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The global convergence of new method is proved. Numerical experiments are listed to illustrate the
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1. Introduction

Since Lim [1] and Qi [2] presented some theories of the eigenvalues and eigenvectors for higher
order tensors, the related research has received much more attention (see [3–13], etc). The eigenvalues
of symmetric tensors have been applied in blind source separation [2] and hypergraph theory [9],
statistical data analysis [14] and high order Markov chains [15], etc. Moreover, various definitions of
eigenvalues and eigenvectors for tensors have been introduced [2, 10, 16].

There are many works for computing the eigenvalues of tensors, especially for Z-eigenvalues. Qi
et al. [17] proposed an elimination method for finding all Z-eigenvalues, which is specific to the
third-order tensors. Kolda and Mayo [6] presented a shifted power method (SPM) for calculating
Z-eigenvalues, in which the shifted parameter is crucial. Han [18] provided an unconstrained
optimization approach for even order symmetric tensors. Hao, Cui and Dai [4] found the extreme
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Z-eigenvalues and corresponding Z-eigenvectors by the sequential subspace projection method.
Under certain assumptions, the global convergence and linear convergence were established for
symmetric tensors. Hao, Cui and Dai [19] proposed a feasible trust region method for finding the
extreme Z-eigenvalues of symmetric tensors. The global convergence and local quadratic convergence
were established.

Inspired by the idea of improved conjugate parameters proposed in the above works and the
application of optimization methods in tensor eigenvalue calculation, our main work is to study the
transformation of Z-eigenvalues of symmetric tensors into unconstrained optimization and to propose
a new algorithm. The contributions of this article are listed as follows:

For the case of different critical point, we transform the Z-eigenvalues of symmetric tensors into
different unconstrained optimization problems which include shifted problem.

We propose a new conjugate gradient method with a new conjugate gradient parameter and an
accelerated parameter, which converges to a critical point. The found nonzero critical point is a
Z-eigenvector associated with a Z-eigenvalue of symmetric tensors. When the zero critical point is
obtained, a shifted problem is solved for finding a Z-eigenvalue.

The global convergence of new method is established. We compare our method with conjugate
gradient methods proposed in [20, 21], for computing the Z-eigenvalues of symmetric tensors. The
numerical results show that the proposed method is competitive.

The rest of this paper is organized as follows. In Section 2, we transform the Z-eigenvalues problem
into unconstrained optimizations, and propose an accelerated conjugate gradient method for solving it.
Global convergence result is established in Section 3. Numerical experiments are shown in Section 4.

2. New method for the Z-eigenvalues of symmetric tensors

Let R be the real field, m, n be positive integers and

A = (ai1i2···im), ai1i2···im ∈ R, 1 ≤ i1, · · · , im ≤ n

be an mth-order n-dimensional real tensor. The set of mth-order n-dimensional real tensor is denoted
by R[m,n]. TensorA is symmetric if its entries are invariant under any permutation of their indices. The
set of mth-order n-dimensional real symmetric tensor is denoted by S[m,n].

If A ∈ R[m,n], an mth-degree homogeneous polynomial function with real coefficients is uniquely
determined by

Axm :=
n∑

i1,i2,··· ,im=1

ai1i2···im xi1 · · · xim .

For x = (x1, · · · , xn)T ∈ Rn,Axm−1 denotes a n-dimensional column vector, i.e.,

Axm−1 :=
( n∑

i2,··· ,im=1

aii2···im xi2 · · · xim

)
1≤i≤n

.

IfA is symmetric, then the gradient ofAxm satisfies

∇(Axm) = mAxm−1

for all x ∈ Rn. In our work, we consider the following Z-eigenvalues of symmetric tensors.
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Definition 1. [2] LetA ∈ R[m,n], if there exist λ ∈ R and a vector x ∈ Rn \ {0} satisfying

Axm−1 = λx,
xT x = 1,

(2.1)

then λ is called a Z-eigenvalue ofA and x is called the corresponding Z-eigenvector.
Motivated by the work of Auchmuty [22], we generalize the unconstrained variational principles to

Z-eigenvalues ofA. Consider the following unconstrained optimization

min
x∈Rn

f (x) =
1

2m
(xTx)m −

1
m
Axm. (2.2)

The gradient and Hessian of f (x) are listed as follows

g(x) := ∇ f (x) = (xTx)m−1x −Axm−1, (2.3)

G(x) := ∇2 f (x) = (xTx)m−1I + 2(m − 1)(xTx)m−2xxT − (m − 1)Axm−2, (2.4)

where

Axm−2 :=
( n∑

i3,··· ,im=1

ai ji3···im xi3 · · · xim

)
1≤i, j≤n

.

Obviously, G(x) is a symmetric matrix. In order to research the properties of f (x) in (2.2), we cite the
following definition and a nice feature of it.

Definition 2. [23] A continuous function h : Rn → R is called coercive if it satisfies

lim
∥x∥→∞

h(x) = +∞.

If x satisfies the equation ∇h(x) = 0, then it is termed as a critical point of h(x).

Theorem 1. [23] Let h : Rn → R be continuous. If h is coercive, then h has at least one global
minimizer. In addition, if the first partial derivatives exist on Rn, then h attains its global minimizers at
its critical points.

Based on a similar argument, for the Z-eigenvalues of tensors, we have the following result.

Theorem 2. Let A ∈ R[m,n] be symmetric tensors. Assume that λmax is the largest Z-eigenvalue of A.
Denote the Z-spectrum ofA by σZ(A) := {λ : λ is a Z-eigenvalue ofA}. We have

(i) f (x) is coercive on Rn.
(ii) The critical points of f (x) are at x = 0 and any Z-eigenvector x , 0 associated with a Z-

eigenvalue λ > 0 ofA satisfying λ = (xTx)m−1.
(iii) If λmax > 0, then f (x) attains its global minimal value

fmin = −
1

2m
(λmax)

m
m−1

at any Z-eigenvector associated with the Z-eigenvalue λmax such that λmax = (xTx)m−1.
(iv) If λmax ≤ 0, then x = 0 is the unique critical point of f (x). Moreover, it is the unique global

minimizer of f (x) on Rn.

AIMS Mathematics Volume 8, Issue 7, 15008–15023.



15011

Proof. (i) Since

f (x) =
1

2m
(xTx)m −

1
m
Axm =

1
2m
∥x∥2m −

1
m
Axm

andAxm is an mth-degree homogeneous polynomial function with real coefficients, then

f (x)→ ∞ as ∥x∥ → ∞.

That is, f (x) is coercive on Rn.
(ii) From the definition of the critical point of f (x), we have

Axm−1 = (xTx)m−1x. (2.5)

It is obvious that x = 0 is a critical point of f (x) as g(0) = 0. The point x ∈ Rn\{0} satisfying (2.5) is
a Z-eigenvector corresponding to the Z-eigenvalue λ = (xTx)m−1 > 0, which is also a critical point of
f (x).

(iii) At the critical point x ∈ Rn\{0}, a Z-eigenvector x associated with a Z-eigenvalue λ satisfies
λ = (xTx)m−1 andAxm = λxTx. Moreover,

f (x) =
1

2m
λxTx −

1
m
λxTx = −

1
2m

λxTx = −
1

2m
λ

m
m−1 ≥ −

1
2m

(λmax)
m

m−1 .

By Theorem 2.1 and conclusion (ii), we get the global minimum value − 1
2m (λmax)

m
m−1 at any

Z-eigenvector x corresponding to the Z-eigenvalue λmax such that λmax = (xTx)m−1.
(iv) Since λmax ≤ 0 implies that λ ≤ 0 for any λ ∈ σZ(A), λ = (xTx)m−1 does not hold for any

Z-eigenvector x associated with a Z-eigenvalue λ, as (xTx)m−1 > 0 for any x ∈ Rn\{0}. Therefore, from
Theorem 2.1, x = 0 is the unique critical point and the unique global minimize of f (x).

Note that, if λmax ≤ 0, then x = 0 is the unique critical point, but it does not result in a Z-eigenvalue.
In this case, we solve a following shifted problem

min
x∈Rn

ft(x) =
1

2m
(xTx)m −

1
m
Axm −

t
2

(xTx), (2.6)

where t > 0 is a shifted parameter. It is obvious that, when t is sufficient large, for any x , 0, we have
ft(x) < 0. From ft(0) = 0, we know that x = 0 is the unique maximizer of ft(x). Denote the gradient of
ft(x) as

gt(x) := ∇ ft(x) = (xTx)m−1x −Axm−1 − tx. (2.7)

Obviously, x = 0 is also a critical point of ft(x). The nonzero critical point of problem (2.6) is a Z-
eigenvector corresponding to Z-eigenvalue λt = (xT

t xt)m−1 − t. In this case, a suitable descent algorithm
for solving shifted problem (2.6) should converge to a nonzero critical point. Therefore, we can get
Z-eigenvalues and its associated Z-eigenvectors by solving problem (2.2) or (2.6). The algorithm is
described as follows. □

Algorithm 1. Step 0: GivenA ∈ S[m,n], t ≥ 1, ρ̄ > 1.
Step 1: Solving problem (2.2) by using an algorithm to obtain xk and compute λk = (xT

k xk)m−1.
Step 2: If ∥xk∥ ≤ ε, stop, output xk and compute λk = (xT

k xk)m−1 − t;
otherwise, let t := ρ̄t, go to Step 3.

Step 3: Solve problem (2.6) by using an algorithm to obtain xk, go to Step 2.
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Remark 1. There is an inner loop between Step 2 and Step 3. Since descent algorithm for solving
problem (2.6) will result in a nonzero critical point, then this inner loop can be terminated by finite
iteration for sufficient large t. Therefore, Algorithm 1 is well defined.

Remark 2. When executing algorithm, it should use the same unconstrained optimization method
to solve problems (2.2) and (2.6). We will propose a new accelerated conjugate gradient method,
especially for solving problem (2.2) or (2.6).

3. An accelerated conjugate gradient algorithm and its Convergence

In this section, we devote to giving an accelerated conjugate gradient method for solving
unconstrained optimization problem, such as (2.2) or (2.6). Firstly, we consider the iterative formula
of nonlinear conjugate gradient algorithm

xk+1 = xk + αkdk. (3.1)

The stepsize αk > 0 is determined by a line search and the direction dk are computed by

dk+1 = −θk+1gk+1 + βk+1sk, d0 = −g0, (3.2)

where gk+1 = g(xk+1), sk = αkdk.
We first introduce a new conjugate parameter of our conjugate gradient method based on CD

nonlinear conjugate gradient method ( [20]). The new conjugate parameter is

βk+1 =
∥gk+1∥

2sT
k yk

(gT
k sk)2

(3.3)

is introduced. When using the exact line search, βk+1 in (3.3) reduces to CD conjugate gradient
parameter. An accelerated parameter θk+1 is obtained by the quasi-Newton direction ( [24, 25]). Let
dk+1 = −G−1

k+1gk+1, namely
−G−1

k+1gk+1 = −θk+1gk+1 + βk+1sk, (3.4)

where Gk+1 satisfies the following secant equation

Gk+1sk = yk, yk = gk+1 − gk. (3.5)

From (3.4), then

gk+1 = θk+1Gk+1gk+1 − βk+1Gk+1sk.

Pre-multiplying at the both sides by sT
k , we have

sT
k gk+1 = θk+1sT

k Gk+1gk+1 − βk+1sT
k Gk+1sk. (3.6)

Then, combined with (3.3)–(3.6), we have

θk+1 =
1

yT
k gk+1

[
∥gk+1∥

2(sT
k yk)2

(gT
k sk)2

+ sT
k gk+1

]
. (3.7)
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The stepsize is generated by the strong Wolfe line search conditions

f (xk + αkdk) − f (xk) ≤ ραkgT
k dk, (3.8)

|g(xk + αkdk)T dk| ≤ −σgT
k dk, (3.9)

where 0 < ρ < σ < 1. We prove the descent property of the direction (3.2) under (3.8) and (3.9) in
the following. Multiply both sides of (3.9) by αk, from sk = αkdk, we can easily obtain (gT

k+1sk)2 ≤

σ2(−gT
k sk)2.

Theorem 3. If θk+1 ≥
1
2 + 2σ2, then the direction determined by (3.2) satisfies the sufficient descent

condition

gT
k+1dk+1 ≤ −

1
2
∥gk+1∥

2. (3.10)

Proof. Multiplying (3.2) by gT
k+1, we obtain

gT
k+1dk+1 = −θk+1∥gk+1∥

2 +
gT

k+1sk

−gT
k sk
∥gk+1∥

2 +
(gT

k+1sk)2∥gk+1∥
2

(gT
k sk)2

. (3.11)

Using the inequality aTb ≤ 1
2 (∥a∥2 + ∥b∥2), where a, b ∈ Rn, we have

gT
k+1sk∥gk+1∥

2

−gT
k sk

=

[
(−gT

k sk)gk+1/
√

2
]T [√

2(gT
k+1sk)gk+1

]
(−gT

k sk)2

≤

1
2

[
1
2 (−gT

k sk)2∥gk+1∥
2 + 2(gT

k+1sk)2∥gk+1∥
2
]

(−gT
k sk)2

=
1
4
∥gk+1∥

2 +
(gT

k+1sk)2∥gk+1∥
2

(−gT
k sk)2

. (3.12)

Substituted (3.12) into (3.11), we have

gT
k+1dk+1 ≤ −θk+1∥gk+1∥

2 +
1
4
∥gk+1∥

2 + 2
(gT

k+1sk)2∥gk+1∥
2

(gT
k sk)2

. (3.13)

Then from (gT
k+1sk)2 ≤ σ2(−gT

k sk)2 and θk+1 ≥
1
2 + 2σ2, we have

gT
k+1dk+1 ≤ −θk+1∥gk+1∥

2 +
1
4
∥gk+1∥

2 + 2σ2∥gk+1∥
2

= −

(
θk+1 − 2σ2 −

1
4

)
∥gk+1∥

2 ≤ −
1
2
∥gk+1∥

2 < 0. (3.14)

The proof is completed. □

Now, we describe an accelerated conjugate gradient algorithm (ACG).
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ACG algorithm
Step 0: Given x0 ∈ R

n, ε ≥ 0 and 0 < ρ < σ < 1. Compute g0, let d0 = −g0. Set k := 0.
Step 1: If ∥gk∥ ≤ ε, stop, output xk. Otherwise, calculate αk from (3.8) and (3.9). Let xk+1 = xk+αkdk

and sk = αkdk.
Step 2: Compute gk+1, yk, βk+1 by (3.3) and θk+1 by (3.7). Let θk+1 := max{θk+1, 2σ2 + 1

2 }.
Step 3: Using (3.2) to obtain dk+1. Set k := k + 1 and go to step 1.
Now, we establish the convergence result of ACG algorithm. Let the level set Ω = {x ∈ Rn| f (x) ≤

f (x0)} be a bounded closed set, i.e., there exists a constant γ > 0 such that ∥x∥ ≤ γ for all x ∈ Ω. To
facilitate analyzing, denoteAi1 = (ai1i2···im)1≤i2,i3,··· ,im≤n andAi1i2 = (ai1i2···im)1≤i3,i4,··· ,im≤n.

Lemma 1. Consider tensorsA ∈ S[m,n], thenAxm is Lipschitz continuous on Ω.

Proof. Let p(x) = Axm, mathematical induction is adopted. If m = 1, p(x) =
n∑

i=1
aixi, utilizing

equivalence of vector norm, for all x, y ∈ Ω, we have

∥p(x) − p(y)∥ =

∣∣∣∣∣∣∣
n∑

i=1

aixi −

n∑
i=1

aiyi

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

n∑
i=1

ai(xi − yi)

∣∣∣∣∣∣∣ ≤
n∑

i=1

|ai||xi − yi|

≤ max
i=1,2,··· ,n

|ai|

 n∑
i=1

|xi − yi|

 ≤ max
i=1,2,··· ,n

|ai|∥x − y∥∞ ≤ P2∥x − y∥.

Assume that the statements satisfy for all order m ≤ k − 1. When m = k, we have

∥p(x) − p(y)∥ =
∣∣∣Axk −Ayk

∣∣∣
=

∣∣∣∣∣∣∣
n∑

i1,i2,··· ,ik=1

ai1i2···ik xi1 xi2 · · · xik −

n∑
i1,i2,··· ,ik=1

ai1i2···ikyi1yi2 · · · yik

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

i1=1

(xi1Ai1 xk−1 − yi1Ai1y
k−1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

i1=1

(xi1 − yi1)Ai1 xk−1 + yi1(Ai1 xk−1 −Ai1y
k−1)

∣∣∣∣∣∣∣
≤

n∑
i1=1

(|xi1 − yi1 |∥Ai1 xk−1∥ + |yi1 |∥Ai1 xk−1 −Ai1y
k−1∥).

SinceΩ is a bounded close set, then ∥Ai1 xk−1∥ is bounded onΩ and ∥z∥ ≤ P1. From
n∑

i1=1
|xi1−yi1 | ≤ ∥x−y∥

and
n∑

i1=1
|yi1 | ≤ ∥z∥, there exists a positive constant P3 such that

∥p(x) − p(y)∥ ≤ P3∥x − y∥.

Namely,Axm is Lipschitz continuous on Ω. The proof is completed. □

Lemma 2. IfA ∈ S[m,n], thenAxm−1 andAxm−2 are Lipschitz continuous on Ω.
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Proof. For all x, y ∈ Ω, using Lemma 3.1 and equivalence of norm, we have

∥Axm−1 −Aym−1∥ ≤ M1∥(Ai1 xm−1 −Ai1 xm−1)1≤i1≤n∥∞

= M1 max
1≤i1≤n

∣∣∣Ai1 xm−1 −Ai1 xm−1
∣∣∣

≤ M1 max
1≤i1≤n

Pi1∥x − y∥

= P4∥x − y∥, (3.15)

where P4 depends on tensorA and set Ω.
Similarly, for all x, y ∈ Ω, using Lemma 3.1 and equivalence of norm, we have

∥Axm−2 −Aym−2∥ ≤ M2∥(Ai1i2 xm−2 −Ai1i2y
m−2)1≤i1,i2≤n∥∞

= M2 max
1≤i1≤n

n∑
i2=1

∣∣∣Ai1i2 xm−2 −Ai1i2y
m−2

∣∣∣
≤ M2 max

1≤i1,i2≤n

n∑
i2=1

Pi1i2∥x − y∥

= P5∥x − y∥, (3.16)

where P5 depends on tensorA and set Ω.
□

Lemma 3. IfA ∈ S[m,n], then g(x) is Lipschitz continuous in a neighbourhood N of Ω, namely

∥g(x) − g(y)∥ ≤ L∥x − y∥ (3.17)

holds for any x, y ∈ N, where L is a positive number.

Proof. There are two cases of gradient g(x) to consider. One case is computed by (2.3) and the other
case is computed by (2.7).

For (2.3): since N is a bound closed set, from Lemma 3.1, for all x, y ∈ N, we have

∥g(x) − g(y)∥ = ∥(xTx)m−1x −Axm−1 − (yTy)m−1x +Aym−1∥

≤ ∥Aym−1 −Axm−1∥ + ∥(xTx)m−1x − (yTy)m−1x∥

≤ P4∥x − y∥ + P6∥x − y∥ = (P4 + P6)∥x − y∥. (3.18)

For (2.7): since N is a bound closed set, from Lemma 3.1, for all x, y ∈ N, we have

∥g(x) − g(y)∥ = ∥(xTx)m−1x −Axm−1 − tx − (yTy)m−1x +Aym−1 + ty∥

≤ ∥Aym−1 −Axm−1∥ + ∥(xTx)m−1x − (yTy)m−1x∥ + ∥ty − tx∥

≤ P4∥x − y∥ + P6∥x − y∥ + P7∥x − y∥ = (P4 + P6 + P7)∥x − y∥. (3.19)

The proof is completed. □

We can easily get that there exists a constant M > 0 such that ∥g(x)∥ ≤ M. The following useful
lemma was essentially which proved by Zoutendijk [26]. From Theorem 3.1, we can obtain that the
sequence {dk} generated by ACG algorithm satisfies the following Lemmas.

AIMS Mathematics Volume 8, Issue 7, 15008–15023.
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Lemma 4. Let the sequences {xk} and {dk} be generated by ACG algorithm, we have

∞∑
k=0

(gT
k dk)2

∥dk∥
2 < ∞.

Lemma 5. Let the sequence {xk} be generated by ACG algorithm. If∑
k≥0

1
∥dk∥

2 = ∞,

then

lim inf
k→∞

∥gk∥ = 0.

From Theorem 3.1, (3.17) and Lemma 3.4, the result can be proved, which is omitted here.

Theorem 4. Let the sequence {xk} be generated by ACG algorithm. Then, we have

lim inf
k→∞

∥gk∥ = 0. (3.20)

Proof. From Theorem 3.1, there exists a constant c < 0 satisfying gT
k sk ≤ c∥gk∥∥sk∥ < 0, i.e., −gT

k sk ≥

−c∥gk∥∥sk∥. Then, we have

βk+1 ≤
∥gk+1∥

2

−gT
k sk

(1 + σ) ≤
∥gk+1∥

2

−c∥gk∥∥sk∥
(1 + σ) ≤

M(1 + σ)
−c∥sk∥

=
ξ

∥sk∥
,

where ξ = M(1+σ)
−c . According to |gT

k+1dk| ≤ −σgT
k dk and ∥sk∥ ≤ 2γ, we have

θk+1 =
1

yT
k gk+1

[
∥gk+1∥

2(sT
k yk)2

(gT
k sk)2

+ sT
k gk+1

]
=
∥gk+1∥

2(sT
k yk)2

(gT
k sk)2)yT

k gk+1
+

sT
k gk+1

yT
k gk+1

=
∥gk+1∥

2
[
sT

k (gk+1 − gk)
]2

(gT
k sk)2yT

k gk+1
+

sT
k gk+1

yT
k gk+1

≤
∥gk+1∥

2(−σgT
k sk − gT

k sk)2

(gT
k sk)2yT

k gk+1
+

sT
k gk+1

yT
k gk+1

=
(σ + 1)2∥gk+1∥

2(gT
k sk)2

(gT
k sk)2yT

k gk+1
+

sT
k gk+1

yT
k gk+1

=
(σ + 1)2∥gk+1∥

2 + sT
k gk+1

yT
k gk+1

.

Because of θk+1 ≥ 2σ2 + 1
2 , so yT

k gk+1 > 0. Without losing generality, let yT
k gk+1 > κ > 0, then we have

θk+1 <
(σ + 1)2∥gk+1∥

2 + 2γ∥gk+1∥

κ
<

(σ + 1)2M2 + 2γM
κ

� δ. (3.21)
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Therefore,

∥dk+1∥ ≤ |θk+1|∥gk+1∥ + |βk+1|∥sk∥ ≤ δM +
|ξ|

∥sk∥
∥sk∥ = δM + |ξ|.

We have ∑
k≥0

1
∥dk∥

2 ≥
1

(δM + |ξ|)2

∑
k≥0

1 = ∞.

From Lemma 3.5, it follows that (3.20) is derived. The proof is completed. □

Theorem 5. Let problems (2.2) and (2.6) are solved by ACG algorithm. ACG algorithm is well
defined.

Proof. In ACG algorithm, we obtain the Z-eigenvalues of symmetric tensors by solving problem (2.2)
or (2.6). When problem (2.6) is solved, it means that solving problem (2.2) results in a zero critical
point. Then ACG algorithm turn to solve problem (2.6) which converges to a nonzero critical point.
Moreover, since the convergence of our algorithm has been guaranteed, so the termination criteria
condition always holds. That is, ACG algorithm is well defined. The proof is completed. □

4. Numerical experiments

In this section, we report some numerical performance of ACG algorithm for solving problems (2.2)
and (2.6). For convenience, we provide a table of abbreviations for the methods in Table 1.

Table 1. The abbreviations for methods.

Abbreviation Method
ACG Accelerated con jugate gradient method
HS Hestenes − S tie f el method
PRP Polak − Ribir̀e − Polyak method
S PM S hi f ted power method
QN Quasi − Newton method

ATTCG Accelerated three − term con jugategradient method
ADL Accelerated Dai − Liao pro jection method

We compare ACG with HS and PRP, which have been reported to be very efficient for
unconstrained optimization. All experiments are done on a PC with CPU 2.40GHz and 2.00GB RAM
using MATLAB R2013a. In the implementation of ACG algorithm, we set parameters
ε = 10−5, ρ = 0.1, σ = 0.5, t = 1, ρ̄ = 2. In Table 2, Ex is the number of example, n is the dimension, k
is the number of iterations, CPU stands for the time costed by algorithms (in seconds), λ∗ stands for
Z-eigenvalue outputted by algorithms. All algorithms share the same start points and stopping criteria.
In the following examples, the tensorsA are originally from [27].
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Table 2. Some numerical results of examples for Z-eigenvalues.

Ex n λ∗ ∥gk∥ k/CPU(ACG) k/CPU(S PM)
1 n = 5 9.9873 1.6731e − 007 6/0.2188 10/0.3178
1 n = 10 17.7657 2.0318e − 006 4/0.3594 7/0.4815
1 n = 50 81.6402 9.0295e − 006 6/1.7031 11/2.8750
1 n = 100 158.1895 1.0076e − 007 4/12.9219 8/18.0159
1 n = 200 311.3130 5.3215e − 006 7/98.8125 12/115.5250
2 n = 100 132.1072 2.9073e − 006 9/30.0761 14/42.0918
2 n = 200 405.2981 6.9826e − 007 15/123.0050 12/145.0629
3 n = 5 13.0791 3.9828e − 006 4/0.2188 7/0.2983
3 n = 10 49.4905 2.3016e − 006 4/0.5705 8/0.9417
3 n = 50 154.9351 7.6239e − 006 3/31.6406 6/47.2781
4 n = 3 0.8893 1.1075e − 005 7/0.2188 12/0.4106
5 n = 10 43.2760 3.6133e − 006 5/0.2656 8/0.3875
5 n = 30 136.2817 2.8531e − 006 3/3.0469 6/6.2769
6 n = 5 34.5317 1.7063e − 006 6/0.2031 10/0.3385
6 n = 30 164.9089 6.7357e − 007 6/10.7969 12/18.7291

Example 1. LetA ∈ S [3,n] defined by

Ai1,i2,i3 =
(−1)i1

i1
+

(−1)i2

i2
+

(−1)i3

i3
.

Example 2. LetA ∈ S [3,n] defined by

Ai1,i2,i3 = tan(i1) + tan(i2) + tan(i3).

Example 3. LetA ∈ S [4,n] defined by

Ai1,i2,i3,i4 = arctan
(
(−1)i1 i1

n

)
+ · · · + arctan

(
(−1)i4 i4

n

)
.

Example 4. LetA ∈ S [4,3] defined by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,
a1223 = 0.1862, a1133 = 0.3847, a1222 = 0.2972, a1123 = −0.2939,
a1233 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,

a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

Example 5. LetA ∈ S [4,n] defined by

Ai1,i2,i3,i4 =
(−1)i1

i1
+ · · · +

(−1)i4

i4
.

Example 6. LetA ∈ S [4,n] defined by

Ai1,i2,i3,i4 = tan(i1) + · · · + tan(i4).
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In Tables 2 and 3, we compare the numerical results of ACG algorithm and SPM algorithm (in [6]),
PRP, HS and CD methods. Although the computed Z-eigenvectors x∗ associated to λ∗ are not shown,
the values of ∥gk∥ are listed which are satisfy the given precision. It implies that (λ∗, x∗) are considered
as true solutions of problem (2.1). Two methods reach the same Z-eigenvalues for problems with same
dimensions. ACG algorithm requires less iterations and CPU time than that of SPM algorithm. That
is, we can see that ACG algorithm is competitive for computing Z-eigenvalues of symmetric tensors.

Table 3. Some numerical results of examples for Z-eigenvalues.

Ex n λ∗ ∥gk∥ k/CPU(PRP) k/CPU(HS ) k/CPU(QN)
1 n = 5 9.9872 2.1905e − 006 10/0.4713 8/0.2964 13/0.5025
1 n = 10 17.7657 1.0948e − 005 6/0.3855 6/0.4311 8/0.4903
1 n = 50 81.6401 6.0182e − 007 7/2.1065 7/2.0021 9/2.3250
1 n = 100 158.1896 2.7328e − 005 11/25.4710 10/21.1207 18/30.6260
1 n = 200 311.3130 1.0823e − 007 10/85.5025 8/70.1025 13/100.4183
2 n = 100 132.1072 8.2012e − 005 11/45.7262 9/39.1840 11/50.2500
2 n = 200 405.2981 3.2909e − 006 18/135.3550 16/123.0931 20/150.2125
3 n = 5 13.0792 3.9828e − 005 6/0.1750 4/0.1558 5/0.2910
3 n = 10 49.4905 1.7293e − 006 7/0.7023 5/0.6500 7/0.6250
3 n = 50 154.9351 4.2950e − 006 5/35.9826 5/30.8674 7/43.0050
4 n = 3 0.8893 9.0482e − 007 12/0.4587 10/0.6039 10/0.8214
5 n = 10 43.2760 3.9281e − 006 8/0.4980 7/0.4058 11/0.5709
5 n = 30 136.2817 2.4615e − 006 5/4.2160 6/4.0156 8/0.5096
6 n = 5 34.5315 2.9053e − 006 7/0.3900 5/0.3215 9/0.5600
6 n = 30 164.9086 7.3155e − 007 9/15.9872 5/12.0060 12/13.4900

To show the numerical performance of a given optimal method, that the number of iterations (k) and
CPU time (CPU) are important factors. So, we employ the profiles introduced by Dolan and Moré [28]
to analyze the efficiency of ACG, PRP, HS [20], QN [29] ATTCG and ADL [30,31] methods, with the
following conjugate gradient parameters, respectively,

βPRP
k+1 =

gT
k+1yk

∥gk∥
2 , β

HS
k+1 =

gT
k+1yk

dT
k yk

, βCD
k+1 =

∥gk+1∥
2

−dT
k gk

.

Let Y and W be the set of methods and test problems, ny, nw be the number of methods and test
problems, respectively. The performance profile ψ : R → [0, 1] is for each y ∈ Y and w ∈ W defined
that aw,y > 0 is k or CPU required to solve problems w by method y. Furthermore, the performance
profile is obtained by

ψy(τ) =
1
nw

size{w ∈ W : rw,y ≤ τ},

where τ > 0, size{·} is the number of the elements in a set, and rw,y is the performance ratio defined as

rw,y =
aw,y

min{aw,y : y ∈ Y}
.
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In a performance profile plot, the top curve is a method that solved most problems in a time that
is within a factor of best time. The horizontal axis gives the percentage (τ) of the test problems for
which a method is the fastest (efficiency), while the vertical side gives the percentage (ψ) of the test
problems that are successfully solved by each of the methods. If program runs failure, or the number
of iterations can reach more than 500, it is regarded as failed. And we denote the number of iterations
by 500 and CPU time by 200 seconds. In this way, only ACG algorithm can solve all test problems.

As can be seen from Figure 1 shows the CPU time performance of the ACG algorithm and the other
algorithms. It can be seen from the figure that when τ > 3, the curves of the ACG algorithm and the
ATTCG algorithm are similar, but when τ > 3.5, both the ACG algorithm and ADL algorithm tend
to be stable and coincide. Figure 2, the ACG algorithm is better than other algorithms in terms of
the number of iterations, especially when τ > 2, the curve of ACG algorithm becomes stable, which
indicates that ACG algorithm can solve the problem only with fewer iterations. Therefore, Figures 1
and 2 show that the ACG algorithm proposed in this paper converge to the solution quickly.
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Figure 1. The performance profile for the CPU time.
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Figure 2. The performance profile for the number of iterations.
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5. Conclusions

We constructed the unconstrained optimization problems with a shifted parameter. Based on the
shifted unconstrained optimization problems, we presented an accelerated conjugate gradient method
by using the quasi-Newton direction for solving them. Furthermore, we showed the global convergence
analysis of the proposed algorithm. Numerical experiments demonstrated that our method has good
numerical performance. We further highlight that the proposed algorithm can be used in other fields,
such as the symmetric system of nonlinear equations. It is vital to note that some new methods with
random technology will be taken into account in our future work.
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