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Abstract: Let p ≡ 1 (mod 4) be a prime, m a positive integer, φ(pm)
2 the multiplicative order of 2

modulo pm, and let q = 2
φ(pm)

2 , where φ(·) is the Euler’s function. In this paper, we construct two classes
of linear codes over Fq and investigate their weight distributions. By calculating two classes of special
exponential sums, the desired results are obtained.
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1. Introduction

Let Fq be a finite field with q elements, where q is a power of a prime 2. Let Trq/2 be the trace
function from Fq onto F2. An [n, k, d] binary linear code C is a k-dimensional subspace of Fn

2 with
minimum Hamming distance d. Let D = {x1, x2, . . . , xn} ⊆ Fq. A binary linear code of length n over F2

is defined by
CD = {C = (Trq/2(bxi))n

i=1 : b ∈ Fq}.

If the set D is well chosen, the code CD may have good parameters. Let Ai be the number of
codewords in CD with Hamming weight i. The weight enumerator of CD is defined by

1 + A1z + A2z2 + · · · + Alzl.

The sequence (1, A1, A2, . . . , Al) is called the weight distribution of CD. It is said to be a t-weight code
if the number of nonzero Ai in the sequence (1, A1, . . . , Al) is equal to t.

In coding theory, it is often desirable to know the weight distributions of the codes because they
can be used to estimate the error correcting capability and the error probability of error detection and
correction with respect to some algorithms. Hence weight distributions of codes are an interesting
topic and were investigated in [4, 5, 7–13, 18, 19, 21, 22] etc. Moreover, those codes with few nonzero
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weights are of special interest in association schemes, secret sharing schemes, and frequency hopping
sequences [2].

In this paper, let p be an odd prime with p ≡ 1 (mod 4), N = pm a positive integer, ordN(2) = f ,
and q = 2 f , where f =

φ(N)
2 and φ(·) is the Euler’s function. Let α be a primitive element of Fq and

β = α
q−1
N an N-th primitive root of unity in Fq. We choose

Da = {x ∈ F∗q : Trq/2(ax
q−1
N ) = 0}

as a defining set of CDa , and

CDa = {C = (Trq/2(bx))x∈Da : b ∈ Fq}. (1.1)

It is obvious that the dimension of CDa is φ(N)
2 .

For C ∈ CDa , the Hamming weights of the codeword C with respect to b ∈ Fq is denoted by WH(C).
Denote

S (a, b) =
∑
x∈F∗q

(−1)Trq/2(ax
q−1
N +bx).

The length of CDa is

n = |Da| =
1
2

∑
x∈F∗q

(
∑
y∈F2

(−1)Trq/2(yax
q−1
N )) =

q − 1
2

+
1
2

∑
x∈F∗q

(−1)Trq/2(ax
q−1
N )

=
1
2

(q − 1 + S (a, 0)). (1.2)

If b = 0, then WH(C) = 0.
If b , 0, then WH(C) = n − Z(b) and

Z(b) = |{x ∈ F∗q : Trq/2(ax
q−1
N ) = 0,Trq/2(bx) = 0}|

=
1
4

∑
x∈F∗q

(
∑
y∈F2

(−1)Trq/2(yax
q−1
N )
∑
z∈F2

(−1)Trq/2(zbx))

=
q − 1

4
+

1
4

∑
x∈F∗q

(−1)Trq/2(ax
q−1
N ) +

1
4

∑
x∈F∗q

(−1)Trq/2(bx)

+
1
4

∑
x∈F∗q

(−1)Trq/2(ax
q−1
N +bx).

It is simple to see that
∑

x∈F∗q(−1)Trq/2(bx) = −1. Then

Z(b) =
1
4

(q − 2 + S (a, 0) + S (a, b)). (1.3)

In order to obtain the length of CDa and the weight of C ∈ CDa , we only need to calculate S (a, 0)
and S (a, b). In general, the exact values of S (a, 0) and S (a, b) are hard to calculate, in Section 3, we
shall consider two special cases.

This paper is organized as follows. In Section 2, we recall some concepts and several results about
Gaussian sums in semi-primitive case. In Sections 3, we focus on the computation of the weight
distribution of CDa defined as (1.1). In Section 4, we make a conclusion.
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2. Preliminaries

Let Fq be a finite field with q elements and α a fixed primitive element of Fq, i.e., F∗q = 〈α〉. For
two positive integers n > 1 and N > 1 with q − 1 = nN, define cyclotomic cosets of order N in Fq:
C(N,q)

i = αi〈αN〉, i = 0, 1, . . . ,N − 1. The cyclotomic numbers of order N in Fq are defined as follows:

(i, j)N = |(1 + C(N,q)
i ) ∩C(N,q)

j |, 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1.

When q = p is an odd prime, Lemmas 2.1–2.3 give cyclotomic numbers of order 2, 6 and order 8,
respectively.

Lemma 2.1. [17] If p ≡ 1 (mod 4), then (0, 0)2 =
p−5

4 , (0, 1)2 = (1, 0)2 = (1, 1)2 =
p−1

4 . If p ≡ 3
(mod 4), then (0, 1)2 =

p+1
4 , (0, 0)2 = (1, 0)2 = (1, 1)2 =

p−3
4 .

Lemma 2.2. [3] Suppose that p ≡ 1 (mod 24) is a prime. Then 4p = u2 + 27v2, u, v ∈ Z and u ≡ 1
(mod 3). The possible values for the cyclotomic numbers of order 6 as follows (Table 1):

Table 1. The cyclotomic numbers of order 6.

(i, j)6 0 1 2 3 4 5
0 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)
1 (0, 1) (0, 5) (1, 2) (1, 3) (1, 4) (1, 2)
2 (0, 2) (1, 2) (0, 4) (1, 4) (2, 4) (1, 3)
3 (0, 3) (1, 3) (1, 4) (0, 3) (1, 3) (1, 4)
4 (0, 4) (1, 4) (2, 4) (1, 3) (0, 2) (1, 2)
5 (0, 5) (1, 2) (1, 3) (1, 4) (1, 2) (0, 1)

These 10 fundamental constants (0, 0), . . . , (2, 4) are given by the relations contained in the
following table (Table 2).

Table 2. The values of cyclotomic numbers of order 6.

If 2 is a cubic residue of p If 2 is not a cubic residue of p
36(0, 0) p − 17 + 10u p − 17 − 7u+27v

2
36(0, 1) p − 5 − 2u + 27v p − 5 + 5u+9v

2
36(0, 2) p − 5 − 2u + 9v p − 5 − 2u − 18v
36(0, 3) p − 5 − 2u p − 5 + 5u+9v

2
36(0, 4) p − 5 − 2u − 9v p − 5 + 5u+9v

2
36(0, 5) p − 5 − 2u − 27v p − 5 − 2u + 18v
36(1, 2) p + 1 + u p + 1 + u − 9v
36(1, 3) p + 1 + u p + 1 − 7u−9v

2
36(1, 4) p + 1 + u p + 1 + u − 9v
36(2, 4) p + 1 + u p + 1 + u + 27v
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Lemma 2.3. [1, 3] Suppose that p ≡ 1 (mod 16) is a prime. Then p = E2 + 4F2 = A2 + 2B2,
E, F, A, B ∈ Z and E ≡ A ≡ 1 (mod 4). The possible values for the cyclotomic numbers of order 8 as
follows (Table 3):

Table 3. The cyclotomic numbers of order 8.

(i, j)8 0 1 2 3 4 5 6 7
0 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)
1 (0, 1) (0, 7) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 2)
2 (0, 2) (1, 2) (0, 6) (1, 6) (2, 4) (2, 5) (2, 4) (1, 3)
3 (0, 3) (1, 3) (1, 6) (0, 5) (1, 5) (2, 5) (2, 5) (1, 4)
4 (0, 4) (1, 4) (2, 4) (1, 5) (0, 4) (1, 4) (2, 4) (1, 5)
5 (0, 5) (1, 5) (2, 5) (2, 5) (1, 4) (0, 3) (1, 3) (1, 6)
6 (0, 6) (1, 6) (2, 4) (2, 5) (2, 4) (1, 3) (0, 2) (1, 2)
7 (0, 7) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 2) (0, 1)

These 15 fundamental constants (0, 0), . . . , (2, 5) are given by the relations contained in the
following table (Table 4).

Table 4. The values of cyclotomic numbers of order 8.

If 2 is a quartic residue of p If 2 is not a quartic residue of p
64(0, 0) p − 23 − 18E − 24A p − 23 + 6E
64(0, 1) p − 7 + 2E + 4A + 16F + 16B p − 7 + 2E + 4A
64(0, 2) p − 7 + 6E + 16F p − 7 − 2E − 8A − 16F
64(0, 3) p − 7 + 2E + 4A − 16F + 16B p − 7 + 2E + 4A
64(0, 4) p − 7 − 2E + 8A p − 7 − 10E
64(0, 5) p − 7 + 2E + 4A + 16F − 16B p − 7 + 2E + 4A
64(0, 6) p − 7 + 6E − 16F p − 7 − 2E − 8A + 16F
64(0, 7) p − 7 + 2E + 4A − 16F − 16B p − 7 + 2E + 4A
64(1, 2) p + 1 + 2E − 4A p + 1 − 6E + 4A
64(1, 3) p + 1 − 6E + 4A p + 1 + 2E − 4A − 16B
64(1, 4) p + 1 + 2E − 4A p + 1 + 2E − 4A + 16F
64(1, 5) p + 1 + 2E − 4A p + 1 + 2E − 4A − 16F
64(1, 6) p + 1 − 6E + 4A p + 1 + 2E − 4A + 16B
64(2, 4) p + 1 − 4E p + 1 + 6E + 8A
64(2, 5) p + 1 + 2E − 4A p + 1 − 6E + 4A

Let q be odd, define the quadratic multiplicative character of Fq denoted by η as follows: η(c) = 1
if c is the square element of F∗q and η(c) = −1 otherwise. If q is an odd prime, then for c ∈ F∗q, we have
η(c) = ( c

q ), where ( ·q ) is the Legendre symbol.
Let Trq/2 be the trace function from Fq to F2 defined by Trq/2(x) = x + x2 + · · · + xq/2, x ∈ Fq, and

χ is the canonical additive character of Fq: For c ∈ Fq, χ(c) = (−1)Trq/2(c). It is a well-known fact that∑
c∈Fq

χ(c) = 0. In the following, we list a useful result, which is called the semi-primitive case.
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Lemma 2.4. [15, Theorem 1] Let q = 22sd and N | (2d + 1), where s and d are positive integers. Let α
be a primitive element of Fq. Then for a = αb ∈ F∗q and Indα(a) = b,∑

x∈F∗q

(−1)Trq/2(axN ) =

{
(−1)s−1(N − 1)

√
q − 1, if Indα a ≡ 0 (mod N),

(−1)s√q − 1, if Indα a . 0 (mod N).

Lemma 2.5. [3] Suppose that p is a prime and p ≡ 1 (mod 24). Then p = A2+3B2 and 4p = u2+27v2,
where A, B ∈ Z and A ≡ 1 (mod 3), u, v ∈ Z,u ≡ 1 (mod 3) and v = A−B

3 .

3. Main results

In this section, let p be an odd prime with p ≡ 1 (mod 4), N = pm a positive integer, ordN(2) = f ,
and q = 2 f , where f =

φ(N)
2 and φ(·) is the Euler’s function. We always suppose that α is a primitive

element of Fq, β = α
q−1
N and γ = βpm−1

is a primitive N-th and p-th root of unity in Fq.
Recall that the length of CDa is equal to

n =
1
2

(q − 1 + S (a, 0))

and for b ∈ F∗q, the weight WH(C),C ∈ CDa is

WH(C) = n −
1
4

(q − 2 + S (a, 0) + S (a, b))

=
1
4

(q + S (a, 0) − S (a, b)).

The length of CDa and the weight WH(C),C ∈ CDa is relate to the value S (a, 0) and S (a, b),
respectively.

Let S (a) =
∑N−1

i=0 (−1)Trq/2(aβi). Then

S (a, 0) =
∑
x∈F∗q

(−1)Trq/2(ax
q−1
N ) =

q − 1
N

S (a).

Recall that for b ∈ F∗q,

S (a, b) =
∑
x∈F∗q

(−1)Trq/2(ax
q−1
N +bx).

Let H = 〈αN〉, F∗q = ∪N−1
i=0 α

iH. Then

S (a, b) =
∑
x∈F∗q

(−1)Trq/2(ab−
q−1
N x

q−1
N +x)

=

N−1∑
i=0

(−1)Trq/2(ab−
q−1
N βi)
∑
h∈H

(−1)Trq/2(αih)

=
1
N

N−1∑
i=0

(−1)Trq/2(ab−
q−1
N βi)
∑
x∈F∗q

(−1)Trq/2(αi xN ).
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By p ≡ 1 (mod 4) and Lemma 2.4,

S (a, b) =
1
N

((−1)Trq/2(ab−
q−1
N )((N − 1)

√
q − 1) +

N−1∑
i=1

(−1)Trq/2(ab−
q−1
N βi)(−

√
q − 1))

=
√

q(−1)Trq/2(ab−
q−1
N ) −

√
q + 1
N

S (ab−
q−1
N )

=
√

q(−1)Trq/2(ab−
q−1
N ) −

√
q + 1
N

S (a).

In the following, for two cases about a ∈ Fq, we calculate the values S (a, 0) and S (a, b), b ∈ F∗q. Let
F∗p = 〈θ〉 = H0 ∪ H1, H0 = 〈θ2〉 is a subgroup consisting of all square elements of index 2 in F∗p, and
H1 = θH0 consists of all non-square elements in F∗p. First, we give an lemma.

Lemma 3.1. [14] Suppose that H1 is the set consisting of all non-square elements in F∗p, then for
0 ≤ i ≤ N − 1,

Trq/2(βi) =

{
1, if pm−1‖i and i

pm−1 ∈ H1,

0, otherwise.

Suppose that r|(p − 1) and a =
∑r−1

j=0 γ
wζ j

r ∈ Fq, where γ = βpm−1
, w ∈ F∗p, and ζr is a primitive r-th

root of unity in Fp.
For 0 ≤ i ≤ N − 1, let i = kpm−1 + l, 0 ≤ k ≤ p− 1, 0 ≤ l ≤ pm−1 − 1. By Lemma 3.1 and note that if

l , 0, then Trq/2(β(k+wζ j
r )pm−1+l) = 0. Then

S (a) =

N−1∑
i=0

(−1)Trq/2(aβi) =

N−1∑
i=0

(−1)Trq/2(
∑r−1

j=0 γ
wζ j

r βi)

=

pm−1−1∑
l=0

p−1∑
k=0

(−1)Trq/2(
∑r−1

j=0 β
(k+wζ j

r )pm−1+l)

= (pm−1 − 1)p +

p−1∑
k=0

(−1)Trq/2(
∑r−1

j=0 γ
k+wζ j

r ) = pm − p + Ω, (3.1)

where

Ω =

p−1∑
k=0

(−1)Trq/2(
∑r−1

j=0 γ
k+wζ j

r ) =
∑
x∈Fp

(−1)
∑r−1

j=0 Trq/2(γx+wζ j
r ).

Let W = {−w,−wζr, . . . ,−wζr−1
r }. By Lemma 3.1 and by the fact that the product of any two square

elements or any two non-square elements is a square element and the product of a square element
with a non-square element is a non-square element, we can easily check that if x ∈ Fp \ W, then∑r−1

j=0 Trq/2(γx+wζ j
r ) and Trq/2(γΠr−1

j=0(x+wζ j
r )) have the same parity. Then

Ω =
∑

x∈Fp\W

(−1)Trq/2(γ
Πr−1

j=0(x+wζ j
r )

) +
∑
x∈W

(−1)
∑r−1

j=0 Trq/2(γx+wζ j
r ). (3.2)
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Theorem 3.2. The notations are as above. Let p ≡ 1 (mod 24) be a prime. Then 4p = u2 + 27v2,
u, v ∈ Z and u ≡ 1 (mod 3). Suppose that a =

∑5
j=0 γ

wζ j
6 ∈ Fq.

(1) If ( 2
p )3 = 1, then

S (a) = pm − p − 1 + 2u + 6(
w
p

).

(1) If ( 2
p )3 , 1, then

S (a) = pm − p − 1 − u − 9v + 6(
w
p

).

Proof. By (3.1), we only need to calculate Ω denoted by (3.2). Let

∆ = |{x ∈ Fp\W : Π5
j=0(x + wζ j

6) = y2, y ∈ Fp}|,

where W = {−w,−wζ6,−wζ2
6 ,−wζ3

6 ,−wζ4
6 ,−wζ5

6 }.
Let F∗p = 〈θ〉, C(2,p)

i = θi〈θ2〉, i = 0, 1, and C(6,p)
i = θ j〈θ6〉, j = 0, 1, 2, 3, 4, 5. It is clear that

C(2,p)
0 = C(6,p)

0 ∪ C(6,p)
2 ∪ C(6,p)

4 and C(2,p)
1 = C(6,p)

1 ∪ C(6,p)
3 ∪ C(6,p)

5 . For w ∈ F∗p, Π5
j=0(x + wζ j

6) = x6 − w6.
Now we count the number :

∆ = |{x ∈ Fp\W : x6 − w6 = y2, y ∈ Fp}|

= |{x ∈ Fp\W : x6 − w6 = y6 or x6 − w6 = γ2y6,

or x6 − w6 = γ4y6, y ∈ Fp}|.

If x = 0, then x6 − w6 = y2 has a solution y ∈ Fp, i.e., when x = 0, there exists a y ∈ Fp, but not
unique, such that x6 − w6 = y2.

If x , 0, x6−w6 = y6 is equivalent to 1+(−(w
x )6) = ( y

x )6, then the number of w
x such that 1+(−(w

x )6) =

( y
x )6 is equal to |(1 + C(6,q)

0 ) ∩ C(6,q)
0 | = (0, 0)6 and the number of x such that x6 − w6 = y6 is equal to

6(0, 0)6. Similarly, the number of x such that x6 − w6 = γ2y6 is equal to 6(0, 2)6 and the number of x
such that x6 − w6 = γ4y6 is equal to 6(0, 4)6.

Suppose that 2 is a cubic residue modulo p, i.e, ( 2
p )3 = 1. By Lemma 2.2,

∆ = 6((0, 0)6 + (0, 2)6 + (0, 4)6) + 1 =
p − 7 + 2u

2
.

Suppose that 2 is not a cubic residue modulo p, i.e., ( 2
p )3 , 1. By Lemma 2.2,

∆ = 6((0, 0)6 + (0, 2)6 + (0, 4)6) + 1 =
p − 7 − u − 9v

2
.

Moreover, by p ≡ 1 (mod 24),

(−1)Trq/2(γ−w+wζ6 )+Trq/2(γ−w+wζ2
6 )+Trq/2(γ−w+wζ3

6 )+Trq/2(γ−w+wζ4
6 )+Trq/2(γ−w+wζ5

6 )

= η((−w + wζ6)(−w + wζ2
6 )(−w + wζ3

6 )(−w + wζ4
6 )(−w + wζ5

6 ))

= η(w) = (
w
p

).
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Similarly,

(−1)Trq/2(γ−wζ6+w)+Trq/2(γ−wζ6+wζ2
6 )+Trq/2(γ−wζ6+wζ3

6 )+Trq/2(γ−wζ6+wζ4
6 )+Trq/2(γ−wζ6+wζ5

6 ) = (
w
p

),

(−1)Trq/2(γ−wζ2
6 +w)+Trq/2(γ−wζ2

6 +wζ6 )+Trq/2(γ−wζ2
6 +wζ3

6 )+Trq/2(γ−wζ2
6 +wζ4

6 )+Trq/2(γ−wζ2
6 +wζ5

6 ) = (
w
p

),

(−1)Trq/2(γ−wζ3
6 +w)+Trq/2(γ−wζ3

6 +wζ6 )+Trq/2(γ−wζ3
6 +wζ2

6 )+Trq/2(γ−wζ3
6 +wζ4

6 )+Trq/2(γ−wζ3
6 +wζ5

6 ) = (
w
p

),

(−1)Trq/2(γ−wζ4
6 +w)+Trq/2(γ−wζ4

6 +wζ6 )+Trq/2(γ−wζ4
6 +wζ2

6 )+Trq/2(γ−wζ4
6 +wζ3

6 )+Trq/2(γ−wζ4
6 +wζ5

6 ) = (
w
p

),

(−1)Trq/2(γ−wζ5
6 +w)+Trq/2(γ−wζ5

6 +wζ6 )+Trq/2(γ−wζ5
6 +wζ2

6 )+Trq/2(γ−wζ5
6 +wζ3

6 )+Trq/2(γ−wζ5
6 +wζ4

6 ) = (
w
p

).

Thus ∑
x∈W

(−1)
∑5

j=0 Trq/2(γx+wζ j
6 ) = 6(

w
p

).

Note that

Ω = ∆ − (p − 6 − ∆) +
∑
x∈W

(−1)
∑5

j=0 Trq/2(γx+wζ j
6 )

= 2∆ − p + 6 + 6(
w
p

).

Hence

S (a) =

 pm − p − 1 + 2u + 6(w
p ), if ( 2

p )3 = 1,
pm − p − 1 − u − 9v + 6(w

p ), if ( 2
p )3 , 1.

�

Theorem 3.3. The notations are as above. Let p ≡ 1 (mod 16) be a prime. Then p = E2 + 4F2 =

A2 + 2B2, E, F, A, B ∈ Z and E ≡ A ≡ 1 (mod 4). Suppose that a =
∑7

j=0 γ
wζ j

8 ∈ Fq, then

S (a) = pm − p − 2E − 4A − 1 + 8(
w
p

).

Proof. By (3.1), we only need to calculate Ω denoted by (3.2). Let

∆ = |{x ∈ Fp\W : Π7
j=0(x + wζ j

8) = y2, y ∈ Fp}|,

where W = {−w,−wζ8,−wζ2
8 ,−wζ3

8 ,−wζ4
8 ,−wζ5

8 ,−wζ6
8 ,−wζ7

8 }.
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Let F∗p = 〈θ〉, C(2,p)
i = θi〈θ2〉, i = 0, 1, and C(8,p)

i = θ j〈θ8〉, j = 0, 1, 2, 3, 4, 5, 6, 7. It is clear that
C(2,p)

0 = C(8,p)
0 ∪C(8,p)

2 ∪C(8,p)
4 ∪C(8,p)

6 . For w ∈ F∗p, Π7
j=0(x + wζ j

8) = x8 −w8. Now we count the number :

∆ = |{x ∈ Fp\W : x8 − w8 = y2, y ∈ Fp}|

= |{x ∈ Fp\W : x8 − w8 = y8 or x8 − w8 = γ2y8,

or x8 − w8 = γ4y8, or x8 − w8 = γ6y8, y ∈ Fp}|.

If x = 0, then x8 − w8 = y2 has a solution y ∈ Fp, i.e., when x = 0, there exists a y ∈ Fp, but not
unique, such that x6 − w6 = y2.

If x , 0, similar to the discussion of Theorem 3.2, the number of x such that x8 − w8 = y8,
x8 − w8 = γ2y8, x8 − w8 = γ4y8, and x8 − w8 = γ6y8 is equal to 8(0, 0)8, 8(0, 2)8, 8(0, 4)8, and 8(0, 6)8,
respectively.

Suppose that ( 2
p )4 = 1 or suppose that ( 2

p )4 , 1. By Lemma 2.3,

∆ = 8((0, 0)8 + (0, 2)8 + (0, 4)8 + (0, 6)8) + 1 =
p − 9 − 2E − 4A

2
.

Moreover, by p ≡ 1 (mod 16), it is easy to check that if x ∈ W, then

(−1)
∑7

j=0 Trq/2(γx+wζ j
8 ) = (

w
p

).

Thus ∑
x∈W

(−1)
∑7

j=0 Trq/2(γx+wζ j
8 ) = 8(

w
p

).

Hence

Ω = ∆ − (p − 8 − ∆) +
∑
x∈W

(−1)
∑7

j=0 Trq/2(γx+wζ j
8 )

= −2E − 4A − 1 + 8(
w
p

),

and
S (a) = pm − p − 2E − 4A − 1 + 8(

w
p

).

�

Recall that the length of CDa defined as (1.1) is equal to n = 1
2 (q−1+S (a, 0)) and S (a, 0) =

q−1
N S (a).

Then the following results are obtained.

Theorem 3.4. The notations are as Theorem 3.2.
(1) If ( 2

p )3 , 1, then the length of CDa defined as (1.1) is equal to

n =
(q − 1)(2pm − p + 5 − u − 9v)

2pm .

(2) If ( 2
p )3 = 1, then the length of CDa defined as (1.1) is equal to

n =
(q − 1)(2pm − p + 5 + 2u)

2pm .

AIMS Mathematics Volume 8, Issue 7, 15317–15331.



15326

Theorem 3.5. The notations are as Theorem 3.3. The length of CDa defined as (1.1) is equal to

n =
(q − 1)(2pm − p − 2E − 4A − 9)

2pm .

Now we return to investigate the weight WH(C) of C ∈ CDa .

Theorem 3.6. Let p ≡ 1 (mod 24) be a prime. Then 4p = u2 + 27v2, u, v ∈ Z and u ≡ 1 (mod 3).
Suppose that a =

∑5
j=0 γ

wζ j
6 ∈ Fq, where w ∈ H0.

(1) If ( 2
p )3 , 1, then CDa defined as (1.1) is a two weight binary linear code with length

(q−1)(2pm−p+5−u−9v)
2pm and its weight distributions are given by Table 5.

Table 5. Weight distributions of CDa if a =
∑5

j=0 γ
wζ j

6 ∈ Fq,w ∈ H0.

weights frequencies

0 1
q
2 −

√
q+q

4pm (p + u + 9v − 5) (q−1)(2pm−p+5−u−9v)
2pm

√
q+q

4pm (2pm − p − u − 9v + 5) (q−1)(p−5+u+9v)
2pm

(2) If ( 2
p )3 = 1, then CDa defined as (1.1) is a two weight binary linear code with length

(q−1)(2pm−p+5+2u)
2pm and its weight distributions are given by Table 6.

Table 6. Weight distributions of CDa if a =
∑5

j=0 γ
wζ j

6 ∈ Fq,w ∈ H0.

weights frequencies

0 1
q
2 −

√
q+q

4pm (p − 2u − 5) (q−1)(2pm−p+5+2u)
2pm

√
q+q

4pm (2pm − p − 2u − 5) (q−1)(p−5−2u)
2pm

Proof. Suppose that a =
∑5

j=0 γ
wζ j

6 ∈ Fq, w ∈ H0. By Theorem 3.2,

S (a) = pm − p − u − 9v + 5.

If b ∈ F∗q, then

WH(C) =
1
4

(q + S (a, 0) − S (a, b))

=
1
4

(q +
q +
√

q
N

S (a) −
√

q(−1)Trq/2(ab−
q−1
N ))

=

 q
2 −

√
q+q

4pm (p + u + 9v − 5), if Trq/2(ab−
q−1
N ) = 0,

√
q+q

4pm (2pm − p − u − 9v + 5), if Trq/2(ab−
q−1
N ) = 1.

AIMS Mathematics Volume 8, Issue 7, 15317–15331.



15327

We only need to count the number of b ∈ F∗q such that Trq/2(ab−
q−1
N ) = 0 or 1. It is clear that

ord(b−
q−1
N ) = pt, 0 ≤ t ≤ m.

If t ≥ 2, then ord(γwζ j
6b−

q−1
N ) = pt > p, where j = 0, . . . , 5. So by Lemma 3.1, Trq/2(ab−

q−1
N ) = 0.

Moreover, b = αpm−tµ, where 0 < µ ≤ q−1
pm−t − 1 and gcd(µ, p) = 1. Hence there are

∑m
t=2( q−1

pm−t −
q−1

pm−t+1 ) =

q − 1 − q−1
pm−1 such elements b ∈ F∗q such that ord(b−

q−1
N ) > p.

If 0 ≤ t ≤ 1, i.e, b−
q−1
N = γx, 0 ≤ x ≤ p − 1, it is obvious that there are q−1

pm elements b.
Moreover,

(−1)Trq/2(ab−
q−1
N ) = (−1)

∑5
j=0 Trq/2(γx+wζ j

6 ).

Suppose that x ∈ W = {−w,−wζ6,−wζ2
6 ,−wζ3

6 ,−wζ4
6 ,−wζ5

6 }. Then

(−1)Trq/2(ab−
q−1
N ) = (−1)

∑5
j=1 Trq/2(γ−w+wζ j

6 ) = η(Π5
j=1(−w + wζ j

6)) = 1.

Hence there are 6(q−1)
pm such elements b ∈ F∗q such that b−

q−1
N = γx.

Suppose that x ∈ Fp \W. Then

(−1)Trq/2(ab−
q−1
N ) = (−1)

∑5
j=0 Trq/2(γx+wζ j

6 ) = η(Π5
j=0(x + wζ j

6)).

By the proof of Theorem 3.2, there are ∆ =
p−7−u−9v

2 such elements x ∈ Fp \ W such that
Trq/2(ab−

q−1
N ) = 0; there are p − 6 − ∆ =

p−5+u+9v
2 such elements x ∈ Fp \W such that Trq/2(ab−

q−1
N ) = 1,

where 4p = u2 + 27v2, u, v ∈ Z and u ≡ 1 (mod 3).
Therefore there are

q − 1 −
q − 1
pm−1 +

p + 5 − u − 9v
2

·
q − 1

pm =
(q − 1)(2pm − p + 5 − u − 9v)

2pm

elements b ∈ F∗q such that Trq/2(ab−
q−1
N ) = 0; there are p−5+u+9v

2 ·
q−1
pm such elements b ∈ F∗q such that

Trq/2(ab−
q−1
N ) = 1. Then the Table 5 is given.

Suppose that ( 2
p )3 = 1, we obtain the Table 6 similarly. �

Theorem 3.7. Let p ≡ 1 (mod 16) be a prime. Then p = E2 + 4F2 = A2 + 2B2, E, F, A, B ∈ Z and
E ≡ A ≡ 1 (mod 4). Suppose that a =

∑7
j=0 γ

wζ j
8 ∈ Fq, where w ∈ H1. Then CDa defined in (1.1) is a

two weight binary linear code with length (q−1)(2pm−p−2E−4A−9)
2pm and its weight distributions are given by

Table 7.

Table 7. Weight distribution of CDa if a =
∑7

j=0 γ
wζ j

8 ∈ Fq,w ∈ H1.

weights frequencies

0 1
q
2 −

√
q+q

4pm (p + 2E + 4A + 9) (q−1)(2pm−p−9−2E−4A)
2pm

√
q+q

4pm (2pm − p − 2E − 4A − 9) (q−1)(p+9+2E+4A)
2pm
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Proof. Suppose that a =
∑7

j=0 γ
wζ j

8 ∈ Fq, w ∈ H1. By Theorem 3.3,

S (a) = pm − p − 2E − 4A − 9.

If b ∈ F∗q, then

WH(C) =
1
4

(q + S (a, 0) − S (a, b))

=
1
4

(q +
q +
√

q
N

S (a) −
√

q(−1)Trq/2(ab−
q−1
N ))

=

 q
2 −

√
q+q

4pm (p + 2E + 4A + 9), if Trq/2(ab−
q−1
N ) = 0,

√
q+q

4pm (2pm − p − 2E − 4A − 9), if Trq/2(ab−
q−1
N ) = 1.

We only need to count the number of b ∈ F∗q such that Trq/2(ab−
q−1
N ) = 0 or 1. It is clear that ord(b−

q−1
N ) =

pt, 0 ≤ t ≤ m.
If t ≥ 2, then ord(γwζ j

8b−
q−1
N ) = pt > p, where j = 0, . . . , 7. So by Lemma 3.1, Trq/2(ab−

q−1
N ) = 0.

Moreover, b = αpm−tµ, where 0 < µ ≤ q−1
pm−t − 1 and gcd(µ, p) = 1. Hence there are

∑m
t=2( q−1

pm−t −
q−1

pm−t+1 ) =

q − 1 − q−1
pm−1 such elements b ∈ F∗q such that ord(b−

q−1
N ) > p.

If 0 ≤ t ≤ 1, i.e, b−
q−1
N = γx, 0 ≤ x ≤ p − 1. it is obvious that there are q−1

pm elements b.
Moreover,

(−1)Trq/2(ab−
q−1
N ) = (−1)

∑7
j=0 Trq/2(γx+wζ j

8 ).

Suppose that x ∈ W = {−w,−wζ8,−wζ2
8 ,−wζ3

8 ,−wζ4
8 ,−wζ5

8 ,−wζ6
8 ,−wζ7

8 }. Then

(−1)Trq/2(ab−
q−1
N ) = (−1)

∑7
j=1 Trq/2(γ−w+wζ j

8 ) = η(Π7
j=1(−w + wζ j

8)) = −1.

Hence there are 8(q−1)
pm such elements b ∈ F∗q such that b−

q−1
N = γx.

Suppose that x ∈ Fp \W. Then

(−1)Trq/2(ab−
q−1
N ) = (−1)

∑7
j=0 Trq/2(γx+wζ j

8 ) = η(Π7
j=0(x + wζ j

8)).

By the proof of Theorem 3.3, there are ∆ =
p−9−2E−4A

2 such elements x ∈ Fp \ W such that
Trq/2(ab−

q−1
N ) = 0; there are p−8−∆ =

p−7+2E+4A
2 such elements x ∈ Fp \W such that Trq/2(ab−

q−1
N ) = 1,

where p = E2 + 4F2 = A2 + 2B2, E, F, A, B ∈ Z and E ≡ A ≡ 1 (mod 4).
Therefore there are

q − 1 −
q − 1
pm−1 +

p − 9 − 2E − 4A
2

·
q − 1

pm =
(q − 1)(2pm − p − 9 − 2E − 4A)

2pm

such elements b ∈ F∗q such that Trq/2(ab−
q−1
N ) = 0; there are p+9+2E+4A

2 ·
q−1
pm such elements b ∈ F∗q such

that Trq/2(ab−
q−1
N ) = 1.

The desired result follows. �

In the following, we give some examples.
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Example 3.8. Let p = 17. Then CDa is an [135, 8, 64] two-weight binary linear code with weight
enumerator 1 + 135z64 + 120z72. The dual is an [135, 127, 3] binary linear code and is optimal, due
to [6]. The code is also obtained from Theorem 3.2 in [20].

Example 3.9. Let p = 97. Then 97 ≡ 1 (mod 24) and 97 ≡ 1 (mod 16). By Theorem 3.6 (1),
4p = 192 + 27v2, by Lemma 2.5, v = 1. By Theorem 3.7, p = 92 + 4F2 = 52 + 2B2, F2 = 4 and B2 = 36.
The weight distributions of CDa are given by Table 8.

Table 8. Weight distributions of CDa in Theorems 3.6 (1) and 3.7.

Theorem 3.6 (1) n =
37(248−1)

97 Theorem 3.7 n =
25(248−1)

97

weights frequencies weights frequencies

0 1 0 1

247 −
30(224+248)

97
37(248−1)

97 247 −
36(224+248)

97
25(248−1)

97

37(224+248)
194

60(248−1)
97

25(224+248)
194

72(248−1)
97

From the above Table 8, we can see that the minimum Hamming distance of the line code in
Theorems 3.6 (1) is larger than that of in Theorem 3.7.

Example 3.10. Let p = 193. Then 193 ≡ 1 (mod 24) and 193 ≡ 1 (mod 16). By Theorem 3.6 (1),
4p = (−23)2 + 27v2, by Lemma 2.5, v = 3. By Theorem 3.7, p = (−7)2 + 4F2 = (−11)2 + 2B2, F2 = 36
and B2 = 36. The weight distributions of CDa are given by Table 9.

Table 9. Weight distributions of CDa in Theorems 3.6 (1) and 3.7.

Theorem 3.6 (1) n =
97(296−1)

193 Theorem 3.7 n =
121(296−1)

193

weights frequencies weights frequencies

0 1 0 1

295 −
48(296+248)

193
97(296−1)

193 295 −
36(296+248)

193
121(296−1)

193

97(296+248)
386

96(296−1)
193

121(296+248)
386

72(296−1)
193

From the above Table 9, we can see that the minimum Hamming distance of the line code in
Theorems 3.7 is larger than that of in Theorem 3.6.

4. Conclusions

Suppose that p ≡ 1 (mod 4) is a prime and φ(pm)
2 is the multiplicative order of 2 modulo pm. Let

q = 2
φ(pm)

2 , in this paper, we constructed two classes of two-weight linear codes over Fq and obtained
their weight distributions. The main work was the calculations of two classes of exponential sums,
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which were special forms of exponential sums defined by Moisio in [16]. The technique that we
adopted was to count the number of the square elements by cyclotomic numbers over Fp. By this
method, other problems such as cross correlations of sequences and Walsh spectrums of functions can
also be investigated.
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