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Abstract: In this study, we attempt to obtain the approximate solution for the time-space fractional
linear and nonlinear diffusion equations. A finite difference approach is given for the solution of
both linear and nonlinear fractional order diffusion problems. The Riesz fractional derivative in space
is specifically approximated using the centered difference scheme. A system of Atangana-Baleanu
Caputo equations that have been converted through spatial discretization is solved using a newly
developed modified Simpson’s 1/3 formula. A study of the proposed scheme is done to ascertain its
stability and convergence. It has been shown that for mesh size h and time steps δt the recommended
method converges at a rate of O(δt2 + h2). Based on graphic results and numerical examples, the
application of the model is also examined.
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1. Introduction

Fractional calculus has recently piqued the interest of an increasing number of scientists since it
is an important tool for modeling many systems in science and engineering. The increased degree
of freedom that comes with using fractional derivatives allows for more realistic models of various
systems, including viscoelastic materials, anomalous diffusion processes, control systems with long-
term memory and more. Furthermore, the use of fractional derivatives can lead to more accurate
predictions and a better understanding of complex physical, biological and engineering systems. In
conclusion, fractional calculus has become an indispensable tool in modern science and engineering,
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providing researchers with a powerful framework for modeling complex systems and describing the
behavior of phenomena that cannot be captured by traditional integer-order models. Engineering,
geophysics, biology, control theory, special functions, viscoelasticity, electricity, fluid dynamics and
mechanics all use fractional differential equations [1–7].

Diffusion is a widespread and important physical phenomenon that is relevant in many areas of
science and engineering. It refers to the spreading of matter, energy or information over space and
time, and it plays a crucial role in a wide range of processes, such as heat transfer, mass transfer, fluid
dynamics and more. For example, [8] contains a comprehensive derivation of the nonlinear diffusion
equation. The space-time fractional diffusion equation derived from the classic diffusion equation has
received a lot of attention for replacing the fractional equivalents of the integer order space and time
derivatives [9–11]. In various domains, it has frequently been employed to investigate the unusual
diffusive processes connected to fractional sub-diffusion and super-diffusion [12, 13].

Fractional-order partial differential equations (FPDEs) are widely used to model complex physical,
biological and engineering systems that exhibit memory and non-local behavior. Unlike traditional
partial differential equations, which are usually of integer order, FPDEs are based on derivatives of
fractional order. This means that they can capture the long-term effects of past events on the current
state of a system, making them very useful for modeling phenomena, such as diffusion, turbulence,
viscoelasticity and more. The use of FPDEs has led to new mathematical techniques and theories,
such as fractional calculus, which is a branch of mathematics that deals with the study of fractional
derivatives and integrals. Additionally, numerical methods have been developed to solve FPDEs,
including finite difference, finite element and spectral methods. Despite the progress that has been
made, there are still many open questions and challenges when it comes to FPDEs. Nevertheless,
their impact and importance continue to grow, making them a popular and active area of research in
both mathematics and the applied sciences. Caputo and Fabrizio proposed a novel fractional order
differential operator based on the exponential kernel in 2015 [14]. Liu et al. [15] proposed a novel
second-order algorithm to approximate the fractional-order Caputo-Fabrizio derivative. To address a
number of restrictions in the field of fractional differentiation and fractional models, researchers have
proposed non-singular and non-local kernels for the formulation of fractional integration/differentiation
operators. Recent literature contains research on fractional operators with non-singular kernels.
However, there are surprisingly few works that discuss the numerical solutions of such fractional-order
differential equations with nonsingular kernel. For differential equations with the Atangana-Baleanu
Caputo fractional-order derivative, only a few numbers of precise numerical approaches have been
applied to date. An improved formulation for fractional derivatives based on the non-singular and
non-local kernel was proposed by Atangana and Baleanu [16]. These newly proposed non-singular
operators have a great probability of application for modeling in a number of applied sciences fields.
The space-time fractional diffusion equation with the ABC derivative is the subject of this paper. This
fractional diffusion equation classification has been linked to a number of investigations. Using the
Banach fixed-point theorem, existence and uniqueness findings for linear and nonlinear differential
equations with the ABC fractional derivative were established in [17]. The Chebyshev collocation
method was then used to construct a numerical methodology. Different diffusion techniques specified
by the Atangana-Baleanu-Caputo derivative are explored in order to analyze the forms of diffusion
processes using the Laplace transform method [18]. The authors of [19] devised a difference scheme for
the nonlinear reaction-diffusion equation and nonlinear integro reaction-diffusion equation involving
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the ABC derivative, using Taylor series to cope with time direction in fractional differential terms and
spatial discretization with quasi wavelet. The authors of [20] proposed ABC derivative approximation
methods established on the finite difference and Taylor expansion methods, which are then used to find
the solution of advection-diffusion problems with fractional derivative. The Legendre polynomial was
used to build a numerical technique to find the solution of a non-linear Burgers-Huxley equation and a
non-linear reaction-diffusion equation with the ABC derivative in [21]. The authors of [22] applied the
q-homotopy analysis transform approach to provide an approximate/analytical solution to the nonlinear
ABC fractional diffusion problem. The authors of [23] analyzed a nonlinear fractional order differential
equation with the Atangana-Baleanu operator, employing the renowned Adams-Bashforth numerical
approach to solve the equation system. The authors of [24] investigated the issue of locating an
unidentified source term for the ABC fractional derivative, using the generalized Tikhonov approach
to regularize the unstable solution to the issue. Numerical solutions of fractional differential equations
with nonsingular kernels, particularly those involving the Atangana-Baleanu-Caputo derivative, have
been the subject of limited research to date. This is partly due to the mathematical complexity of such
equations and the difficulty of developing numerical methods that can handle them effectively.

However, the lack of precise numerical approaches and the need for more accurate and efficient
methods have motivated researchers to investigate this area further. The development of a new
numerical framework that can handle fractional differential equations involving the Atangana-Baleanu
Caputo derivative with higher accuracy and higher order of convergence would be a significant
contribution to the field. It is important to note that the development of such a numerical framework
would have a wide range of potential applications in various fields, such as physics, engineering,
finance and more, where fractional differential equations are used to model complex systems.
Furthermore, it would help advance our understanding of these systems and enable us to make more
accurate predictions and design better solutions. Thus, we aim to develop a new numerical framework
for fractional differential equations involving the Atangana-Baleanu-Caputo derivative with better
accuracy and higher order of convergence.

Our aim of this research is to study and then try to find the numerical solution of the following time-
space fractional diffusion equation involving the Atangana-Baleanu derivative in the Caputo sense

ABCD%
t z(v, t) = Uη

∂η

∂|v|η
z(v, t) + k(v, t), c < v < d, 0 < t ≤ T, (1.1)

ABCD%
t z(v, t) = Uη

∂η

∂|v|η
z(v, t) + k(z(v, t), v, t), c < v < d, 0 < t ≤ T, (1.2)

along with the given initial and boundary conditions:

z(v, 0) = ψ(v), c ≤ v ≤ d,

z(c, t) = z(d, t) = 0, 0 ≤ t ≤ T,
(1.3)

where 1 < η ≤ 2, 0 < % ≤ 1, ABCD% is the Atangana-Balanu derivative of fractional order % and ∂η

∂|y|η is
the Riesz fractional order derivative.

The following is how the rest of the article is organized: Section 2 contains the basic definitions and
lemmas that are required to obtain the main conclusions. Section 3 presents a numerical approximation
of both the linear and non-linear Atangana-Baleanu-Caputo fractional order diffusion equations. A
complete study on stability and convergence analysis of the proposed numerical scheme is presented
in Section 4. In Section 5, some numerical examples are presented. Section 6 has the conclusion.
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2. Preliminaries

Some definitions and lemmas are given in this section which are important and will be used
accordingly in this research.

Definition 2.1. The definition of Atangana-Baleanu-Caputo derivative and integral of z(v, t) of order %
are defined [16] as under:

For z ∈ H1(0,T ) and 0 < % < 1,

ABCD%z(v, t) :=
P(%)
1 − %

∫ t

0
E%[−

%

1 − %
(t − ξ)%]ż(v, ξ)dξ, (2.1)

ABCI%z(v, t) :=
1 − %
P(%)

z(v, t) +
%

P(%)Γ(%)

∫ t

0
(t − ξ)%−1z(v, ξ)dξ, (2.2)

where E% is the Mittag-Leffler function and P(%) with P(%)|%=0,1 = 1 represents the normalization
function.

Definition 2.2. The ηth order Riesz fractional derivative is defined as [25]:

∂η

∂|v|η
k = −

1
2cosπη2

[−∞Dη
vk +v Dη

+∞k]. (2.3)

The symmetric Riesz derivative with a fractional order η can be approximated using the following
fractional centred difference formula can be used [26]:

∆
η
hk(v) =

∞∑
r=−∞

(−1)rΓ(η + 1)
Γ( η2 − r + 1)Γ( η2 + r + 1)

k(v − rh), η > −1. (2.4)

Then, the Riesz fractional derivative of order η with 1 < η ≤ 2 and c = ∞, d = −∞ is given as

lim
h→0

∆
η
h

hη
k(v) = lim

h→0

1
hη

∞∑
r=−∞

(−1)rΓ(η + 1)
Γ( η2 − r + 1)Γ( η2 + r + 1)

k(v − rh), η > −1. (2.5)

Lemma 2.1. [27] Let k ∈ C5(R), all of its derivatives up to the 5th order belong to L1(R) and the
fractional central difference is given as

∆
η
hk(v) =

∞∑
r=−∞

(−1)rΓ(η + 1)
Γ( η2 − r + 1)Γ( η2 + r + 1)

k(v − rh). (2.6)

Then,

−
∆
η
hk(v)
hη

=
∂ηk
∂|v|η

+ O(h2), when h→ 0, (2.7)

and for 1 < η ≤ 2 Riesz fractional derivative is denoted by ∂η

∂|v|η with h =
(d−c)

M .
As k(v) = 0 for v < [c, d], we obtain

∂η

∂|v|η
k(v) = −

1
hη

r=
(r−a)

h∑
r=
−(b−v)

h

(−1)rΓ(η + 1)
Γ( η2 − r + 1)Γ( η2 + r + 1)

k(v − rh) + O(h2). (2.8)
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Lemma 2.2. [27] Assume that the centred finite difference approximation’s coefficients are

ωη
r =

(−1)rΓ(η + 1)
Γ( η2 − r + 1)Γ( η2 + r + 1)

, r = 0,±1,±2, ...,

for order % > −1. Then,

(1) ωη
0 =

Γ(η+1)
Γ( η2 +1)2 ≥ 0,

(2) ωη
k+1 =

k− η2
( η2 +k+1)ω

η
k ≤ 0, for k = ±1,±2, ...,

(3) ωη
k = ω

η
−k ≤ 0, |k| ≥ 1,

(4)
∑∞
−∞ ω

η
k = 0,

(5)
∑n

k=−r+n ω
η
k > 0, with n < r for all n, r ∈ Z+.

3. Approximation by finite difference

In order to numerically solve the diffusion equations (1.1) and (1.2) along with its conditions (1.3),
let the space be divided in equidistant points vr = rh, where r = 0, 1, 2, ...,M and h =

(d−c)
M . Let the

numerical solutions to z(vr, t) be denoted by zr(t). Discretizing the fractional derivative ∂η

∂|v|η in truncated
bounded domain,

δηvzr(t) = −
1
hη

r∑
r=−M+r

ω
η
kzr−k(t) + O(h2). (3.1)

We use approximation to achieve the following result for Riesz fractional derivative, as defined in
Eq (3.1),

ABCD%zr(t) = −
Uη

hη

r∑
k=−M+r

ω
η
kzr−k(t) + k(vr, t), 0 < t < T, 1 6 r 6 M − 1, (3.2)

zr(0) = ψ(vr), 0 ≤ r ≤ M,

z0(t) = zM(t) = 0, 0 ≤ t ≤ T.

As follows, write the given system as an equivalent ABC integral equation,

zr(t) = zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(t) −

Uη%

hηP(%)Γ(%)

r∑
k=−M+r

ω
η
k

∫ t

0
(t − s)%−1zr−k(s)ds + k̃r(t), (3.3)

where 1 ≤ r ≤ M − 1, 0 < t < T ,

k̃r(t) =
1 − %
P(%)

kr(t) +
%

P(%)Γ(%)

∫ t

0
(t − s)%−1kr(s)ds.

3.1. Modified Simpson’s fractional formula: Linear case

This section will go over the modified Simpson’s fractional formula for solving Eq (1.1) in the
linear case. To begin, define the grid tn = nδt, with equal intervals n = 0,N and δt = T/N. Let zζr ,
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the numerical approximations of z(vr, tζ)(ζ = 0, n − 1), and k̃r(tn) = k̃n
r , n = 0,N. To discretize the

integrand in (3.3), quadratic interpolation will be utilized for finding the numerical solution Zn as

zr(tn) = zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(tn)

−
Uη%

hηP(%)Γ(%)

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

∫ tζ+1

tζ
(tζ+1 − s)%−1zr−k(s)ds + k̃r(tn).

Approximating zr−k(s) on each subinterval [tζ , tζ+1], using the following piecewise quadratic
interpolation polynomial.

zr−k(s) ≈
(tζ+1 − s)(tζ+ 1

2
− s)

(tζ − tζ+1)(tζ − tζ+ 1
2
)
zr−k(tζ) +

(tζ+1 − s)(tζ − s)
(tζ+ 1

2
− tζ+1)(tζ+ 1

2
− tζ)

zr−k(tζ+ 1
2
)

+
(tζ+ 1

2
− s)(tζ − s)

(tζ+1 − tζ)(tζ+1 − tζ+ 1
2
)
zr−k(tζ+1),

where tζ+ 1
2

=
tζ+tζ+1

2 is mid point of the interval [tζ , tζ+1], we get

zr(tn) ≈zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(tn) −

Uη%

hηP(%)Γ(%)

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

∫ tζ+1

tζ
(tζ+1 − s)%−1

×

 (tζ+1 − s)(tζ+ 1
2
− s)

(tζ − tζ+1)(tζ − tζ+ 1
2
)
zr−k(tζ) +

(tζ+1 − s)(tζ − s)
(tζ+ 1

2
− tζ+1)(tζ+ 1

2
− tζ)

zr−k(tζ+ 1
2
)

+
(tζ+ 1

2
− s)(tζ − s)

(tζ+1 − tζ)(tζ+1 − tζ+ 1
2
)
zr−k(tζ+1)

 ds + k̃n
r .

Now approximating the value of zr−k(tζ+ 1
2
) using interpolation as

zr−k(tζ+ 1
2
) =

1
2

zr−k(tζ) +
1
2

zr−k(tζ+1), (3.4)
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and putting in the above equation, we obtain

zr(tn) ≈zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(tn) −

Uη%

hηP(%)Γ(%)

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

∫ tζ+1

tζ
(tζ+1 − s)%−1

×

 (tζ+1 − s)(tζ+ 1
2
− s)

(tζ − tζ+1)(tζ − tζ+ 1
2
)
zr−k(tζ) +

(tζ+1 − s)(tζ − s)
(tζ+ 1

2
− tζ+1)(tζ+ 1

2
− tζ)

(
1
2

zr−k(tζ) +
1
2

zr−k(tζ+1)
)

+
(tζ+ 1

2
− s)(tζ − s)

(tζ+1 − tζ)(tζ+1 − tζ+ 1
2
)
zr−k(tζ+1)

 ds + k̃n
r

=zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(tn) −

Uη%

hηP(%)Γ(%)

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

∫ tζ+1

tζ
(tζ+1 − s)%−1

×

 (tζ+1 − s)(tζ+ 1
2
− s)

(tζ − tζ+1)(tζ − tζ+ 1
2
)

+
(tζ+1 − s)(tζ − s)

2(tζ+ 1
2
− tζ+1)(tζ+ 1

2
− tζ)

 zr−k(tζ)

+

 (tζ+ 1
2
− s)(tζ − s)

(tζ+1 − tζ)(tζ+1 − tζ+ 1
2
)

+
(tζ+1 − s)(tζ − s)

2(tζ+ 1
2
− tζ+1)(tζ+ 1

2
− tζ)

 zr−k(tζ+1)

 ds + k̃n
r

=zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(tn) −

(δt)%Uη%

hηP(%)Γ(% + 3)

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζzr−k(tζ)

−
(δt)%Uη%

hηP(%)Γ(% + 3)

r∑
k=−M+r

ω
η
kbnzr−k(tn) + k̃n

r ,

where bζ(ζ = 0, 1, 2, ..., n) represents the weights of the modified Simpson’s fractional method given as

b0 =(% + 1)(% + 2)(n + 1)% + (% + 2)(n)%+1 − (% + 2)(n + 1)%+1,

bζ = − 2(% + 2)(n + 1 − ζ)%+1 + (% + 2)(n + 2 − ζ)%+1 + (% + 2)(n − ζ)%+1, 1 ≤ ζ ≤ n − 1
bn =2 + %.

(3.5)

The following numerical technique using the above approximation, for fractional order linear
diffusion equation constructed on the modified Simpson’s fractional formula is obtained.

zn
r + σ

r∑
k=−M+r

ω
η
kzn

r−k = zr(0) − µ
r∑

k=−M+r

ω
η
k

n−1∑
ζ=0

bζz
ζ
r−k + k̃n

r , (3.6)

where β =
Uη

hηP(%) , σ = β − β% + µbn and µ =
%β(δt)%

Γ(%+3) .
The following matrix form can be used to write the system (3.6),

(I + σD)Zn = ψ − µD
n−1∑
ζ=0

bζZζ + K̃n, (3.7)

where

K̃n = (k̃n
1, k̃

n
2, ..., k̃

n
(M−1))

T , Zn = (zn
1, z

n
2, ..., z

n
(M−1))

T ,

ψ = (ψ1, ψ2, ..., ψM−1), ψr = ψ(vr), 1 ≤ r ≤ M − 1,
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with identity matrix I of order (M − 1) × (M − 1) and D is the (M − 1) × (M − 1) matrix, which satisfy

D =



ω
η
0 ω

η
−1 ω

η
−2 ω

η
−3 ... ω

η
−M+2

ω
η
1 ω

η
0 ω

η
−1 ω

η
−2 ... ω

η
−M+3

ω
η
2 ω

η
1 ω

η
0 ω

η
−1 ... ω

η
−M+4

... ... ... ... ... ...

ω
η
M−3 ... ω

η
2 ω

η
1 ω

η
0 ω

η
1

ω
η
M−2 ω

η
M−3 ... ω

η
2 ω

η
1 ω

η
0


.

3.2. Modified Simpson’s fractional method: Non-linear case

Now considering the non-linear diffusion equation (1.2) having fractional order in both space and
time with the given initial and boundary conditions (1.3) for 0 < % ≤ 1 and 0 < η ≤ 2,

ABCD%
t z(v, t) = Uη

∂η

∂|v|η
z(v, t) + k(z(v, t), v, t), c < v < d, 0 < t < T. (3.8)

The same spatial and temporal discretization results in

ABCD%
t zr(t) = −

Uη

hη

r∑
k=−M+r

ω
η
kzr−k(t) + k(z(v, t), v, t), 1 ≤ r ≤ M, 0 < t < T.

After integrating both sides of the preceding equation, we get

zr(t) =zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(t) −

Uη%

hηP(%)Γ(%)

r∑
k=−M+r

ω
η
k

∫ t

0
(t − s)%−1zr−k(s)ds

+
1 − %
P(%)

k(zr(t), vr, t) +
%

P(%)Γ(%)

∫ t

0
(t − s)%−1k(zr(s), vr, s)ds.

(3.9)

By discretizing the integrals given in (3.9) using quadratic interpolation, we obtain

zr(tn) =zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(tn) −

Uη%

hηP(%)Γ(%)

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

∫ tζ+1

tζ
(tζ+1 − s)%−1zr−k(s)ds

+
1 − %
P(%)

k(zr(tn), vr, tn) +
%

P(%)Γ(%)

n−1∑
ζ=0

∫ tζ+1

tζ
(tζ+1 − s)%−1k(zr(s), vr, s)ds

≈zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(tn) −

Uη%

hηP(%)Γ(%)

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

∫ tζ+1

tζ
(tζ+1 − s)%−1

×

 (tζ+1 − s)(tζ+ 1
2
− s)

(tζ − tζ+1)(tζ − tζ+ 1
2
)
zr−k(tζ) +

(tζ+1 − s)(tζ − s)
(tζ+ 1

2
− tζ+1)(tζ+ 1

2
− tζ)

zr−k(tζ+ 1
2
)

+
(tζ+ 1

2
− s)(tζ − s)

(tζ+1 − tζ)(tζ+1 − tζ+ 1
2
)
zr−k(tζ+1)

 ds +
1 − %
P(%)

k(zr(tn), vr, tn)

+
%

P(%)Γ(%)

n−1∑
ζ=0

∫ tζ+1

tζ
(tζ+1 − s)%−1

 (tζ+1 − s)(tζ+ 1
2
− s)

(tζ − tζ+1)(tζ − tζ+ 1
2
)
k(zr(tζ), vr, tζ)

+
(tζ+1 − s)(tζ − s)

(tζ+ 1
2
− tζ+1)(tζ+ 1

2
− tζ)

k(zr(tζ+ 1
2
), vr, tζ+ 1

2
) +

(tζ+ 1
2
− s)(tζ − s)

(tζ+1 − tζ)(tζ+1 − tζ+ 1
2
)
k(zr(tζ+1), vr, tζ+1)

 ds.
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Now approximating the value of zr−k(tζ+ 1
2
) using interpolation as

zr−k(tζ+ 1
2
) =

1
2

zr−k(tζ) +
1
2

zr−k(tζ+1), (3.10)

and integrating, we obtain

zr(tn) =zr(0) −
Uη(1 − %)

hηP(%)

r∑
k=−M+r

ω
η
kzr−k(tn) −

(δt)%Uη%

hηP(%)Γ(% + 3)

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζzr−k(tζ)

−
(δt)%Uη%

hηP(%)Γ(% + 3)

r∑
k=−M+r

ω
η
kbnzr−k(tn) +

1 − %
P(%)

k(zr(tn), vr, tn)

+
(δt)%%

P(%)Γ(% + 3)

n−1∑
ζ=0

bζk(zr(tn), vr, tn) +
(δt)%%bn

P(%)Γ(% + 3)
k(zr(tn), vr, tn).

The following numerical technique is obtained from the above approximation for non-linear
diffusion equation based on the modified Simpson’s fractional formula:

zn
r = zr(0) − µ

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζz
ζ
r−k − σ

r∑
k=−M+r

ω
η
kzn

r−k +$

n−1∑
ζ=0

bζk(zζr , vr, tζ) + ϕk(zn
r , vr, tn), (3.11)

where β =
Uη

hηP(%) , σ = β − β% + µbn and µ =
%β(δt)%

Γ(%+3) , ϕ =
1−%
P(%) +

%(δt)%bn
P(%)Γ(%+3) , $ =

%(δt)%

P(%)Γ(%+3) .

The following matrix form can be used to write the scheme (3.11),

Zn + σbnDZn − ϕK(Zn) = ψ − µD
n−1∑
ζ=0

bζZζ +$

n−1∑
ζ=0

bζK(Zζ), (3.12)

where
K(Zn) = (k(zn

1), k(zn
2), ..., k(zn

M−1))T .

4. Stability and convergence

We’ll discuss the stability as well as convergence of the fractional Simpson’s scheme in this section.
Let the approximate solution be denoted by ẑn

r for numerical scheme (3.6), and assume

εn
r = ẑn

r − zn
r , n = 0,N, r = 1,M − 1.

Putting Rn = (εn
1 , ε

n
2 , ..., ε

n
M−1), n = 0,N, and assume that

Rn
∞ = max

1≤r≤M−1
|εn

r | = |ε
n
r̂ |.

Theorem 4.1. The proposed numerical scheme(3.6) is unconditionally stable with

Rn
∞ ≤ R

0
∞, n = 0,N.
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Proof. From (3.6),

εn
r + µ

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζε
ζ
r−k + σ

r∑
k=−M+r

ω
η
kbnε

n
r−k = ε0

r . (4.1)

Taking |z1| − |z2| ≤ |z1 − z2| with (4.1), gives

Rn
∞ = |εn

r̂ |

≤ |εn
r̂ | + µ

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζ |ε
ζ
r̂ | + σ

r∑
k=−M+r

ω
η
kbn|ε

n
r̂ |

=

|εn
r̂ | + σbnω

η
0|ε

n
r̂ | + µω

η
0

n−1∑
ζ=0

bζ |ε
ζ
r̂ |

 + µ

r∑
k=−M+r,k,0

ω
η
k

n−1∑
ζ=0

bζ |ε
ζ
r̂ | + σbn

r∑
k=−M+r,k,0

ω
η
k |ε

n
r̂ |

≤

|εn
r̂ | + σbnω

η
0|ε

n
r̂ | + µω

η
0

n−1∑
ζ=0

bζ |ε
ζ
r̂ |

 + µ

r∑
k=−M+r,k,0

ω
η
k

n−1∑
ζ=0

bζ |ε
ζ
r̂−k| + σbn

r∑
k=−M+r,k,0

ω
η
k |ε

n
r̂−k|

≤

∣∣∣∣∣∣∣
εn

r̂ + σbnω
η
0ε

n
r̂ + µω

η
0

n−1∑
ζ=0

bζε
ζ
r̂

 + µ

r∑
k=−M+r,k,0

ω
η
k

n−1∑
ζ=0

bζε
ζ
r̂−k + σbn

r∑
k=−M+r,k,0

ω
η
kε

n
r̂−k

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣εn
r̂ + µ

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζε
ζ
r̂−k + σ

r∑
k=−M+r

ω
η
kbnε

n
r̂−k

∣∣∣∣∣∣∣
= |ε0

r̂ |.

Hence we get, Rn
∞ ≤ R

0
∞, n = 0,N. �

To show that fractional Simpson’s formula (3.7) is convergent, we first offer these lemmas.

Lemma 4.1. [28] Let g(t) ∈ C2([0,T ]), then there exists a constant C such that∣∣∣∣∣∣∣ 1
Γ(%)

∫ tζ+1

to
(tζ+1 − s)%−1g(s)ds − (δt)%

 ζ+1∑
j=0

b jg(t j)


∣∣∣∣∣∣∣ ≤ T %C(δt)2

2!Γ(% + 1)
.

Lemma 4.2. For 0 < % < 2, the order of magnitude of the weights bζ , ζ = 0, 1, 2, ..., n−2 given in (3.6)
is

bζ = O((n − ζ)%−1).

Proof. It is deduced from the definition of bζ(ζ = 1, 2, ..., n − 2) that

bζ =
(n − ζ)%−1

Γ(% + 3)

−2(% + 2)(n − ζ)2
(
1 +

1
n − ζ

)%+1

+ (% + 2)(n − ζ)2
(
1 +

2
n − ζ

)%+1

+ (% + 2)(n − ζ)2

 ,
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bζ =
(% + 2)(n − ζ)%−1

Γ(% + 3)

[
−2

(
(n − ζ)2 + (% + 1)(n − ζ) +

(% + 1)%
2!

+
(% + 1)%(% − 1)

3!

(
1

n − ζ

)
+

(% + 1)%(% − 1)(% − 2)
4!

(
1

n − ζ

)2

+ ...

 + (n − ζ)2 + 2(% + 1)(n − ζ)2 + %(% + 1)

+
(% + 1)%(% − 1)

3!

(
2

n − ζ

)
+

(% + 1)%(% − 1)(% − 2)
4!

(
2

n − ζ

)2

+ ... + (n − ζ)2

 ,
implies

bζ =
(% + 2)(n − ζ)%−1

Γ(% + 3)

2(% + 1)%(% − 1)(% − 2)
4!

(
1

n − ζ

)2

+
6(% + 1)%(% − 1)(% − 2)(% − 3)

5!

(
1

n − ζ

)3

+
14(% + 1)%(% − 1)(% − 2)(% − 3)(% − 4)

6!

(
1

n − ζ

)4

+ ...

 .
We can see that, as 0 < % < 1, so the coefficients related to the power of 1

n−ζ are smaller than 1. Thus
the above given series is said to be convergent and the proof is completed for bζ(ζ = 1, 2, ..., n− 2). We
can neglect the proof for bn since they can be proved using same method. �

To establish the main result, following inequality named as Gronwall inequality [28] is needed.

Lemma 4.3. Assume that C1 > 0 not depending on δt, C2 ≥ 0 and {un} satisfy

|un| 6 (δt)%C1

n−1∑
ζ=0

(n − ζ)%−1|uζ | + C2, ζ = 0, 1, ..., n − 1, nδt ≤ T,

with 0 < % ≤ 1. Then,
|un| 6 C2E%(C1Γ(%)T %), nδt ≤ T, (4.2)

where the parameter E% is the Mittage-Leffler function. For the particular case % = 1, inequality (4.2)
becomes

|un| 6 C2eC1T , nδt ≤ T.

By setting en
r = z(vr, tn) − zn

r and En = (en
1, e

n
2, e

n
3, ..., e

n
M−1)T , then e0

r = 0 and using Eq (3.11) and
Lemmas 2.1 and 4.1, the error en

r gives

en
r + µ

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζe
ζ
r−k + σ

r∑
k=−M+r

ω
η
kbnen

r−k

= $

n−1∑
ζ=0

bζ[k(z(vr, tζ), vr, tζ) − k(zζr , vr, tζ)]

+ ϕ[k(zn
r , vr, tn) − k(z(vr, tn), vr, tn)] + C((δt)2 + h2), r = 1,M − 1.

(4.3)

Let us suppose that
En
∞ = max

1≤r≤M−1
|en

r |.

For convenience, the preceding can be rephrased as follows:

En
∞ = |en

r̂ |.
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Theorem 4.2. Let the fractional diffusion equation’s solution be smooth and that the function k(z, v, t)
meets the Lipschitz condition with L being a constant,

|k(z1, v, t) − k(z2, v, t)| ≤ L|z1 − z2|, ∀z1, z2. (4.4)

Then, the fractional numerical scheme given in (3.7) for sufficiently small t is convergent. Which means
a constant C∗ > 0 exists such that

C∗((δt)2 + h2) ≥ En
∞, n = 1,N.

Proof. Using Eqs (4.3) and (4.4), we get

∣∣∣∣∣∣∣en
r + µ

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζe
ζ
r−k + σ

r∑
k=−M+r

ω
η
kbnen

r−k

∣∣∣∣∣∣∣ ≤ $L
n−1∑
ζ=0

bζ |eζr | + ϕL|en
r | + C((δt)2 + h2). (4.5)

Using above inequality (4.5) and taking |z1| − |z2| ≤ |z1 − z2| along with the Lemmas 4.1 and 4.2, we get

En
∞ = |en

r̂ |

≤ |en
r̂ | + µ

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζ |e
ζ
r̂ | + σ

r∑
k=−M+r

ω
η
kbn|e

ζ
r̂ |

=

|en
r̂ | + σbnω

η
0|e

n
r̂ | + µω

η
0

n−1∑
ζ=0

bζ |e
ζ
r̂ |

 + µ

r∑
k=−M+r,k,0

ω
η
k

n−1∑
ζ=0

bζ |e
ζ
r̂ | + σbn

r∑
k=−M+r,k,0

ω
η
k |e

ζ
r̂ |

≤

|en
r̂ | + σbnω

η
0|e

n
r̂ | + µω

η
0

n−1∑
ζ=0

bζ |e
ζ
r̂ |

 + µ

r∑
k=−M+r,k,0

ω
η
k

n−1∑
ζ=0

bζ |e
ζ
r̂−k| + σbn

r∑
k=−M+r,k,0

ω
η
k |e

ζ
r̂−k|

≤

∣∣∣∣∣∣∣
en

r̂ + σbnω
η
0en

r̂ + µω
η
0

n−1∑
ζ=0

bζe
ζ
r̂

 + µ

r∑
k=−M+r,k,0

ω
η
k

n−1∑
ζ=0

bζe
ζ
r̂−k + σbn

r∑
k=−M+r,k,0

ω
η
keζr̂−k

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣en
r̂ + µ

r∑
k=−M+r

ω
η
k

n−1∑
ζ=0

bζe
ζ
r̂−k + σ

r∑
k=−M+r

ω
η
kbneζr̂−k

∣∣∣∣∣∣∣
≤ $L

n−1∑
ζ=0

bζ |e
ζ
r̂ | + ϕL|en

r̂ | + C((δt)2 + h2)

≤ $L

n−1∑
ζ=0

(n − ζ)%−1|eζr̂ | + ϕL|en
r̂ | + C((δt)2 + h2),

this yeilds

|en
r̂ |

(
1 −

((1 − %)Γ(% + 3) + %(δt)%)L
P(%)Γ(% + 3)

)
≤

%(δt)%L
P(%)Γ(% + 3)

n−1∑
ζ=0

(n − ζ)%−1|eζr̂ | + C((δt)2 + h2).

Now a constant C1 exists for sufficiently small t such that(
1 −

((1 − %)Γ(% + 3) + %(δt)%)L
P(%)Γ(% + 3)

)−1

≤ C1,

thus
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|en
r̂ | ≤ C1

%(δt)%L
P(%)Γ(% + 3)

n−1∑
ζ=0

(n − ζ)%−1|eζr̂ | + C∗((δt)2 + h2).

Now from Gronwall inequality presented in Lemma 4.3, we get

C∗((δt)2 + h2) ≥ En
∞, n = 0,N.

Hence the scheme (3.7) converges. �

5. Examples

Example 5.1. Consider the following ABC fractional order linear diffusion equation:

ABCD%
t z(v, t) = Uη

∂η

∂|v|η
z(v, t) + k(v, t), (5.1)

with k(v, t) = t sin(πv), along with the given initial and boundary conditions,

z(v, 0) = 0, 0 ≤ v ≤ 1,
z(0, t) = z(1, t) = 0, 0 ≤ t ≤ T.

(5.2)

Example 5.2. Consider the following time-space ABC fractional order non-linear diffusion equation,

ABCD%
t z(v, t) = Uη

∂η

∂|v|η
z(v, t) + k(z(v, t), v, t), (5.3)

with

k(z(v, t), v, t) =
200t2−%

Γ(3 − %)
v2(1 − v)2 − 9(t2 + 1)2v4(1 − v)4 + z2

+
100(t2 + 1)Uη

cos(πη/2)

(
v2−η + (1 − v)2−η

Γ(3 − η)
−

6v3−η + 6(1 − v)3−η

Γ(4 − η)
+

12v4−η + 12(1 − v)4−η

Γ(5 − η)

)
,

along with the given initial and boundary conditions

z(v, 0) = 3v2(1 − v)2, 0 ≤ v ≤ 1,
z(0, t) = 0, z(1, t) = 0, 0 ≤ t ≤ 1.

(5.4)

The solution profiles of the diffusion equations with fractional order given in Examples 5.1 and 5.2
are shown in Figures 1–6. Figures 1 and 4 depict the result of change in fractional order for space
with fixed %=0.9 and varying η. Figures 2 and 5 show the effects of varying %, the fractional order in
time with fixed η=1.5. It can be seen that the fractional orders % and η influences how the solutions
take on their shape. Figures 3 and 6 show the effect of coefficient Uη on the solution profile of all
the given examples for % = 0.9 and η = 1.5. This means that the diffusion coefficient also affects
the dynamics of the fractional diffusion equation. In the absence of exact solution, we calculated the
temporal error using error = |z(h,δt/i) − z(h,δt/2i)|, i = 1, 2, 3, 4 and for spatial error we calculated as,
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error = |z(h/i,δt) − z(h/2i,δt)|, i = 1, 2, 3, 4. The estimated order of convergence(EOC) is obtained by
calculating the sequence of ratios for time as

EOC =
|z(h,δt/i) − z(h,δt/2i)|

|z(h,δt/2i) − z(h,δt/4i)|
, i = 1, 2, 4,

and for space as

EOC =
|z(h/i,δt) − z(h/2i,δt)|

|z(h/2i,δt) − z(h/4i,δt)|
, i = 1, 2, 4.

The estimated order of convergence with respect to time and space for Examples (5.1) and (5.2) are
presented in Tables 1 and 2 respectively.

Figure 1. Numerical solutions for t = 0.02, h = 0.005, % = 0.9 and η = 1.3, 1.8.

Figure 2. Numerical solutions for t= 0.02, h = 0.005, η = 1.5 and % = 0.3, 0.8.
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Figure 3. Effect of different values of diffusion coefficient Uη for t=0.02, h=0.005, %=0.9
and η=1.5.

Figure 4. Numerical solutions for Uη=1, t=0.02, h=0.005, %=0.9 and η=1.3, 1.8.

Figure 5. Numerical solutions for Uη=1, t=0.02, h=0.005, η=1.5 and %=0.3, 0.8.
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Figure 6. Effect of varying diffusion coefficient Uη for t=0.02, h=0.005, %=0.9 and η=1.5.

Table 1. The errors and estimated order of convergence order when % = 0.9, η = 1.9 and
T = 1.

EOC w.r.t time with h = 0.025 EOC w.r.t space with δt = 0.02
δ t Error order h Error order

1/10 1.33×10−2 1/10 6.38 ×10−2

1/20 6.40×10−3 2.0801 1/20 3.32×10−2 1.9243
1/40 3.10×10−3 2.0825 1/40 1.71×10−2 1.9354
1/80 1.50×10−3 2.0652 1/80 8.80×10−3 1.9355

Table 2. The errors and estimated order of convergence order when % = 0.3, η = 1.5 and
T = 1.

EOC w.r.t time with h = 0.025 EOC w.r.t space with δt = 0.002
δt Error order h Error order

1/10 2.9478×10−5 1/10 4.772 ×10−3

1/20 8.2291×10−6 1.8408 1/20 1.0745×10−3 2.1508
1/40 2.2648×10−6 1.8613 1/40 2.4564×10−4 2.1290
1/80 9.2017×10−7 1.8706 1/80 5.7170×10−5 2.1033

6. Conclusions

With the spectral fractional Reisz derivative in space and the Atangana-Baleanu Caputo fractional
derivative in time, we proposed a quick approach for effective and precise solutions for the linear and
non-linear time-space fractional order diffusion equations. In order to establish a numerical framework
for the time-space linear fractional diffusion problem, we merged the modified version of Simpson’s 1/3
formula with Riesz fractional derivative in space approximated by centered difference. Following that,
we expanded the plan to attempt to solve the fractional diffusion equation in a non-linear case. To
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determine the stability, a study of the suggested scheme was conducted. It has been demonstrated
that the suggested technique has a convergence rate of O(δt2 + h2) with time step δt and mesh size
h. Our quick technique works well to simulate the fractional diffusion equation and is simple to
use. The impact of fractional order in both time and space, as well as the effects of changing the
diffusion coefficient Uη on the fractional diffusion equation, are illustrated using numerical simulations.
Numerical schemes for both linear and non-linear time-space fractional diffusion are developed in this
work. In future, these methods can be applied to a class of linear and non-linear fractional differential
equations, such as Schrodinger, Korteweg-De Vries (KdV) and Burger’s equations.
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