−2 +

xk−2yk−2

3

)
∆t

−4
3

(
czk−1 +

xk−1yk−1

3

)
∆t

+23
12

(
czk +

xkyk

3

)
∆t

 , if 0 ≤ t ≤ t1

z1 +
∑n

k=i+2


5
12

(
− sin x (a1tk−2) − b1zk−2

)
∆t

−4
3

(
− sin x (a1tk−1) − b1zk−1

)
∆t

+23
12

(
− sin x (a1tk) − b1zk

)
∆t


 , if t1 ≤ t ≤ T

. (6.21)

In Figure 10, we depict the numerical simulations for the above hybrid chaotic model.

Figure 10. The numerical simulation for the Chen-Lee-Labyrinth chaotic system.

6.4. Hybrid chaos: Chen-Lee, Labyrinth and Dequan-Li chaotic models

In this subsection, we combine 3 well-known chaotic systems. The first part is the Chen-Lee system,
the second part is the Labyrinth system and the last part is the Dequan-Li system, which is a three-
dimensional quadratic autonomous chaotic system that displays an attractor with three scrolls [17].


dx
dt = ax − yz
dy
dt = by + xz
dz
dt = cz +

xy
3

if 0 ≤ t ≤ t1 (6.22)

x (0) = 0.1, y (0) = 0.1, z (0) = 0.1,
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dx
dt = − sin y (a1t) − b1x (t)
dy
dt = − sin z (a1t) − b1y (t)
dz
dt = − sin x (a1t) − b1z (t)

if t1 ≤ t ≤ t2,

x (t1) = 0.1, y (t1) = 0.1, z (t1) = 0.1,
dx
dt = a2 (y − x) + δxz

dy
dt = ρx + ζy − xz

dz
dt = γz + xy − εx2

if t2 ≤ t ≤ T

where the initial conditions are taken as:

x (0) = 1, y (0) = 1, z (0) = −0.02. (6.23)

The parameters are considered as p = 0.003, β = 1.2, b = 0.1, µ = 0.7, a = 0.8, b = −1.1, c =

−0.45, t1 = 1000.

6.4.1. Numerical solution of the hybrid chaotic system

In this subsection, we present the numerical solution of a piecewise chaotic system where Chen-Lee,
Labyrinth and Dequan-Li chaotic systems are considered:


dx
dt = ax − yz
dy
dt = by + xz
dz
dt = cz +

xy
3

if 0 ≤ t ≤ t1 (6.24)

x (0) = 0.1, y (0) = 0.1, z (0) = 0.1,
dx
dt = − sin y (a1t) − b1x (t)
dy
dt = − sin z (a1t) − b1y (t)
dz
dt = − sin x (a1t) − b1z (t)

if t1 ≤ t ≤ t2,

x (t1) = 0.1, y (t1) = 0.1, z (t1) = 0.1,
dx
dt = a2 (y − x) + δxz

dy
dt = ρx + ζy − xz

dz
dt = γz + xy − εx2

if t2 ≤ t ≤ T

where the initial conditions and parameters are chosen as

x (0) = 1, y (0) = 1, z (0) = −0.02, p = 0.003, β = 1.2, b = 0.1, (6.25)
µ = 0.7, a = 0.8, b = −1.1, c = −0.45, t1 = 1000.

Using the Newton polynomial approach, the numerical solution of the hybrid chaotic system is obtained
as:

AIMS Mathematics Volume 8, Issue 7, 15352–15382.



15376

x (tn+1) =



(axn − ynzn)

+
∑i1

k=2


5
12

(
axk−2 − yk−2zk−2

)
∆t

−4
3

(
axk−1 − yk−1zk−1

)
∆t

+23
12

(
axk − ykzk

)
∆t

 , if 0 ≤ t ≤ t1

x1 +
∑i2

k=i1+2


5

12

(
− sin y (a1tk−2) − b1xk−2

)
∆t

−4
3

(
− sin y (a1tk−1) − b1xk−1

)
∆t

+23
12

(
− sin y (a1tk) − b1xk

)
∆t


 , if t1 ≤ t ≤ t2,

x2 +
∑n

k=i2+2


5

12

(
a2

(
yk−2 − xk−2

)
+ δxk−2zk−2

)
∆t

−4
3

(
a2

(
yk−1 − xk−1

)
+ δxk−1zk−1

)
∆t

+23
12

(
a2

(
yk − xk

)
+ δxkzk

)
∆t


 if t2 ≤ t ≤ T ,

, (6.26)

y (tn+1) =



(bxn + xnzn)

+ α
M(α)

∑i1
k=2


5
12

(
bxk−2 + xk−2zk−2

)
∆t

−4
3

(
bxk−1 + xk−1zk−1

)
∆t

+23
12

(
bxk + xkzk

)
∆t

 , if 0 ≤ t ≤ t1

y1 +
∑i2

k=i1+2


5
12

(
− sin z (a1tk−2) − b1yk−2

)
∆t

−4
3

(
− sin z (a1tk−1) − b1yk−1

)
∆t

+23
12

(
− sin z (a1tk) − b1yk

)
∆t


 , if t1 ≤ t ≤ t2,

y2 +
∑n

k=i2+2


5

12

(
ρxk−2 + ζyk−2 − xk−2zk−2

)
∆t

−4
3

(
ρxk−1 + ζyk−1 − xk−1zk−1

)
∆t

+23
12

(
ρxk + ζyk − xkzk

)
∆t


 , if t2 ≤ t ≤ T

, (6.27)

z (tn+1) =



(
czn +

xnyn

3

)
+

∑i1
k=2


5

12

(
czk−2 +

xk−2yk−2

3

)
∆t

−4
3

(
czk−1 +

xk−1yk−1

3

)
∆t

+23
12

(
czk +

xkyk

3

)
∆t

 , if 0 ≤ t ≤ t1

z1 +
∑n

k=i+3


5
12

(
− sin x (a1tk−2) − b1zk−2

)
∆t

−4
3

(
− sin x (a1tk−1) − b1zk−1

)
∆t

+23
12

(
− sin x (a1tk) − b1zk

)
∆t


 , if t1 ≤ t ≤ t2,

z2 +
∑n

k=i+3


5

12

(
γzk−2 + xk−2yk−2 − εx2k−4

)
∆t

−4
3

(
γzk−1 + xk−1yk−1 − εx2k−2

)
∆t

+23
12

(
γzk + xkyk − εx2k

)
∆t


 , if t2 ≤ t ≤ T

. (6.28)

In Figures 11 and 12, we present the numerical simulations for the above hybrid chaotic model.
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Figure 11. The numerical simulation for the Chen-Lee-Labyrinth-Dequan-Li chaotic system.
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Figure 12. The numerical simulation for Chen-Lee-Labyrinth-Dequan-Li chaotic system.

6.5. Deterministic-Stochastic hybrid chaos: Bouali and Arneodo chaotic models

In this subsection, we shall consider the well-known Bouali and Arneodo models to obtain a
piecewise hybrid chaos model:


dx
dt = ax (1 − y) − βz

dy
dt = −by

(
1 − x2

)
dz
dt = µx

if 0 ≤ t ≤ t1 (6.29)


dx = ydt + σ1xdB1 (t)
dy = zdt + σ2ydB2 (t)

dz =

(
ax + by
+cz − x3

)
dt + σ3zdB3 (t) .

if t1 ≤ t ≤ T.

6.5.1. Numerical solution of the deterministic-stochastic hybrid chaotic system

In this subsection, we shall consider the well-known Bouali and Arneodo models to obtain a
piecewise hybrid chaos model:


dx
dt = ax (1 − y) − βz

dy
dt = −by

(
1 − x2

)
dz
dt = µx

if 0 ≤ t ≤ t1 (6.30)
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dx = ydt + σ1xdB1 (t)
dy = zdt + σ2ydB2 (t)

dz =

(
ax + by
+cz − x3

)
dt + σ3zdB3 (t) .

if t1 ≤ t ≤ T

where the initial conditions are chosen as

x (0) = 1, y (0) = 1, z (0) = −0.02. (6.31)

The parameters are taken as a = 3, β = 2.2, b = 1, µ = 0.001.
Using the Newton polynomial approach, the numerical solution of the deterministic stochastic

chaotic system is obtained as:

x (tn+1) =



(axn (1 − yn) − βzn)

+
∑i

k=2


5
12

(
axk−2

(
1 − yk−2

)
− βzk−2

)
∆t

−4
3

(
axk−1

(
1 − yk−1

)
− βzk−1

)
∆t

+23
12

(
axk

(
1 − yk

)
− βzk

)
∆t

 , if 0 ≤ t ≤ t1


x1 +

∑n
k=i+2

{ 5
12yk−2∆t − 4

3yk−1∆t
+23

12yk∆t

}
+

∑n
k=i+2


5

12 (B1 (tk−1) − B1 (tk−2))σ1xk−2

−4
3 (B1 (tk) − B1 (tk−1))σ1xk−1

+23
12 (B1 (tk+1) − B1 (tk))σ1xk




, if t1 ≤ t ≤ T

, (6.32)

y (tn+1) =



(
−byn

(
1 − x2n

))
+ α

M(α)

∑i
k=2


5

12

(
−byk−2

(
1 − x2k−4

))
∆t

−4
3

(
−byk−1

(
1 − x2k−2

))
∆t

+23
12

(
−byk

(
1 − x2k

))
∆t

 , if 0 ≤ t ≤ t1


y1 +

∑n
k=i+2

{ 5
12zk−2∆t − 4

3zk−1∆t
+23

12zk∆t

}
+

∑n
k=i+2


5

12 (B2 (tk−1) − B2 (tk−2))σ2yk−2

−4
3 (B2 (tk) − B2 (tk−1))σ2yk−1

+23
12 (B2 (tk+1) − B2 (tk))σ2yk




, if t1 ≤ t ≤ T

, (6.33)

z (tn+1) =



µxn +
∑i

k=2

{ 5
12µxk−2∆t − 4

3µxk−1∆t
+23

12µxk∆t

}
, if 0 ≤ t ≤ t1

z1 +
∑n

k=i+2


5

12

(
axk−2 + byk−2 + czk−2 − x3k−6

)
∆t

−4
3

(
axk−1 + byk−1 + czk−1 − x3k−3

)
∆t

+23
12

(
axk + byk + czk − x3k

)
∆t


+

∑n
k=i+2


5
12 (B3 (tk−1) − B3 (tk−2))σ3zk−2

−4
3 (B3 (tk) − B3 (tk−1))σ3zk−1

+23
12 (B3 (tk+1) − B3 (tk))σ3zk




, if t1 ≤ t ≤ T

. (6.34)

In Figure 13, the numerical simulations are presented for the above hybrid chaotic model.
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Figure 13. The numerical simulation of the deterministic Bouali and stochastic Arneodo
system.

7. Conclusions

Although many processes in nature cannot be accurately duplicated using current conceptions,
existing mathematical concepts have been applied to understand nature with considerable effectiveness.
Therefore, researchers concentrate their efforts on developing new terminologies, frameworks,
approaches and ideas that could be utilized to comprehend the complexity of nature. This is one of
the main causes for the introduction of various differential operators and the accompanying integrals in
recent decades, which have greatly enhanced modeling. On the other hand, mathematicians introduced
the ideas of piecewise differential and integral operators and piecewise functions in response to changes
that were noticed at various temporal or spatial scales. Although these two ideas, especially piecewise
functions, have been theorized about, there are still processes in nature that existing models are unable
to faithfully duplicate, despite the fact that these two notions, especially piecewise functions, have been
employed in theory and applications to model processes with various patterns. In this work, we propose
several piecewise differential equations and provide some significant conclusions ranging from theory
to application. These results are based on the piecewise derivative and piecewise functions. Theoretical
and practical avenues will be opened by this extension.
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