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Abstract: In this paper, we consider the linear Rayleigh-Taylor instability of an equilibrium state
of 3D gravity-driven compressible viscoelastic fluid with the elasticity coefficient « is less than a critical
number k. in a moving horizontal periodic domain. We first construct the maximal growing mode
solutions to the linearized equations by studying a family of modified variational problems, and then
we prove an estimate for arbitrary solutions to the linearized equations.
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1. Introduction

In this paper we study the compressible viscoelastic fluids in a three-dimensional moving horizontal
periodic domain Q(¢) with an upper free surface Xz(f) and a fixed bottom X (see Figure 1)

0,p + div(pv) = 0, in Q(1),

0y + (v- V) +divS = —gpes, in Q(7),

oU+w-VHYU =VvU, in Q(1), (1)
Sn(t) = P,n(t) — cHn(?), on Xx(1),

v=0, on Xg,

V=0 = vo, Uli=o = U, in Q(0),

where the viscoelastic stress tensor is given by
2
S = P(p)l — (p)(D(v) - gdiv vI) — 6(p)(div v)I — kpUU”,

The fluid is described by density, velocity and deformation tensor function, which are given for each
t>0by

p(, 1) : Q1) - R, v(-,0) : Q) » R*and U(-, 1) : Q@) » R’ xR?


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023761

14895

respectively.

Figure 1. The plan view of Q(z).

In this expression the superscript 7 means matrix transposition and I is the 3 X 3 identity matrix.
The scalar function P is the pressure which is a function of density P = P(p) > 0, and the pressure
function is assumed to be smooth, positive and strictly increasing, and P,,, stands for the atmospheric
pressure, assumed to be constant. We denote V(Xg(f)) the outer-normal velocity of the free
surface Zp(7), and V(Zg(f)) = v - n(t). The elasticity coeflicient x denotes the constant elasticity
coefficient of the fluid, and &, ¢ denote the shear viscosity, the bulk viscosity, respectively, and we
assume € > 0, 0 > 0, &(p), o(p) € C((0,0)). we denote n(t) the outward-pointing unit normal
on Xg(f), H twice the mean curvature of the surface Xp(fr) and the surface tension to be a
constant o > 0, (D(v));; = (Vv + W!);; = 9" + 9/ twice the symmetric gradient of the velocity. The
constant g > 0 stands for the strength of gravity, e; = (0,0, 1) is the vertical unit vector, and —gpes is
known as the gravitational force. We write divS for the vector with i component ;S ;.

The equilibrium in a uniform gravitational field, in which a heavy fluid is on top of a light fluid,
is unstable. This phenomenon was first studied by Rayleigh [20] and then Taylor [21], and is called
therefore the Rayleigh-Taylor instability. In the last decades, this phenomenon has been extensively
investigated from both physical and numerical aspects, see [1, 10, 13, 15] for examples. It has been
also widely investigated how the Rayleigh-Taylor instability evolves under the effects of other physical
factors, internal surface tension [6,24], magnetic fields [2,9,11, 12, 14], and so on.

We mention some previous mathematical results concerning the Rayleigh-Taylor instability. For
the inviscid Rayleigh-Taylor problem without surface tension, Ebin [3] proved the nonlinear
ill-posedness of the problem for incompressible fluids. Guo and Tice [5] showed an analogous result
for compressible fluids. Hwang and Guo [8] obtained the nonlinear instability of the incompressible
problem with a continuous density distribution. For the viscous Rayleigh-Taylor problem, Priiss and
Simonett [19] proved the nonlinear instability for incompressible fluids with surface tension in an L”
setting by using Henry’s instability theorem. Wang and Tice [23] established the sharp nonlinear
instability criteria for the incompressible surface-internal wave problem with or without surface
tension. Jang, Tice and Wang [17] proved the nonlinear instability of the dynamics of two layers of
compressible, barotropic, viscous fluid lying atop one another via an argument from Jang and
Tice [16], in which the authors utilized the linear growing mode to construct initial data for the
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nonlinear problem.

For the viscoelastic Rayleigh-Taylor problem, Huang, Jiang and Wang [7] obtained that the
nonhomogeneous incompressible viscoelastic Rayleigh-Taylor equilibrium state is unstable
in L?-norm based on a bootstrap instability method. Wang and Zhao [22] proved the instability of
compressible viscoelastic Rayleigh-Taylor problem in the sense of Hadamard. There are also a lot of
great papers for studying the viscoelastic Rayleigh-Taylor problem, such as [18, 25] and their
references.

In this paper, we investigate the linear Rayleigh-Taylor instability for the compressible viscoelastic
fluid around a steady-state profile with heavier fluid lying above lighter fluid. We consider the equations
with surface tension and the viscosity allowed to depend on the density. The linear instability analysis
of this paper comprises the first step in an analysis of the nonlinear instability of the compressible
viscoelastic fluids, which will be left for our future work.

Formulation in Lagrangian Coordinates We use Lagrange transformation to change the free
boundary into a fixed boundary. Firstly, we define the fixed Lagrangian domain to be the horizontal
periodic slab

Q={x=(xx3)|—b<x3<0, x, = (x1, x2) € 2QrLT)?}

with the bottom X, = {x3 = —b} and the top surface £, = {x3 = 0}, where the positive constant b is the
depth of the fluid at infinity, and 27LT stands for the 1D-torus of length 2xL.
We assume that there exists a mapping

no : Q — Q0)

that is invertible, and satisfies Xz(0) = 19(Zo), and Xz = 19(Z).
We define the flow map 7, as the solution to

om(t, x) = v(t,n(x, 1)), t>0, xeQ,
n(0, x) = no(x), xeQ.

This implies that Q(7) = n(t, Q), (1) = n(Xop), and Xz = n(Z;). In order to switch back and forth from
Lagrangian to Eulerian coordinates we assume that n(z, x) is invertible.
We define the Lagrangian unknowns

ut, ) e nt, ), a0 S ot . 2. Vi, 0 € U, ),

which are defined for (¢, x) € R™ X Q.
Define the matrix A via A = (Dn)~!, where

o' dm' G
Dn=| o> > s
o O’ O’
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By using the chain rule, we can directly derive

01(p(1,1(t, x))) = (0,p)(t, n(t, X)) + (v - Vp)(1, 1(t, X)),

0,(v(t,m(t, x))) = (Ov)(t,n(t, x)) + (v - Vv)(1, (2, X)),

0.(U(,n(t, x))) = (0,U)(t,n(t, x)) + (v- VU)(z, (2, X)), (1.2)
(@v)(t,n(t, x)) = (Bn)” 0vi(t, 11, X)) = Audi(vi(t, n(t, X)),

@)t n(t, x)) = @)~ 0,(vi(t, n(t, X)) = A0 j(vilt, n(t, x))),

where we used the fact that A(Dn)! =1, i.e. Aoy ; = 05. Using (1.2), we can derive the Lagrangian
form of (1.1). Writing d; = d/d,;, the evolution equations for u, g, V,n in Lagrangian coordinates are,

where

om; = u;, in Q,

0:q + qA;;0ju; = 0, in Q,

qou; + Aok Tij = —gqA;;0n;3, in Q,

0:Vim = A;j0jugVip, in Q, (1.3)
Tn=P,,n—oHn, on X,

uly, =0,

M=o = Mo, uli=o = tto, Vl=0 = Vo

2
T;j = P(@)L;; — &(@)(AyOxu; + AyOiuj — g(ﬂzkakul)ﬂij) — (@) (AuOruplij — kqVieV k.

Here we have employed the Einstein convention of summing over repeated indices and written

nom 01 X dan
|01 x a1

x3=0

in Lagrangian coordinates and

1010793 = 20117 - 3213192 + |82n|26§n) .

H= (
10177102nm1> — 10117 - 02l

Steady-state solution We now seek a steady-state equilibrium solution to (1.3) withu = 0, =
Id, q(t,x) = po(x3), V = U, where

with
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) def . F(P'(po)py + gpo) + C
- Kpo
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here F(P’(po)p; + gpo) denotes a primitive function of P’'(pg)p;, + goo and C is a positive constant
satisfying

inf {F(P'(po)py + gpo) + C} > 0.
X3E[—b,0]

By a direct calculation, we can find that UUT = #*1. Then the system (1.3) reduces to the following
ODE with the equilibrium density py = po(x3)

- v -b,0),
dxs 8Po x3 € ( ) (1.4)

d(P(po)—kpoii®) _
P(pO) - Kpoﬁz = Patm’ at x3 = 0.

Noticed that, kpyii* can be expressed as a function of variable py by G(py), i.e., G(p) dgf Kpoii*, and we

define M(po) dgf P(po) — kpoit*. We consider the case that the density satisfies the following conditions:

po € CVQ), _inf po(xs) > 0. (1.5)
and the Rayleigh-Taylor condition

inf p; > 0.
nf po(x3) (1.6)
The Rayleigh-Taylor condition assures that the density has larger density with increasing height xs,
thus leading to the classical Rayleigh-Taylor instability. From (1.4) and (1.5), we can get M’ (po)p;, =
—gpo < 0, which along with (1.6) implies M’(pg) < 0, Y pg € [02,p1], .. M(py) is strictly decreasing

3 = = 7 4 ’ ! ’ - def
with respect to py on [p,p1], where P'(pg) = P'(8)|s=p,» M’ (00) = M’(5)|s=p, and pf(x3) = ;%’, p1 =
def

M_I(Patm)’ F_)Z = PO(_b)
We may claim that the necessary and sufficient for the existence of an equilibrium to (1.4) are as
follows:

(1) Py € M(R+), 2)0<b< 1 ” M/(S)

ds. (1.7)

P1 S

In fact, since the function M = M(p,) is smooth and strictly decreasing with respect to py on [p2, 1],
the second equation in (1.4) holds if and only if P,, € M(R"), which defines p; = M ~1(P,,), that is,
the first condition in (1.7) holds. On the other hand, we introduce the function 4 : (0, +c0) — R given
by

o 0 [ H 4
b N

which is smooth, strictly decreasing and positive on [p,, p1]. From (1.4), we get

dhd_(;;()) :_g’ vx3 e(_b70)7
£o(0) = py.
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Solve this ODE to find py(x3) = h~!'(—gx3), which gives a well-defined, smooth and increasing
function p, : [—b,0] — [p,,p1] if and only if

gb € h([p2,p1)),

that is, the second condition in (1.7) holds.

Linearization around the steady-state We now linearize the Eq (1.3) around the steady-state
solution u = 0, n = Id, ¢(t,x) = po(x3), V = U. Then the resulting linearized viscoelastic equations
are

om=u in Q,
0:q + podivu =0 in Q,
podut + V(P (po)g) + gges + gpoVns = div(go(D(u) — 3(div u)l)
+0o(div )l + kpo(VUT + UVT) + kqit*l) in Q, (1.8)

8,V = Vul in Q, '
(P’ (po)qll — £0D(u) — (8 — 3&0) div ul

—kpo(VUT + UVT) = kqitT)es = =0 Ay, 11363 on X,
uly, =0,

where &) = £(pp) and 6y = 5(0o).
Before further stating our result, we shall introduce some notations used throughout this paper. We
first define the weighted L?> norm and the viscosity seminorm by

2
lull> = f polul*dx and |jul?, = f @uD(u)— =Z(div w)I? + 8o|div ul*dx. (1.9)
And we denote

1
Hy :={we H' Q) wlg, =0}, ¥(w) = fpob'tz(le(W)l2 — |divw[*)dx,
Q
O,(w) := f (8powsdivw — goow - Vws)dx — f P'(po)poldivw|*dx
Q Q

- f a1V Wil dSo, Ow) = O1(w) — k¥(w),

p)
- O(w
K. := sup Q, a < b means that a < Cb, for some constant C > 0.
wern PO0)

Remark 1.1. We mention that
Y(w) > 0, (1.10)
forallw e Hé. In fact, by a direct calculation,
[ oo D0 ~ ldiv iy
= Lpoﬁz((alwz +0,w1)” + (B 1ws + 3w1)* + (Oaw3 + B3ws)”

2 2 2
+ 01w " + 102w2|” + |03ws] )dx.
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Hence (1.10) holds. Moreover, we can see that, if ¥Y(w) = 0, for some w € H, U thenw = 0. This implies
that k. > 0 is equivalent to the condition:

there exists a function w € Hyy such that ®(w) > 0,

and’k. > 0 is also equivalent to the following condition:

K < K, 1= sup 0.00)

S Hn) (1.11)

Now we state our main result.

Theorem 1.1. Let (u,n,q, V) be a solution to (1.8). Then

@I + @I, + 110.u@)|? < CeM o, 1@l < CeMInolla + Vo),
lgOll2 < CeMlgollz + Vo), IVOll2 < CeMIVoll2 + Vo),

for a constant 0 < C = C(pg, P, A\, €, 0, k, 0, g, m, ), where A is defined in (2.37) below and
Io = 18u(O)[1Z + llu(O)[IZ + llu(O)[Z, + o f V3 (0).
)

The rest of the paper is organized as follows. In section 2, we construct a growing mode solution
to (1.8) by assuming an ansatz, and then we study a family of modified variational problems in order
to produce maximal growing modes. In section 3, we firstly take the preliminary estimates, and then
prove our main result.

2. Growing mode solution

We want to construct a growing mode solution to (1.8) by assuming an ansatz
u(t, x) = wx)e", V(t,x) = V(x)e", n(t, x) = q(x)e”, g(t, x) = g(x)e", (2.1)

for some A > 0. Substltutlng this ansatz into (1.8),, (1.8), and (1.8),, respectlvely, we find that 7 =
A7'w, = -A2"pydivw, V=1'Vwl. By this fact we can eliminate 77, g, V from (1.8) and then arrive
at the following time-invariant system for w:

L pow — V(P (po)podiv w) — gpodiv wes + gooVws

2.2
= div(1eo(D(w) — %(div w)I) + A8, (div w)I — kpoi*(div w)I + kpoi*D(w)). (22)

The boundary conditions linearize to: on X
(A8 — 2A&0/3+P’ (po)po — kpoit”)div wl + (Aeg + kpoit?)D(W))e3 = TA,, 1, W3e3,

and wlz, = 0. Since the domain is horizontally flat, we are free to make the further structural assumption
that the x’ dependence of w is given as a Fourier mode ¢, where x' - & = x,& + X6, for & €

AIMS Mathematics Volume 8, Issue 7, 14894-14918.
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(L7'Z)?, x' = (x1, x»). Together with the growing mode ansatz (2.1), this constitutes a “normal mode”
ansatz (see [1]). We define the new unknowns ¢, 8, ¥ : (—=b,0) — R according to

wi(x) = —ip(x3)e™ E, wa(x) = —if(x3)e™ ¢, and ws(x) = Y(x3)e™ <.
By a direct calculation, we can get
divw = (&9 + &0+ ¢)e™,

and
26 §0+&p WG —¢) )
Vw+Vnw! =| &6+ &¢ 26,0 &y —60) |, (2.3)
&y —¢) Sy —-0) 20
For each fixed nonzero spatial frequency &, we deduce from the Eq (2.2) a system of ODEs for ¢, 8, ¥, A,
denoting " = d/dxs: in (—b,0)

/ —_ VAN - 1 /
— Aoy’ + kpoit* @) + [A2po + (A&g + kpoi®)E* + E2(ASy + 3480 + P (po)po)le
2.4)

1 1
= =&1[(16¢ + 5/180 + P'(po)poly’ + (A&} + (kpoit®) — gpolyr] — £1£2[A80 + 5/180 + P’ (po)pol6,

/ -_— /\/ — 1 ,
— (A&t + kpoit?8'Y + [A%po + (Agg + kpoit?)|El* + & (A5 + 5/180 + P'(p0)po)160
(2.5)

1 1
= —=&[(A60 + 5/180 + P (o)) + (A&} + (kpoit®) — gpol] — £1£2[A80 + 5/180 + P’ (po)pole,

— [(4Ag0/3 + A8 + P’ (po)po + kpoi W' + (X2po + Agolél* + koo |ElP )y
1 (2.6)
= [(A6 + §/180 + P'(po)po)(é1¢ + E0)] + (8po — gy — (kpoit) ) (&1 + £,6).

The upper boundary condition for the new unknowns is:

((/150—2/180/3 T P(po)po — kpoi)(Erp + £26+ ¥ e

i — o)
+ (Ao + kpoi®) | iterws — @) )
24

= —0lél*es, atx; =0,

which follows that at x3 = 0
(Agg + Kpolt* )¢’ — E1Y) = (Agg + kpoit ) — Exp) = 0,

and
(A00 + Aeo/3 + P (po)po)W + 10 + £0) + (Aeg + kpoll )W — 1 — E20) = —Tlél*y.
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and the bottom boundary conditions become
@(=b) = 6(=b) = y(-b) = 0.

Note that if ¢, 9;¢ solve the Egs (2.4)—(2.6) for & € (L‘IZN)2 and 4, then for any rotation operator
R € SOQ2), (¢,0) := R(p,0) solve the same equations for & := R¢ with ¢, A unchanged. Then, we
choose a rotation operator R so that RE = (€], 0) to see that 6 solves

—(A&08 + kpoit*d) + (Apo + (Ay + kpoit®)|E)0 = 0, in (=b, 0),
(Agg + kpoit*)d’ =0, at x3 =0, 2.7
6(-b) = 0.

Multiplying (2.7) by 6, integrating over (—b, 0), integrating by parts, and using the boundary conditions
then yields

0
fu%HWMW+WmHm+mﬁWWm=Q
b

which implies that § = 0. Then (2.4)—(2.6) reduce to the pair of equations in (b, 0) for ¢, ¢

~pop = —(Aeog’ + kpoit* @) + €7 (4Aen/3 + A8 + P’ (po)po + Kpoit)p

2.8
+ El[(A80 + Ao /3 + P (po)po)y’ + (€] + (kpoit™) — gpo)¥/], &9
—poyr = =[(4de0/3 + 480 + P'(po)po + koo W' + (Ao + kpol EFY 2.9)
— [I[((A60 + A£0/3 + P (0o)po)p)’ + (gpo — Al — (kpoit) )], '

along with the boundary conditions: at x; = 0
(A& + kpoit*) (@' — |lW) = 0, (2.10)
(480 + Ag0/3 + P (p0)po) (W' + |El@) + (Ao + kpoit™) (W' — |Ele) = o€y, (2.11)

and at x3 = =b

o=y =0. (2.12)

Applying a modified variational method to construct a solution of (2.8)—(2.12), we modify (2.8)—(2.12)
as follows: in (b, 0)

’/ - N\’ 4 / _
—pop = —(seoy’ +kpoitg’) + |§|2(§S80 + 500 + P (po)po + Kpoit* )@
2.13)

1
+ €[ (s60 + 3580 + P (po)poly’ + (s& + (kpoit™) — goo)¥],

4
—poy = —[(5580 + 500 + P'(po)po + kpolt W] + (seo + koot )IEPPY
(2.14)

1
~ [€1[((s0 + 3580 + P'(po)po)e)’ + (gpo = 56§ - (kpoit®) ],
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where s > 0 is an arbitrary parameter, along with the boundary conditions: at x3 = 0

(s&0 + kpoit ) (¢’ — |€lY) = 0, (2.15)
1
(s60 + 3580 + P'(p0)po) (W + I€lp) + (sg0 + kpolt )W — |Elp) = —alél*y, (2.16)
and at x3 = =b
o=y =0. (2.17)

Note that for any fixed s > 0 and &, (2.13) and (2.14) is a standard eigenvalue problem for —A2, which
has a natural variational structure that allows us to use variational methods to construct solutions. For
this, we define the energies

E(p, 5 [El, s) = Eole, ¥5 1§D + sEv (g, Y5 €D, (2.18)
and
1 (©

sew =5 [ ol + P

where
. _O-|§|2 2 1 0 / ’ 2
Eo(p, ¥ 1€]) = > (¥(0)) +3 bP(po)po(lﬁ +[€le)” — 2gpolélpwrdxs
1 (°
*3 fb kpoit* (¢ — IEW)* + (W — |€lp)Pdxs,

1 1
E\(o, ¢ |€)) := 3 f b(5o + 580)(1!/ +1&lp)” + so((¢’ — IEW)* + (¥ — 1El@))dxs,

which are both well-defined on the space Hy((—-b,0)) x H,((-b,0)), where
Hy((=b,0)) := {f € H'(-b,0)| f(—b) = 0}. Consider the set
C = {(¢,¥) € Hy((—b, 0)) x Hy((—b,0)J (¢, ¥) = 1}.

Notice that by employing the identity —2ab = (a — b)* — (a* + b*) and the constraint on J(g, i) we may
rewrite

olé?

1 0
E(p,¥; 1€l s) = 7(9//(0))2 +5 fb P (po)po(W’ + €19)* + gpolél(e — ¥)*dxs

1 (° 1 (°
-3 f ) gPolél(¢” + ¢*)dxs + 3 f ) kpol* (¢ = EW)* + (' — I€lp)*)dx3 (2.19)

0
1
+5 fb(éo +380W + @) + 20((¢ — W) + W' = Ile))dxs 2 —gle]

for any (¢, %) € C. Then we want to find the smallest —1? by minimizing
=2y s) = a(iél; s) := inf E(p,¥;1€l, 9).
(&]; 5) = a(lgl: s) := inf Elp, 9l ) (2.20)

The first Lemma asserts that a minimizer of E(¢, ¢; |£], s) in (2.18) over C exists and the minimizer
solves (2.13)—(2.17).

AIMS Mathematics Volume 8, Issue 7, 14894—-14918.
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Lemma 2.1. Let & and s > 0 be fixed. Then the following hold:

(1) E(p,¥; |§| §) achieves its infimum over C.

(2) Let (g, :,b) € C be the minimizers of E constructed in (1). Let @ := E(¢p, w €], ). Then (@, w) are
smooth in (b, 0) and satisfy

<mw——uwwﬂmf”)+M(S%+&%+PmWM+me¢
1 2.21)
+ |€[(s00 + 3560+ P (po)po) + (s&y + (kpoit®) — gpol],
™ 4 ’ NTAY -2 275
apoy = —[(§S80 + 560 + P'(po)po + kpout W'l" + (s&o + kpoit”)IE|" Y
2.22)

1
— [&I[((s6¢ + 3580 + P'(p0)po)@) + (gpo — s&y — (kpoit™) )l

along with the boundary conditions: at x3 =0
(sg0 + kool )@~ €)= 0

1 ~ — —
(560 + 3560 + P'(p)po)¥’ + I€1@) + (g0 + kpoit” )W — |€l@) = —alély,
and §(~b) = Y(~b) =
Proof. (1) Let (¢, ¥,,) € C be a minimizing sequence. By (2.19), one can see
E(pn, Y3 1€l, 8) = —glél,

which shows that E(g,, ¥,; €], s) is bounded below on C. Then, there exists a pair (g, Al/;) € Canda
subsequence (still denoted by (¢, ¥,) for simplicity), such that (¢,,¥,) — (¢,¢) weakly in Hé and
strongly in L?. Moreover, by the lower semi-continuity, we find

(mfﬂ%¢m@:mmﬂﬂ%wm&ﬂ
:.(I#

0
Wn(0) + 5 f P leopour, + 1€l + 8Polél(n — W) dxs
+ % fb(50 + 580)0/’;, + &) dxs + e0((@, — En)? + (W, — |Elon)?)dxs

1 0
#5 | oo = 0 + 0 - k)

b

0
- %hm sup f gpolélgy + Yn)dxs = E@. Ui 1€l s) 2 inf Elp.y:lé). ).
n—o0 -b (p)eC
This implies that E(g, ¢; |£], s) achieves its infimum over C.

(2) We refer to Propositions 3.2 of [6], just only need to replace sgy by sey + kpoii* and s, by
500 — %Kpoﬁz in this paper, applying a bootstrap argument to prove the smoothness. Here we omit the
specific details.
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Remark 2.1. Compared to the paper [6], the new term kpyii® in the energy equality does not have a
factor s, so we can not directly refer to the construction of ¢, in [6] to prove that the infimum of E
over C is negative for s sufficiently small. In this paper, we use the definition of k. (see (1.11)) and the
condition k < K. to prove the following Lemma.

Lemn}fl 2.2. If k < K., there exists a & € (L™'Z)*\{0} and a pair of functions (@,¥) € C, such that
Eo(p, ¥ 1€]) < 0.

Proof. From the definition (1.11) of «., we find that there exists a function
w(x) = (wi(x), wa(x), w3(x)) € Hé(Q) such that ®;(w) > k¥(w), i.e.,

f (gpowsdivw — gpow - Vws)dx — f P'(po)poldiviv|*dx
Q Q

1 (2.23)
-~ f TV, ,ws*dS o > f kpoit* (=[DW)* — |diviw|*)dx.
% 0 2
Let w(&, x3) be the horizontal Fourier transform of w(x), i.e.,
W&, x3) = f w(xp, x3)e” " dxy,
(xLT)?
and the functions ¢, 6 and ¢ are defined by the relations
Wl(é:’ x3) = _lw(é‘:’ x3)9 W2(§9 X3) = _10(5’ x3)’ w?)(é‘:a x3) = lp(‘f’ X3),
where (W1, W,, w3) = w and & € (L™'Z)%. Then
(s &y iy
Vw=| &0 &0 —i0 |, (2.24)
& sy Y
and
divw = &0+ £0+ . (2.25)

Recalling the Fubini and Parseval theorems: in the periodic case, if f € L*(Q), we have that fe LY(Q),
and

1 0
fg rofds= o Y [ e P, (2.26)

£e(L717)?
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Using (2.24)—(2.26) and the identity 2ab = (a* + b*) — (a — b)?, we have

_ .~ _ o 1 0 = —=
f(gpow3d1vw — gpow - Vw3)dx = 212 Z f 8P0(|W3|2 + |diviw|?
Q ee(L-1z2 Vb
3
= [y = VAT = ) (W + Bl = i = By
P

! E T T A T o 2.27
=AY fbgp()(w+|§1<P+é:29+lﬁ'|2—|lﬂ—§1¢—§29—lﬁ'|—|§0l2 &2

£e(L1Z)?

108 = WP = KPP~ WP + 1@+ & = [0+ &9 + 1 — o' P)daes
1 0 . o~ — —
=—= Z f 8P0 (261 RERY + 28,303 + 25HRONY + 26,363y)d x5,
47T L -b
£e(L712)2\(0}
here R(g, 6, ¥) and 3(, 6, ) denote the real and imaginary parts of (@, 6, /), respectively.
By the similar argument, we can get

_ — I .~
f P’ (po)poldivw|*dx + f |V, W32 dS o + f Kpoﬁz(ilD(w)Iz—|d1VW|2)dx
Q o Q

1

0
G, (cermEors f P/(po)polé @ + &8 + ' Pdxs
" £e(L'Z)2\{0) -b

0
9 i~ ~ ~, — — ~ ~ ~ - 2.28
+ f koo (7 — & + 10 — &3 + EG@E + 107 +10P) + E107 + 87 (2:28)
-b

—26RORY — 26,30 I — 26, RORY — 2§2353J’)dx3)

1 0 ’ -7 _2 = 7 0y
M) f P’ (po)polts’ (0, x3)I*dxs + kpoit” (1@ (0, x3)I” + [/ (0, x3)I* + 16/ (0, x3)1*)dx3.
b

Because the above equalities are invariant under simultaneous rotations of & and (o, ), without loss
of generality we may assume that & = (|£],0) with |£] > 0 and 6 = 0. Then from (2.23), combining
with (2.27)—(2.28), one can see

0
>, [ 2epecreng + 5D
b

Ee(L71Z)2\{0) 7

0
> Y (e o + f P po)pollél + 0P

£e(L'Z)2\{0)

0
+ f Kpoﬁz(la—|§|$|2+|$’—|§|¢|2)dX3)

b

0
+ f P’ (po)pol’ (0, x3)I*dx3 + kpoit (1@ (0, x3)* + [t/ (0, x3)|*)dx3,
b
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which follows that

>, f gPol€I(IBP + 1 - @ — ¥P)dxs

£e(L71Z)2\{0)

> > (kP or + f P oo)polle + 9P (2:29)

£e(L71Z)2\{0}
0
+ f kpoi* (I — EW? + ' - |§|¢|2>dx3).
-b
(2.29) implies that there is a & € (L~'Z)?\{0}, such that
— 0 — —~— —~—
alEP (&, 0 + f P (po)polléle + ¥/ > = gpolél(@l* + > — [@ — yI*)dxs
-b

0
+ f koot (19" — €W + W' — I€lgP)dx; < 0.

b

Then we complete the proof of Lemma 2.2.

Remark 2.2. _Owning to Lemma 2.2, there is an unstable frequency & € (L7'2)>\{0} and a pair of
functions (@, w) e H 0((=b,0)) x H! 0((=b,0)) satisfying Eo(go,:,b |€]) < O, if kK < k.. Thus, the unstable
frequency-set F conszsted of all unstable frequencies is not empty for k < K.

We want to show that there is a fixed point s so that A(|£], s) = s, which will then allow us to construct
a solution to the original problem (2.8)—(2.9). To this end, we study the behavior of a(s) := a(|¢]; s) as
a function of s > 0.

Lemma 2.3. Let a(s) : (0,00) — R be defined by (2.20). Then the following hold.
(1) a(s) € C%((0, ) and a(s) is strictly increasing in s.

loc

(2) For any &€ € F, there exist constants c,,c3 > 0 depending on g, k, po, €9, 0o, 0 and |&|, such that
a(s) £ —cy + sc3, forany s € (0, 00). (2.30)
Proof. (1) Fix a compact interval Q = [a,b] cC (0, 0). From (2.18), E (¢, ¥;|£]) > 0 implies that

E(p,y; |&, 5) is non-decreasing in s with (¢, ) € C kept fixed. And, from Lemma 2.1, we can find a
pair (¢,, ¥,) € C so that

E(ps, Y53 16l, ) = @ig)lzc E(p, ¥ 18l, 5) = a(s), for fixed s > 0. (2.31)
Note that if 0 < 51 < 5, < oo, then the decomposition (2.18) and (2.31) implies that

a(s1) = E(ps,, Y55 [6l 51) < E(@sy, s, (€] 51) < E(@yy, s, €, 52) = a(s2), (2.32)

which shows that a(s) is non-decreasing in s. Supposed that a(s;) = a(s,), from (2.32), we can obtain
SlEl (()DSQ’ Wsﬁ |§|) = SZEI (()DSp WSQ; |§|)’
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which yields that E;(gs,, ¥y, 1€]) = 0. This means that ¢,, = ,, = 0, which contradicts the fact
that (¢,,,¥;,) € C. Then we can get that a(s;) < a(s»), 1.e., a(s) is strictly increasing in s.

Nextly, we show the continuity of a(s). Fixed any pair (¢g, ) € C, the fact that E(p, ¥; |£], 5) is
non-decreasing in s, the minimality of (¢;, ¥), and the equality (2.19) ensure that

E(po, Y03 I€], b) > E(go, Yo; €], 8) = SE1(¢s, Y55 €D — g€l ¥ s € 0,

which implies that there exists a constant 0 < K = K(a, b, ¢y, Vo, g, |£]) < oo so that

sug E\(ps, U €D < K. (2.33)

Lets; € Q fori=1,2. Using (2.31) and (2.33), we can see

CY(S[) < E(QDSZ, wsz; |§|’ Sl) < E(QDSZ, wsz; |§|a SZ) + |S1 - SZlE((psza wsz; |'§:|)
< a(sy) + K|s; — s5].

Reversing the role of the indices 1 and 2 in the derivation of this inequality gives the same bound with
the indices switched, i.e.,
a(s2) — a(s1) < Kls; — 52l

The above two inequalities ensure that
la(s1) — a(s2)] < Klsy = 52,

which proves a(s) € C2!((0, 00)).
(2) Since £ € F, by the definition of F and Lemma 2.2, there exists (¢, %) € Hé ((-b, 0))><Hé((—b, 0)),
such that

E\@U;lé) = =2+ = | P (oo)poll€lg + ¥'I* — goolél (@ + [* = [ — y1P)dxs

alePly (€ 0P 1 f"
2 2 )

b

1 0 —~7 = - —~
+5 f Koo — I + 17 — 1€1@dx; < 0,
-b

Thus, one can see

E(p,¢; €],
a(s) = inf E(p,y;lél,s) = inf Elp.¥3lél, 5)
(p¥)eC (@)eH} (—b,0)XH] ((~b.0)) J((p’ tﬁ)

CE@UikLs) | Ei@ UKD | E@ sl
= — = — = N — = =. —Cy + SC3.
J(@, ) J(@, ) J(@, )

Then, we complete the proof of Lemma 2.3.

(2.34)

Given ¢ € F, from (2.30), there exists a 5o > 0 depending on the quantities g, «, po, €0, 0o, [£] SO
that a(|¢]; s) < O for any s € (0, so]. Now, we define

s %t up(s| a(r) < 0 for any T € (0, 5)).
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Then § > 0. Applying the monotonicity of a(s) and the fact a(s) = inf, y\ec E(@, ¥; |€], 5) > —oc0, one
can see that

lim a(s) exists and the limit is a negative constant.

s—0*

Using (2.19), we find that there exists a constant ¢, depends on &, dy, |£], such that
a(s) = —gl¢l + sca,

where & € F. Thus, if s > %fl, then a(s) > 0. Hence, S < +o00, and lim,_,g- a(s) = 0.
Therefore, combining with the above argument, we can employ a fixed-point argument to obtain the
following Lemma.

Lemma 2.4. Let & € E. Then there exists a unique s € (0,S) so that A(|]; s) = —a(|€]; s) > 0 and
s = A(El; 5). (2.35)

Remark 2.3. By Lemma 2.4, for each fixed & € F, we can find a unique s € (0, S) so that s = A(|¢]; ).
Then, we can write s = s(|€]) and 1 = A(|€)).

Proposition 2.1. For ¢ € (L7'Z)%, if k < k., there exists a solution ¢ = @(&,x3), 0 = 6(&,x3), ¥ =
W€, x3), and A = A(|€|) > 0 to (2.4)—(2.6) satisfying the boundary conditions. The solutions are smooth
in (—=b,0), and they are equivariant in & in the sense that if R € S O(2) is a rotation operator, then

©(RE, x3) Rii R O @(&, x3)
ORE, x3) [=] Rt Ry O || 6, x3) |.
Y(RE, x3) 0 0 1)Uy x)

Proof. We may find a rotation operator R € S O(2) so that R€ = (|¢],0). For s = s(|£]) given in (2.35),

we define (¢(£, x3), 0(¢, x3)) = R™'(@(|€], x3),0) and ¥(£, x3)) = Y(|£], x3), where the functions ¢(|£], x3)
and ¥(|€], x3) are the solutions to (2.8) and (2.9) from Lemma 2.1. This gives a solution to (2.4)—(2.6).

The equivariance in & follows from the definition.

To obtain a largest growth rate, we next show that A(|£|) is a bounded, continuous function of |£|.
We assume throughout that ¢ € F.

Lemma 2.5. The function & € F +—— A(|¢]) € (0, o0) is bounded, continuous, and satisfies

lim A =0.
lim, (3)) (2.36)
Proof. Since 1 = +/—a, it suffices to prove the continuity of a(|¢£]). By Lemma 2.1, for every & € F,
there exist functions (¢, ¥z) € C satisfying (2.13) and (2.14) so that /(] s) = E(@g, ¥; €], ). From
Lemma 2.2, we know that a(|£[; s) < 0, which along with (2.19), yields the bound
—glél < a(lgl; s) <0,
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which ensures that A(|£]) € (0,00)(¢ € F) is bounded and satisfies (2.36). Now suppose [£], is a
sequence so that |£], — [£|(€ € F). By (2.34), there exist positive constants Cy, C; such that a(|£],) <
—Co + 5(|¢1,)C1, combining with —a(|é],) = *(|€],) = s*(I€].), so

2 (1€l) + Ci5(él) — Co 2 0,
which implies s(|£],) is bounded below by a positive constant. Then (¢, ¥¢,) € C and the fact that

s(|

0
n L
~gie+ 52 [ [0+ o0, + e ?

2
+ 20(¢ly, — IElia) + W, ~ o)) dxs < allgl) <0

imply that ¢y, and ), are uniformly bounded in H Y((=b,0)). Plugging into the ODE (2.21)-(2.22)
in (—=b,0), we find that ¢y, and g, are uniformly bounded in H*((—b,0)). Then there exists a
subsequence(still denoted by |£],) such that

(@i, 1,) = (Pers Yie) strongly in H'((=b, 0)),
which implies
a(|€ln) = E(pig,» Yie,) = E(pia, Yig) = a(l€D).

i.e., a(|&l,) — a(lé]), hence a(|£]) is continuous.

Lemma 2.5 then allows us to define

0 < A :=supA(|¢]) < co. (2.37)
&éeF

Lemma 2.6. Suppose & € F. Let (¢, 0,¥) be the solutions constructed in Proposition 2.1. Then for
each k > 0 there exists a constant A, > 0 depending on the parameters py, P, g, &9, 0y, 0, b,

o€ a0y + 10 Nlar(-b.0y + IE Nlar(-b.0y < Ar-

Proof. From Proposition 2.1, it suffices to prove

(&L, Mar-p0y + IWUEL Mati-p0y < Ax-

for the solutions ¢ = @(|¢], x3), ¥ = ¥(|€], x3) constructed in Proposition 2.1. By (1.5), we can see
that pg, P’(po), Kpoit®, €y and &, are smooth in (—b, 0) and bounded above and below.

We prove this lemma by induction on k. For k = 0, the fact that (¢(|€], -), ¥(l&], -)) € C implies that
there exists a constant Ay > 0 depending on the various parameters so that

(&L, M r2(=b.0y) + IPUEL Nr2(=b.0y) < Ao

Suppose now that the bound holds some k > 0, i.e.,
€L, Ner-p,0y + IUEL et b0y < Ax-
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From Lemmas 2.4 and 2.5, A(|€]) = s(|¢]) is bounded above and below by positive quantities as
functions of |£]. Then, we differentiate the Eqs (2.13) and (2.14) to get that there exists a
constant C > 0 depending on the various parameters so that

(€L, MNlpr+r(=p.0y) + IEUEL et (-0
< Clled€l, Mari-p0y + UL Nlex=poy) < CAx := Ay,

which shows that the bound holds for k£ + 1. Then, by induction the bound holds for all k > 0.
We may now construct a growing mode solution to the linearized problem (1.8).

Proposition 2.2. Let &, & € (L7'Z)? be lattice points such that & = =& and A(&)|) = A, for j = 1,2,
where A is defined by (2.37). Define

W(E, x3) = —ip(€, x3)e; — i0(€, x3)ex + Y(€, x3)e3,

where ¢, 0, W are the solutions provided by Proposition 2.1. Writing x' = x1e| + xe,, we define

n(x,0) =e™ > W, x3)er ¢,

2
J=1

2

u(x, 1) = Ae™ Z w(é;, x3)er ¢,

J=1

2
4%, 1) = =eMpo(x3) ) (€19 33) + E0(E), x3) + Dah(Ejs x3))e™
=1

and

2
V(x, 1) =M Z B(&;, x3)Ue™ 4,

=1
where

&l &y —idsp
B, x3) =| &0 &0 —idx0 |.
& &y 0y

Then n,u,q,V are real solutions to (1.8). For every t > 0, we have n(t), u(t), q(t), V(t) € H*(Q) and

||C](t)||Hk(Q) = eAt||Q(O)||Hk(Q)’ ”u(t)”Hk(Q) = eAt”u(O)”Hk(Q),

(2.38)
IVl = eMIVOllax@y 17O = MO

Proof. By direct calculation, 1, u, g,V defined in this way are solutions to (1.8). That they are real-
valued follows from the equivariance in € stated in Proposition 2.1. From Lemma 2.6, the solutions are
in H*(Q) at ¢ = 0. The definitions of 1, u, g, V ensure the growth in time stated in (2.38).
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3. Growth of solutions to the linearized problem

3.1. Preliminary estimates

In this section we will prove estimates for the growth in time of arbitrary solutions to (1.8) in terms
of the largest growing mode A defined by (2.37). Firstly, we differentiate (1.8); in time and eliminate
the ¢, n and V terms using the other equations. This yields the equation

PoOuu — V(P '(Po)PodiVM) + gpoVus — gpodivues
(3.1
= div(gy(D(0,u) — (dlvatu)l[) + 0o(divo,u)l + kpyit 7> (D(u) — (divu)l),
coupled to the boundary conditions.

2
(P'(po)podivuIHsoD(a,u) + (60 - ESO)diV(’)tuﬂ

+ Kpob_tz(D(M) —divul))e; = oA, x,uzes, on Xy,

and O,u(x;, xo,—b,1) =0
First, we state the following energy identity.

Lemma 3.1. Let u solve (3.1) and the corresponding boundary conditions. Then

a 2 2
6tf,00| o dx + f@
Q a2

+ 8o|divo,ul*dx
P /
6, f (—Mldivulz + gpoutzdivie + %w?
Q

g
— 0, f 8001 2dS o — 8, f SVatsdSo.

) )

2
D(Ou) — g(diva,u)l[

Kpou

( D)l ~ |divul®))dx (3.2)

Proof. Take the dot product of (3.1) with d,u and integrate over Q. After integrating by parts, we get
fpoatu - Oyt + P’ (po)po(div u)(div 0,u) — gpo(uzdiv d,u + 0,uzdiv u)
Q
€o
+ J—
L5

+ fkpoﬁz(D(u) : Vo,u — (div u)(div 0,u)) = —f gpou30uzdS o + f Tes - 0,udS
Q

) pX)

2 2
D(0u) — gdx(divatu)]l

+ 8o|divo,ul’dx — fgp6u38tu3dx
Q

where
T =(P’(pg)podiv i)l + go(D(d,u) — —(d1V o)) + dodiv O,ul + kpgit 7*(D(u) — div ul).

We may pull time derivatives out of the first integrals on each side of the equation to arrive at the

equality
|0,u |2 fgo
0 f dx+ | —
o' 2 o2

P /
= 4, f (—memz + gpouzdivie + g—;)‘)|u3|2
Q

—étf @Iu3|2d50+fTeg~6,udSo.
)

p)

2 2
D(,u) — g(divﬁtu)ll + Oo|div,ul’dx

Kpo“( D@ - [dive®)dx  (3.3)

AIMS Mathematics Volume 8, Issue 7, 14894-14918.



14913

Using the upper boundary condition, one can see

f Te3 . a,l/tdS() = f O'Axl’nugatugdSo
> > - (3.4)
= _O-f Vx|,xzu3 : Vxl,xzatu?adSO = _atf Elvxl,x2u3|2d‘s0-
p)

)
Combining with (3.3) and (3.4), we can obtain (3.2).

Lemma 3.2, Letv € Hé (Q) be arbitrary. We have the inequality

P 0 1
f (F L0 i+ g dm+—g’2’0|V3|2—Kp§”< DO - Idiv vP))dx
Q

g
f 80015 2ds o — f TV, vsPdS, (3.5)
Z0

<—fpo|v| dx+—f

Proof. Integrating by parts, we can get

Vv + W — —(d1V v)I[ + 6oldiv v[*dx.

P’ f
f(—MldivvF + gpovadiv v + %Ivﬂz Kpou ( ID(v)I2 [div v[*))dx
Q

g
f 00 5 12ds o — f S1VavsldS,
%o o

1 1
=3 f gpo(v3divy — Vv - v) = P'(po)poldiv v* — Kpoﬁ2(§|D(v)|2 — |div v[*)dx
Q

ag
- f Elvxl,xzv3|2d50-
2o

Firstly, we consider all v € H, satisfying (2.23). Writing ¢(x3) = ivy, 0(x3) = V2, ¥(x3) = V3, by the
similar argument as the proof of Lemma 2.2, we take the horizontal Fourier transform to see that

(3.6)

1 1
= f gpo(v3divy — Vvs - v) = P’ (po)poldiv v* — l</Oob’t2(§|]D>(V)|2 — |div v[*)dx
Q

2
o
—f Elvxl,x2v3|2dSO
%o
1

1 0 ~ o~ ~ NN
= 120 Zz 5( j: , 8P0(2E\RORY + 261 3pIY + 2ERORY + 26,303y )d x3
£e(L1Z)2\(0)

0
~ oléPluE O - f Ploopilérg + 6+ P,

0
- f ko> (I¢" — Yl + 1 — &1 + E (gl + 107 + l*) + €116 + 16/
-b

_2ERORY — 2630y — 265,RORY — 252395w’)dx3)
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1 0
- Wf P’ (po)polts’ (0, x3)I + kpoit” (¢’ (0, x3)* + 1/ (0, x3) + 16" (0, x3)")dx3

1

Ry Z Z(p, 0,45, 8)

£e(L12)2\{0)

1 0
- Wf P’ (0o)polts’ (0, x3) + kpoit” (¢’ (0, x3) + 14/ (0, x3) + 16" (0, x3)[)dxs.

Notice that Z(¢, 8, ¥; €) is obviously invariant under simultaneous rotations of & and (¢, 8), so without
loss of generality we may assume that & = (|£], 0) with |£] > 0 and € = 0. Then, for £ € F, we have

1 (° 2 L0)2
200,36 = 5 | gpulllef + P — I —utydx, - TELZEDL

1 0
~3 f P (po)polléle + ' Pdxs + kpoit* (" — €01 + ' — 1Elel)dxs
-b
A(¢1)
2

0
= (o0 A(ED) + f o0+ el

| 0 |
+ @ f . eo(¢" — EW)” + (W' ~ |Ele) + 3+ El@)?)dxs,

and hence
2

A 0 2 2 A 0 ’ 2
Zig.0.06) < > f pollel + ) + 2 f S0 + IEl@)dx;
2 2 Jo (3.7)

0
1
.2 f (e~ W = Il + 5+ i,

where we have used the following variational characterization for A, which follows from the
definitions (2.20) and (2.37),

AZ 0
0> Ep.u: A0 2 A0 (6. 0) 2~ f pulel + 0P

For & € (L™'Z)*\F, owning to the definition of F, one can see

Z(p,0,y;8) < 0.

Then, forall ¢ € (L™'Z)?, Z(¢, 6, ¢; £) satisfies (3.7). Combining with (3.6), and translating the resulting
inequality back to the original notation for fixed &, by the Fubini and Parseval theorems, we find

1
= f gpo(v3div v — Vvs - v) = P'(po)poldiv vI* — kpoit® G IJD(V)I2 Idiv v[*)dx

2
<= o | f pollel + ) + > f 500 + €l
gy (3.8)

1
2 f oty ~ 167 + W'~ €l + 5 + |§|¢>2>dx3)

- f polvPdx+ 2 f
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Forany v € Hé not satisfying (2.23), we have

1 1
5 f goo(vadivv = Vvs - v) = P'(po)poldiv v® — koo (5D = [div vI*)dx
2 Ja 2 (3.9)

- f IV Sy <0,
%o

which implies that (3.5) holds trivially since the right of (3.5) is non-negative. Combining with (3.6),
(3.8) and (3.9), we conclude Lemma 3.2.

3.2. Proof of Theorem 1.1

Now we can prove our main result.

Proof of Theorem 1.1. Integrating the result of Lemma 3.1 in time from O to ¢, by Lemma 3.2, we get

D) f fso
d _
fgp° > ) )2

P :
<K+ f (—%mwua)ﬁ + gpous(Ddivu(r) + %m(mz
Q

2
+ 8o|divo,u(s)|*dxds

D(0u)(s) — %(divatu(s))l[

, (3.10)
Kpoll

2

A? A &0
< Ky+— HPPdx + = —
S Ko > LPOW()l X 2‘f92

.
%w»zdso— f SV tis(OPdS

2o

1
(EID(M)(I)l2 — |divu()*))dx — f
2o
2

D(u(r)) — %(divu(t))l + Soldivu(t)|*dx.

where

du(0)P P
Ko = f oo ZHOF 400 1o+ 20 30yt + f 0 us0)PdS o
Q 2 4 2 2o 2

. g
+ f 80o(|u3(0)? + divu(0)*)dx + f EIVX.,qua(O)IZdSo-
Q

pX)

Using the definitions of the norms || - |[., || - ||«« given in (1.9), we may compactly rewrite (3.10) as

1 2 ' 2 AZ 2 A 2
Mol + | o)l ds < Ko + —lu@ll. + Slu@ll... (3.11)
0

Integrating in time and using Cauchy’s inequality, we may bound

Allu@|?, = AlluO)I?, + A f 2(u(s), Ou(s)).. ds
0 (3.12)

! !
< Allu(O)%, + f 10.u(s)I2, ds + A* f lu(s)I2, ds.
0 0
On the other hand

ABlu@)II2 = 2A40u(), u()). < AXu(OI + 10u(@)I7. (3.13)
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Hence, combining (3.12) and (3.13) with (3.11), we derive the differential inequality
!
OHu@)|IZ + @I}, < Ky + 2A(u(@)|I? + f lu(s)I2, ds) (3.14)
0

for K| = 2Ky/A + 2|ju(0)|[%,. Applying Gronwall’s inequality to (3.14), we can get

2A
for all + > 0. Now plugging (3.15) and (3.12) into (3.11), we find that

!
K
()] + f ()2, ds < M) + — (N = 1) (3.15)
0

1 t
Kllé’tu(t)llf + @I, < K1 + Allu@)ll? + 2Af lu()IE, ds < M 2ANu(O)I + K1) (3.16)
0

Fk

By the trace theorem, we have
Ko, K1 < C(10,uO)2 + luO)12 + lu(O)II3, + o f V1., u3(0))
2o

for a constant C > 0 depending on py, P, A, €,6,k, 0, g, b.
For the estimates for 1, ¢, V, we can get from (1.8),, (1.8),, (1.8),, (3.16) and the Korn’s lemma (seen
Lemma 3.6 in [4]) that

! !
IOl < Mol +f 10sm()lzds < llmollgn +f (| ds
0 0

< Ce™(lnoll + Vo),

! !
lg()llz> < llgollz> + f 18,(s)llz2ds < llqollz> + f liCs)lln s
0 0

< Ce™(llgoll2 + Vo),
and

t t
IVOllr2 < [[Vollzz + f 10sV(ll2ds < |[Vollez + f ()l ds
0 0

< CeM(IVoll2 + Vo),

where Iy = [|0uO)|? + |lu(0)|> + [[u(0)|, + o’fzo IV.,.u3(0)>. Then we complete the proof of
Theorem 1.1.

Conclusions

This paper considers the linear Rayleigh-Taylor instability of an equilibrium state of 3D gravity-
driven compressible viscoelastic fluid with the elasticity coefficient « is less than a critical number . in
a moving horizontal periodic domain. We apply a method of studying a family of modified variational
problems in order to produce the maximal growing mode solutions to the linearized equations, and
then prove an estimate for arbitrary solutions to the linearized equations in terms of the fastest possible
growth rate for the growing modes.
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