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1. Introduction

During the past decades, neural networks have attracted the attention of researchers and have been
extensively applied, such as pattern recognition, associative memory, signal processing and so on.
There are many good results about exponential stability and synchronization of the equilibrium point,
periodic or anti-periodic solutions, almost periodic solutions and weighted pseudo almost periodic
solutions for neural networks (see [1-10]).

Leakage delay is the time delay in the leakage term of the systems and a considerable factor
affecting dynamics in the systems. Leakage delay has a great impact on the dynamic behavior of
neural networks. Some good results of neural networks with leakage delay have been studied. For
example, some authors have studied the periodic (or anti-periodic solutions) for neural networks with
leakage terms (see [11-13]), some authors have studied almost periodic solutions for neural networks
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with leakage delays (see [14—16]), some authors have studied the almost sure stability of stochastic
neural networks with time delays in the leakage terms (see [17]) and some authors have studied the
fractional-order neural networks with leakage delays (see [18-22]).

Octonion-valued neural networks, which were first proposed by Popa in [23], represent a
generalization of real-valued neural networks, complex-valued neural networks and
quaternion-valued neural networks. The octonions are the largest of the four normed division
algebras. While somewhat neglected due to their nonassociativity, they stand at the crossroads of
many interesting fields of mathematics [24,25]. Recently, some authors have studied the equilibrium
point for octonion-valued neural networks (see [26—-30]).

As is well known, the properties of weighted pseudo almost periodic solutions have been
successfully applied in many neural networks with delays. The stability analysis of weighted
pseudo-almost periodic solutions is more general and interesting than that of equilibrium points.
Recently, some authors have studied the existence and global exponential stability of weighted pseudo
almost periodic solutions for neural networks with delays (see [31-36]).

With inspiration from previous research, to fill the gap in the research field of octonion-valued neural
networks, the work of this article comes from two main motivations. (1) In practical applications,
a weighted pseudo almost periodic motion is an interesting and significant dynamical property for
differential equations. (2) Recently, in [26-29], Popa has studied the global exponential stability of the
equilibrium point for octonion-valued neural networks. Therefore, it is worth studying the weighted
pseudo almost periodic motion of octonion-valued neural network models via a non-decomposition
method.

Compared with the previous kinds of literature, the main contributions of this paper are listed as
follows. (1) First, to the best of our knowledge, this is the first time study on the weighted pseudo
almost periodic solutions for octonion-valued neural networks. (2) Second, without separating the
octonion-valued neural networks into real-valued neural networks (or complex-valued neural
networks), the results are less conservative and more general. (3) Third, in [26-30], some authors
studied octonion-valued neural network systems by using the decomposition method. Therefore, to
avoid the complexity of the calculation, this paper discusses octonion-valued neural network systems
by using the non-decomposition method, the Banach fixed point theorem and the proof by
contradiction. (4) Fourth, our method in this paper can be used to study the weighted pseudo almost
periodic solutions for other types of octonion-valued neural networks. (5) Fifth, examples and
numerical simulations are given to verify the effectiveness of the conclusion.

Motivated by the above statement, in this paper, we will study the following octonion-valued neural
networks with leakage delays and mixed delays:

() = et —m@) + ) ay®)fi(x0)
j=1

+ ) bij(0)g,(x(t = 7ij(1)))
j=1

n ¢
+ > dij(0) h(x,(s))ds + L(D), (1.1)
j=1 1=6j(1)
where i = 1,2,...,n, x;(t) € O is the state vector of the ith unit at time ¢, ¢;(f) > 0O represents the
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rate which the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs, a;;, b;j, d;; € O denote the strength of connectivity between unit i and
J at time ¢, the activation functions fj, g;,h; € O show how the jth neuron reacts to input, I; € O
denotes the ith component of an external input source introduced from outside the network to the unit
i at time ¢, 7;() : R — R* denote the leakage delay, 7;;(r) : R — R are the time-varying delays and
0;j(1) : R — R are the distributed delays.

The initial conditions of the system (1.1) are of the form
xi(s) = QD,'(S), s € [_99 0]7 (12)

where i = 1,2,---,n, ¢; € O, 6 = max{y*,7,6%}, n© = max {supni(t)}, T = max {suprij(t)},

1<ij<n U e <i,j<n U jer

0" = max {supé,-j(t)}.
teR

1<i,j<n

This paper is organized as follows: In Section 2, we introduce some definitions and lemmas. In
Section 3, we establish some sufficient conditions for the existence and global exponential stability
of weighted pseudo almost periodic solutions for system (1.1). In Section 4, one numerical example
is provided to verify the effectiveness of the theoretical results. Finally, we draw a conclusion in
Section 5.

Notations: R denotes the set of real numbers, R, = [0, +00) denotes the set of non-negative real
numbers, O denotes the set of octonion numbers, O denotes the 8 dimensional octonion numbers, ||-||o
represents the vector octonion norm. For x € Q, we define ||x|lop = |x| and for x = (x;, x, -+ , x,)" € Q",

n
we define ||x|lor = 2 ||xillo-
i=1

2. Preliminaries

In this section, we will introduce some basic definitions and lemmas.

The algebra of octonion is defined as

7
0= {x=Ylxlyey : L¥lo, Lali, -+ [xly € B,

p=0

where e, are the octonion units, 0 < p <7, and when p = 0, we have ¢y = 1. The octonion units obey

the octonion multiplication rules: e e, = —e e, # e,e,, Y0 < p # g < 7, from which we deduce that
O is not commutative, and that (e,e,)er = —ep(e er) # e,(eqer), for k, p, g distinct, 0 < k, p,q <7, or
ep,e, # e, thus O is also not associative.
7
Octonion addition is defined by x + y = > ([x], + [y],)e,, scalar multiplication is given by
p=0

7
ax = ) (alx],)e,, and octonion multiplication is given by the multiplication of the octonion units
=0

p_
(see Table 1):
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Table 1. The multiplication of the octonion units.

X () eq () e3 ey (2 €6 e7
€o €p (4] () (%] €4 [ €¢ €7
el el —€y €3 ) €5 —é4 —e7 €q
ér ér —e3 —€y (5] €g €7 —é4 —és
és és () —eq —€y €7 —é€q €5 —é4
€4 €4 —€s5 —€q —e7 —€y (4] [5) (%]
€5 €5 €4 —e7 €q —€q —€y —e3 [55)
€e €q ey €4 —é€s —eé) (%] —€y —€]
(] ey —€q €s €4 —e3 —€) €] —€y
7
The conjugate of an octonion x is defined as X = [x]oep — 2. [x],e,, its norm as |x| = Vxx =
p=1

A / Z;ZO[x]f,, and its inverse as x~! = ﬁ We can now see that O is a normed division algebra, and it
can be proved that the only three division algebras that can be defined over the reals are the complex,
quaternion and octonion algebras.

Definition 2.1. ( [37]) Let f € BC(R,R"). Function f is said to be almost periodic if, for any € > 0,
it is possible to find a real number | = l(€) > 0, for any interval with length l(€), there exists a number
7 = 1(€) in this interval such that

| ft+1)— f(H) |< €, VteER.

We denote by AP(R, R") the set of all almost periodic functions from R to R”, AP'(R, R") the set of
all continuously differentiable functions f : R — R” satisfying f, f* € AP(R,R").

Definition 2.2. Let f € BC(R,Q"). Function f is said to be almost periodic if, for any € > 0, it is
possible to find a real number | = l(e) > 0, for any interval with length [(€), there exists a number
7 = 1(€) in this interval such that

1f+7) = fOllor <€, VrIeR.

We denote by AP(R, Q") the set of all almost periodic functions from R to ", AP'(R, Q") the set of
all continuously differentiable functions f : R — O" satisfying f, f* € AP(R, OQ").

Lemma 2.1. Suppose that @ € R, f, g € AP(R,Q), then af, f + g, fg € AP(R, Q).

Proof. Since f, g € AP(R, Q). Therefore, f, g € BC(R,0), namely, there exist two positive constants
M, M, such that

Ifllo < M, ligllo £ Ms.

For any € > 0, we have

If(t+7) = fDllo < 2LMZ lg(t + 1) — g(D)llo < 2—;41

Hence, we have
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ILf(+1)g(r + 1) = f(DEDllo

< f@+1)gt+71) = f(Og(t + Dllo + [l f (gt + 1) = f(DgDllo
< f@+1) = fOllollgl + Dllo + lf Ollollgl + 7) — gDllo
€ €
< 5 + E = €,
which implies that fg € AP(R, Q).
Similarly, we can show that af, f + g € AP(R, O). The proof is complete. O

Lemma 2.2. If f € C(O, Q) satisfies the Lipschitz condition, x € AP(R, Q), then f(x(-)) € AP(O, Q).

Proof. Since f € C(O, O) satisfies the Lipschitz condition, x € AP(R, Q). Let u,v € O, for any € > 0,
there exists a positive constant L such that

€
lx( + 7) = x(Dllo < T Ilf () — fOWlo < Lllu = vllo.
Hence, we have

1f(x(z+ 1) = f(x()llo < Llx( +7) = x(Dllo

< €

which implies that f(x(-)) € AP(O, Q). The proof is complete. O
Lemma 2.3. If x € AP(R,0), p € AP(R,R), then x(- — p(-)) € AP(R, O).

Proof. Since x € AP(R,Q), it follows that x is uniformly continuous. For any € > 0, there exists a
constant 0 < 6 = 6(€) < 5 such that

€
lx(t1) — x(2)llo < 3 Vi, h €R, |1 =] <6. (2.1)

For this 6 > 0, there exists a [ = [(0) = I(6(€)) > 0, for any interval with length /(9), there exists a
number 7 = 7(€) in this interval such that

lo(t+ 1) —p()| <6, ||x(t+71)—x(D)||lo <6 < %, VYt e R. (2.2)
From (2.1) and (2.2), we have

lx(t + 7 = p(t + 7)) = x(t = p(D)llo
< lx(t+7—p+71) = x( +7 - p0)llo
Hx( + 7 = p(1)) — x(t = p(1))llo

< € " €
—_ —_ = E,
2 2
which implies that x(- — p(:)) € AP(R, ©). The proof is complete. O
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Let W denote the collection of functions (weights) u : R — (0, +o0), which are locally integrable
over R such that u > 0 almost everywhere. For u € W and r > 0, we denote

u([=r,r]) = f p(x)dx.
The space of weights W, is defined by
We = {/J eW: inﬂ{,u(t) = o >0, lim u([-r,r]) = +oo}.
S r—+00

Definition 2.3. Fix u € W,. Function f € BC(R, Q") is said to be weighted pseudo almost periodic,
if it can be written as f = fi + f, with fi € AP(R,0Q") and f, € PAPy(R,Q", u), where the space
PAPy(R, Q" ) is defined by

1 T
PAPYR, O ) = { f € BO@®, 0" : lim T f I Ollorutide = 0}

We denote by PAP(R, 0", u) the set of all weighted pseudo almost periodic functions from R to
0", PAPY(R,Q", u) the set of all continuously differentiable functions f : R — Q" satisfying f, f’ €
PAPR,O", ).

Lemma 2.4. Suppose that x € PAP(R, O, u), T € AP'(R,R,) and 3 := inﬂ{(l—i'(t)) > 0, then x(t—7(1)) €
te

PAP(R, O, w).

Proof. Since x € PAP(R, O, i), by Definition 2.3, we have x = x; + x,, where x; € AP(R,0) and

X, € PAPO(R Q, w). Clearly, x1(t —1(2)) € AP(R, Q).

Leta = E X sup T =sup7(t), s =t—7(t), we have

ﬂ(t T(t)) ’

teR
0 < f st = T(O)llopo)dr
u([—=r,r])
< f ”x2<f‘f(f))”@“<f‘T(’))dfiggﬂ(tﬂ_( )(t))
r—7(t) 1 /J( )
P d
: ﬂ([—m’]) TR RO londssup
1 r—1(t)
< o | Ieluds
1 r+T
< ea(llop(s)ds

,U([_ ]) —-r—T
u([-r—1,r+1] 1
O arn) wr - o) f ba(llon(ds

together with the fact that

Jim e f lbe(s)llon(s)ds = 0
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which implies that

lim f [lx2(2 = 7()llou(t)dt =

r—+o0o M([—
Hence, x,(t — 7(¢)) € PAPy(R, O, u). The proof is completed. O
Lemma 2.5. Suppose that « € R, f, g € PAP(R,QO, ), then af, f + g, fg € PAP(R, O, u).

Proof. Since f, g € PAPR,O,u), by Definition 2.3, we have f = fi + f», g = g + g, where
f1,81 € AP(R,Q), f2, 82 € PAPy(R, O, ).
Therefore,

fe=(+ )& +g) = figi + figa+ (g1 + &) = fig1 + fig2 + 8.

Clearly, fig; € AP(R, Q).
Next, we will show fig, + g € PAPy(R,O,u). Note that fj € AP(R,0), g € PAP(R, O, i), we
have that f;, g € BC(R, Q). There exist two positive constants L, L, such that

IfiDllo < Ly, [Ig0llo < Lz, ¥t € R.

Hence, we have
1 r
0 < ————ijm&m+ﬁmamew
u(=r,r]) J_,
1 r
—_— f I /1()g2(Dllop(2)dt
u([-r

f I 2(Dg@®llou(®)dt
,U([—

—_— f llg2(Dllop(n)dt
u(l-

f I 2Ollopu(t)dt,
u([—

together with the fact that

lim fummem_
r—+oo .U([—

and

ﬂmmp DIH%MWmm_,

which implies that

lim ———s y ([ f If1()g2(t) + fo(Dg(Dllop()d =

Hence, f1g, + fog € PAPy(R, (O),,u).
Similarly, we can show that af, f + g € PAP(R, O, i). The proof is completed. |

Lemma 2.6. Suppose that x € PAP(R,O,u), f € C(O,Q0) satisfies the Lipschitz condition, then
f(x(-)) € PAP(R, O, ).
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Proof. Since x € PAP(R, O, u), by Definition 2.3, we have x = x; + x,, where x; € AP(R,0) and
Xy € PAP()(R, @,ﬂ) Let

FGxO) = fxa () + x0) = fa () + fn () + x20)) = f(a (),

clearly, f(x(-)) € AP(R, ).
Next, we will show f(x;(-) + x2(-)) — f(x1(-)) € PAPy(R,O,u). Since f € C(O,Q) satisfies the
Lipschitz condition, for u, v € O, there exists a positive constant L such that

1f @) = fWllo < Liju = vllo.

Hence, we have

1 r
0 < ——— f 1f Cx1(®) + x2(0)) — f(x1(D)llop()dt
u([=r,rD J-,

1 r
(=1, r]) f ) Lllx2()llop(t)dt,

together with the fact that

1 T
li D f lx2(Dllou(ndt = 0,

m
r—+00 Iu([—r’ r

which implies that

1 r
lim ——— f lf (x1 (1) + x2(1)) — f(x1(D)llop(t)dt = 0.
[_r’ r]) —r

m
r—+oo fi(
Hence, f(x(-) + x2(-)) — f(x1(-)) € PAPy(R, O, ). The proof is completed. m]
Let

X = {¢ € C'(R,0" | ¢,¢' € PAP(R, O, ﬂ)}

be a Banach space equipped with the norm

lI$llx = sup max {II¢(I)|I@n, ||¢'(t)||<o>n},

teR

and )
[ el a0 (sds
[ el O n(s)ds

Go(t) =

f_t . el aOdT ($)ds

Definition 2.4. Let x(t) = (x(2), x2(2), - - , x,,(t))T be a weighted pseudo almost periodic solution of
system (1.1) with the initial value ¢(s) = (¢1(s), 2(s), -+ , gon(s))T and y(t) = (y1(t), y2(t), - - - ,yn(t))T
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be arbitrary solution of system (1.1) with the initial value Yy(s) = (¥ 1(s), ¥2(s), - ,wn(s))T, where
p, ¥ € C([-6,0],0". If there exist constants A > 0 and M > 0 such that

[lx(t) = yOllx < Mllp — ¢llxe™, Y > 0,

then the weighted pseudo almost periodic solution of system (1.1) is said to be globally exponentially
stable, where
llx = yllx = sup max{[|lx(2) — y(®llon, (x(2) = y())'llon}

teR

and

lle —¥llx = Sup max{lle(s) — ¥ (s)llor, [I(@(s) = () llor}-

s€[6,0

In order to study the existence of weighted pseudo almost periodic solutions for system (1.1), we
need the following assumptions:

o Assumption 1: For l,] = 1,2, e LN, C,-,(S,-J- S AP(R, R+), ni,Tij € APl(R, R+), aij,b,-j,d,-j,l,- S
C(R, Q) are weighted pseudo almost periodic.
e Assumption 2: For j = 1,2,--- ,n, there exist positive constants L, L,, L;, such that

i) = fiMllo < Lyllu = vllo,
llgj(u) = g;Wllo < Lgllu = vllo,
i) — hj(Wllo < Lallu = vllo.

e Assumption 3: There exists a positive constant & € (0, 1) such that

N
0<max{9,(l + C—)@} <&<1,
- _

c

where

= Y L+ ) b+ ) 'L,
=1 =1 =1

S a M-8 DM - §)
e
j=1 j=1
o dTM(1 =€)
D
j=

¢~ = mininf ¢;(¢), ¢ = max sup ci(0), llpollx < L,
1<i<n teR

Q
Il

max Supllalj(t)||©ab+ = max Sup”bt](t)”@),
SN I<i,jsn ter

d” = max sup|ld;j(n)llo, My = max X L/ (Olle,

I<ij<n 4R

M, = max ||g;(0)[lo, M; = max ||hj(0)||©-
1<j<n 1<j<n
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3. Main results

In this section, we will investigate the existence and global exponential stability of weighted
pseudo almost periodic solutions for delayed octonion-valued neural networks (1.1) by applying the
non-decomposition method, Banach fixed point theorem and the proof by contradiction.

Theorem 3.1. Let u € W,. Assume that Assumptions 1-3 hold. Then system (1. 1) has a unique
weighted pseudo almost periodic solution in the region X* = {¢ ¢ € X, ¢ — dollx < 7 f}

Proof. System (1.1) can be transformed into the following system:

xX(t) = —ci(®Ox(t) + ci(t) f X.(s)ds + Z a;;(t)

7i(0) j=1

M@W+Z%Wﬂﬁnmn
+ Z d;j(t) f " hi(x;(s))ds + I(1). 3.1

It is well known that a solution of system (3.1) is equivalent to find a solution of the integral
equation:

S

X(f) = f eft“ c,-(v)dv[ci(s) x.(v)dv + Z a;i(s)

s=1i(s)

ij(xj(s)) + Z b,](s)g](x](s sz(s)))

+ Z dij(s) f

hi(x;(v))dv + Ii(s)]ds, (3.2)
6j(s)

wherei=1,2,--- ,n.
Now, we define a mapping ¥ : X* — X as follows

(EA(D) = (<D, 240, x0)

wherei=1,2,--- ,n,xf(t) € O and

sy = | o], L o
i(t)_f ' i(s) i()d+§ ij(8)
X _Ooe [c s S_m(s)gb v)dv a;j(s

Jj=1

%%@+ZM%MNTwm

+ Z dij(s) f

AIMS Mathematics Volume 8, Issue 6, 14867-14893.
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where ¢; € X.
Let

Fis) = o) | ¢lmdv+ D ai(s)
j=1

s=ni(s)

XF(01() + D biy($)2,((s = 7ii(5)))

j=1
S

+ Z dij(s) f hi(p;(»)dv + I(s), i=1,2,--- ,n.
j=1 5=6;j($)

By Lemmas 2.4-2.6, for i = 1,2,--- ,n, we can get Fi(f) € PAP(R,O,u). Let F; = F} + F?, where
F! € AP(R,0) and F? € PAPy(R, O, i). Then we have

! !
PO f el OV El()ds + f e OV F2(5)ds

oo [Se]

= Tl +T2).

First, we will show that I’ € AP(R,0) and I'? € PAPy(R,O,u). Since ¢;, F! € AP(R,0), let

a; = sup||F l.l (l|o, for any € > 0, it is possible to find a real number / = [(€) > 0, for any interval with
teR
length [(€), there exists a number o = o(€) in this interval such that

(c)?

1

o
| ci(t +0) — ci(®) |< & IIFi(t+0) = Fi(llo < SE€

Hence, we have that

ICYt +0) =T ()llo
1+0 " ! s
_ f €f’+9 ci(v)dvFil (s)ds — f €f' Ci(v)dvFil (s)ds

00 - 0
d S+0 ! S
= f eftw Ci(v)dvFil(s + 0)ds —f €f’ ci(v)dVFi](S)ds
—00 —00 (@)
! sto ! sto |
< j1eLQMWU§@+Qms—JQeLQ“Wﬁﬂuws
—eo _oo 0
4 s+0 ! s
+Hf ej;ﬂ’ c,—(v)dvFil(s)dS _f efr C,‘(V)dvFil(S)dS
—oo —oo 0
d Sto
< f e “OMNF (s +0) — F(s)llods
t S+Q .. S .
+ f | e GO _ @ | E L (s)lods
€ - ! Sy J 1
< s f f el SO | ¢+ 0) = &) | dLIF (9)llods
—00 JIt
<

e () ft fS IO
2+ 7 € . e dids
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< 6+6
< -+ =¢
2 2

which implies thatI'} € AP(R,0),i=1,2,--- ,n
Since F? € PAPy(R, O, ), let £ = ¢ — s, we have

1 .
0 5 ——— [ I0ludr
;fr
u([=r,r])
fc,(v)dv 2
(= rr])f f e’ I|F; (S)||@ds)u(t)dt

- e - 2 _
ﬂ([—r,r])Irﬁ e ClIF( f)llwdé),u(t)dt

+00 ~ 1 "
—c év v ) _
L ‘ (,u([—r, D ‘[r 17t g)”@,u(t)dt)d{,

!
ek C"'(V)‘IVFI.Z(s)a’s

IA

,u(t)dt

IA

IA

IA

together with the fact that

lim f IF7(t = Ollop(D)dt =
r—+c0 ,u(
which implies that
lim ———— f T3 (0)llop(r)dr =
r*+m;d[

Hence, Ff € PAPy(R, O, w), xl. € PAP(R,O,pn),i=1,2,---,n
Second, we will show that (xf)’ € PAP(R,O,u). Fori=1,2,---,n, we have

E@—Q@j‘JWMWMMS

—ci(t)x! (1) + Fi(0).

@)Y

Since ¢;(t) € AP(R, Q), x ,F; € PAP(R, O, u). Therefore, we can conclude that (x¢)’ € PAPR, O, w).
Third, we show that the mapping YV is a self-mapping from X* to X*. By Assumptions 1-3, for

f g

Hence,

I(FP)(D) = do(Dllon
f ef[x c,'(v)dv[cl_(s) A ¢:(v)dv

Z s=1i(s)

i=1

+ @O fi(@i(9)) + > bij()8,(65(s = Tiy(5))

J=1 J=1
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IA

IA

IA

IA

IA

+ Z dij(S) f
=1 0

5—0;(s)

(6 0)dv|ds

O

S

Zf ej;s ci(v)dv[ci(s) ||¢l’(v)||@dv
i=] Y7

s=7i(s)

+ ) llaillollfiisDllo + ) Ibi(llo

J=1 j=1
Xlg(8i(s = Tl + D ()l
j=1
x f | ||h,,-(¢,~(v>)||@dv]ds
5=0;(s)

n ¢ ] n
D f el | oo + Y a'Ly
i=1 Y J=1
xlg()io + > b*Lligi(s = Ti(s)llo
=1
+ > d S Llg(llo + ) a* My
j=1 J=1
Y M+ Y d+5+Mh]ds
=1 =1
/ n
[ ebelenion s Y a Lol
—00 J:1
£ DLl + Y d* S Lillgll + ) a*
=1 Jj=1 Jj=1

XMy + Y b M+ Y d+5+Mh]ds
= =)

Cl_[cﬂf + i a'Ly+ i b"L, + i d*
=1 =1 =1

xorry+ 3 M8 5 DM 2O

L

J=1 J=1

L

SN dtotM,(1-6)1 L
+; L ]1 iy
EL

1-&
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and
I((FP)(®) = o) llo
= D |l f ()¢;(v)dv+Zaij(t)fj((]ﬁj(t))
i=1 =ni(t

J=1

+ Z bij(D)g (¢ ,(t — Ti;(1))) + Z dij(1)
j=1 J=1

! !
X f hi(¢;(v)dv — ci(t) f o iy
1=0;(1) .

Kaw [ gmav+ Y a6
=

s=1i(s)

£ bi(9)g(@i(s = Tii() + Y diy(s)
j=1 Jj=1

x f i )]s
5=6ij(5) (0]

[c+77+ + > 'Lyt Y b L+ ) d'6l,
=1 =1 =1

S atM(1-¢&) A bTM(1-¢)
+Z 7 +Z gL

Jj=1 j=1

IA

SdtOTM(1-6)1 L T
+Z L ]1—g+z_—[“7

j=1
+ an a'Ly+ an b"L, + Zn: d*5'Ly,
j=1 j=1 j=1

SatMi(1-§) A b"M(1-¢)
N dtotM(1 - 6)1 L
2 L ]1—5

+ n n
(1 + Z—_)[c+n+ + Z a'Ly+ Z b'L,
=1 =1

+and+5+Lh +iw + ib*
J=1 j=1

J=1

J=1

IA

Mg(1—§)+ - d+5+Mh(1—§)] L
L 1-¢

X

j=1
L
1-¢

IA
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Hence, we have

EL

Yo — < —,

196 - gollx < 1=

which implies that the mapping ¥ is a self-mapping from X* to X*.

Finally, we show W is a contraction mapping. By Assumption 2 and Assumption 3, for any ¢, y €
X,

¥ = (B Dllor = D 1K(1) = 2l
i=1

n

-3

i=1

f efts c,'(v)dv[ci(s) ’ (¢:(y) —X;(V))dv
oo s—1i(s)

+ ) ay($)(fi(91(9) = £i0¢/(90)) + D bis(s)
J=1 Jj=1
(gj(¢j(s = 7i5(5))) = &i(x (s = Tii(9)))

+ Z o [ o 000 = mcon)avfas|

Z [eremele [ o - xiomodr
5=1i(5)

e

J=1

XH(gj(¢j(s = 7ii(5))) — g(x(s - T[j(S))))H@
¥ Z d* f “ H(hj(¢j(v)) - b0 0)| v ]as

Z f el “”"V @) = Xi)lo

IA

@)= Ho), + Do

IA

+ Z A Lligi() = x(9)llo + D b7L,
J=1 j=1

X|lgj(s = 7i5(5)) = x (s = 7i;())llo

+ DA Ll ) = x0lo|ds

=1
f c(v)dv[ +n++z +Lf+Zb+

£y 45" LI = xleds

J=1

IA
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1[++ C + C
< —l¢'p"+ ) a'Ly+ ) b'L

) d S Ll -
=1

&l — xllz

IA

and

(¥ ®) — IO llor = D ) = @Y,
i=1

-3

i=1

X(£(810) = [, )) + ), bis®
j=1

a) | (@0 = xi0dv+ Y ain)
j=1

=)

X(20,(t = 3i0) = 8,00, - 73/0)
+Z%®ﬁ5@MNW%mMWv

ij(®)
s

—mqfeﬁw$m> (6/0) — X))y

s=1i(s)
+ a0, = filei () + D bis(s)
J=1 j=1
X(27(85(s = 7i1(9)) = &,0;(s = T55(9))))
+Z@wfaxwmm—mmmwﬁ%
=1 5=0;(s

n n n
(1 + z—_)[c+n+ + Z a'Ls+ Z b'L,
=1 =1

) d S Ll =
=1

&l = xlz.

IA

IA

Hence, we have

¥ — Fxllx < &li¢ — xllx

which implies that ¥ is a contraction mapping.
Therefore, by Banach fixed point theorem, system (1.1) has a unique weighted pseudo almost
periodic solution. The proof is completed. O
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Remark 3.1. Compared with literature [26—-30], this paper discusses the existence of weighted pseudo
almost periodic solutions for octonion-valued neural networks with mixed time-varying delays and
leakage delays via the non-decomposition method. Therefore, the results are less conservative and
more general.

Theorem 3.2. Assume that Assumptions 1-3 hold. If the following condition is satisfied:

o Assumption 4: There exists a positive constant A such that

+

0<max{ 1 ,(1+ ¢ )H}<1,
cc—A cc—A

where . i .
IT:=cn" + Z a'Ly+ Z b"L, + Z d*5°Ly.
=1 =1 =1
Then system (1.1) has a unique weighted pseudo almost periodic solution that is globally exponentially
stable.

Proof. By Theorem 3.1, system (1.1) has at least a weighted pseudo almost periodic solution. Let x()
be a weighted pseudo almost periodic solution of system (1.1) with the initial value ¢(¢) and y(¢) be an
arbitrary solution of system (1.1) with the initial value y/(¢). Set z(¢) = (z1(¢), 22(¢), - - - , zn(t))T, where
zi(t) = x;(t) — y;(t) with the initial condition:

¢i(s) = @i(s) — Yi(s), s €[-6,0], (3.4)

wherei=1,2,...,n.

-1
Let M = min {c‘, (1 + f—i) }H‘l, by Assumption 4, we have M > 1,

1 1 +o o+ C + C + C + ot
Msc——ﬁ(” +;aLf+Zb Lg+Zd§Lh),

J=1 J=1

and

1 c’ + o+ c + c + C + ot
M_(l+c‘—/1)(c n +]Z:;a Lf+;b Lg+;d6 Lh).

For any 7 > 0, we have that

t

—cizO + ) | Z(s)ds+ Y aij(o)
j=1

z;(t)

1-ni(t)
X(£iCei(0) = ) + ) bis®)
j=1
X(gj(xj(f - 7i5(0)) — gt — 7 ij(l))))
+ > dij(o) f ((xi(5) = hy(y,()))ds. (3.5)
J=1 !

—0;;(t)
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Multiplying both sides of (3.5) by b “©% and integrating on [0, ], we have
t t t
() = ¢(0)e bk 4 f o Ci(f)df[ci( 5)
0

<[ ddu Y an()
K j=1

—ni(s)

—fj(yj(s))) + Z bij(S)(gj(Xj(S = 7,(5)))
=1
—gi(y(s - Tij(S)))) + Z dij(s)
=1

X f (hj(xj(u))—hj(yj(u)))du]ds,

—0;j(s)

wherei=1,2,...,n.
It is easy to see that

Izl = gl < Mlig(D)llze™, 1 € [-6,0].
We claim that
lz(D)llx < Mll(@)llxe™, t € [0, +00).
To prove (3.6) holds, we show that for any € > 1, the following inequality holds
lz(D)llx < eMllp(D)llze™, > 0.
If it is not true, then there must be some #; > O such that

max{|lz(t)llor, 12’ (#)llon }
eM||p(t))llxe "

lz()lIx

and
lz®llx < eMllp(D)llxe™, t € [-6,1).
Hence, we have that

llz(t)llor = max{||z:(¢)llo}
1<i<n

3l
< lgllixe™ " + eM|gllx f e 17
0

X[c*rf + Z a'Ly+ Z b*Lge'
=1 =1

(3.6)

(3.7)

(3.8)
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and

AIMS Mathematics

IA

IA

IA

IA

IA

+ Z d+(5+Lh]e_“ds
=1
(A=c7)n 1

e
M —”’1[ + ( nt
eM||¢llxe i | G

+ Zn: a‘Ly+ Zn: b*L,e'™ + Zn: d+6+Lh)
j=1 j=1 J=1

X(1 — eon )]

1 1

eM C—e—/ltl [e(/l—c‘)tl(_ _ (C+ +
1l i G

# Y @ Lyt Y b+ ) d+6+Lh))
= = =
1 n n
t /1(C+77+ + Z a'Ly+ Z b*Le'
= =
+ Z d*d*Lh)]
=)
1 n
eM||g|lxze™" [m(c+77+ + Z a'Ly
=

> b LY d+5+Lh)]
=) =

eMl\pllxe™",

Gz llor = max{lizi(t1)) llo}

Hillee™ " + eMlllge [c*n*

+ Z a‘tLy+ Z b*L,e" + Z d*&*L,,]
j=1 j=1 j=1

11 ~ n
+EM||¢||Xf e =9 [c+77 + Za+Lf
0

=

+ Z; b+Lgeh + Z}: d+5+Lh]e_’”ds
J= J=

+ n n
6M||¢||Xe_”‘[ nt+ Z a‘*Ly+ Z b*Lge'
j=1 j=1
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+ (A=)t

C + o+ =t ¢
A Ly + eMlgle | S — -

=1
X(c+77+ + Z a'Ly+ Z b*L,e" + Z a’+6+Lh)
=1 =1 =1

X(1 - e“-”“)]

c

+ n
=t +.+ +
eMlgee™|(1+ ——)(e*n +;a L

+ > b ey d+5+Lh)]
=1 =1

< eM||gllxe™™".

IA

Hence, we have

llz(t)llx < eMllp(t)lze™",

which contradicts the equality (3.8), and so (3.7) holds. Letting € — 1, then (3.6) holds.
Therefore, by Definition 2.4, the weighted pseudo almost periodic solution of system (1.1) is
globally exponentially stable. The proof is completed. O

Remark 3.2. In [26-30], some authors have shown stability of octonion-valued neural networks by
using the Lyapunov function method. However, unlike the method of the above literature, we obtain the
global exponential stability of weighted pseudo almost periodic solutions for octonion-valued neural
networks with leakage delays and mixed delays by using the proof by contradiction.

4. Illustrative example

In this section, we give one example to show the feasibility and effectiveness of main results.
Example 4.1. Consider the following delayed octonion-valued neural networks with two neurons:

2
() = —cOxt i) + Y ai(Ofi(x0)

j=1
2
+ ) bij(0gi(x,(t = 7ij())
j=1

+ Y dij(0) hy(x(9))ds + I(0), 4.1)
=1

1=0;(t)

where i = 1,2, ci(f) = 1.5+ 0.3sin V21, ¢»(t) = 1.4 + 0.2cos V51, ni(t) = no(t) = 0.02sin2s,
7;5(f) = 4 sin V5t, 6;;(t) = 0.03 cos V71, and
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an (@) = 0.1( V6 cost, 2 sin V21,0, sint, cos V3t, V3cost,0,2sint)’,
app(t) = 0.1(0, V2 sin t, V5 cos t, sin \/gt, 2cost,0, V2 cos t, sin \/7t)T,
a» () = 0.1(sin 2t, V2 cos t,0, sin \/gt, sin \/zt, 0,2 sin \/gt, V3 cos t)T,

ax(t) = 0.1(2cos \/Et, sin \/§t, 0, V3sin \/Et, V6 cos 2t,0, sin \/gt, V2 cos 207,
by1(r) = 0.1(0, V2 sin t, sin \/7t, V5 cos 2t,0,sint, V2 cos \/gt, V3 sin \/Et)T,

b12(t) = 0.1(2 cos t, sin \/gt, 0, V3 cos 2t, V2 cos \/gt, sin \/gt, V3 sin t,0)7,
by1(t) = 0.1(sin 2¢, 0, V2 sin t, V5 cos t, sin \/7t, 2 cos \/§t, 0, V3 cos \/gt)T,

by (1) = 0.1( V2 cos \/gt, V3 cos 2t,0, sin \/gt, V5 cos 2t, sin \/Et, 0,2sin \/gt)r,
dyi(6) = 0.1(V3sin 21,0, sin Vét,0,2 cos V2t,cos V5z, V2sint, V3 cos 20,

dip(t) = 0.1(cos \/gt, sin 2t, 0, V3 cos \/gt, V2 sin 3t,cost, 0, V2 sin \/gt)T,

dy () = 0.1( V6 sin2t, V3sin 3t,0, cos V5t, V2 sin 2z, cos V7t, V2 sin3t,0)7,

d» (1) = 0.1(0, V3 cos 3t,cost,cos \/gt, 0, V3 sin 2t, V2 cos t,2 sin \/gt)T,

1
Li(1) = E(sin \/Qt, cos 3¢,3 sint, cos \/gt, cos \/§t, sin 2¢, sin ¢, sin \/EI)T,
1
L(t) = g(cos \/gt, sin 2t, sin \/Et, cos 3¢, cos \/gt, sin \/7t, cos 3t, cos 41)T,

1
Lfixeplp = 25 sinllxlp). [8,(xp],

50 tanh([x;],)
1
[hj(x)], = COS([xJ]p)
Let A =0.5, &£ = 0.8, and by calculating, we have
1
¢"=18, ¢ =12 7=, 7"=002, & =003,
R d+:£ SO VR )
10 5 10’ 30 25
2V2 1 1 1
M,==""2, L L,=—, L,=—, L= —
"Tas 0 T T 60 BT 500 M T 45 10
+
0<max{ (1 +C—)®} 0.6183 <& <1
C
C+
0<max{ ,(1+ )H} 0.2395 < 1
cc—A c -

where
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® = ¢+ Z a'Ly+ Z b'L, + Z d* 6L,
=1 =1 =1

+Z a'My(1-¢) N Z": b*My(1 -¢)

. L . L
j=1 j=1
S dH ST M (1 =€)
+ Z LIS
]:

Inm = ¢c'np"+ Z a'Ly+ Z b'L, + Z d* 6Ly,
=1 =1 =1

It is not difficult to verify that all conditions Assumptions 1—4 are satisfied. Therefore, by Theorem 1

and Theorem 2, system (4.1) has a unique weighted pseudo almost periodic solution that is globally
exponentially stable (see Figures 1-4).

0.4

| [x11o X2l

o
=12

(K],

(0] 10 20 30

time t time t

x,], x,],

o
=12

K]y

-0.4
(0] 10 20 30 (0]

time t

10 20 30
time t

Figure 1. Transient states of the solutions ([x;],, [x2] p)T with the initial value (0.3, -0.3)7,
where p =0, 1,2, 3.
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=1,2

Xl

-0.4
(0] 10 20 30 (0] 10 20 30
time t time t
0.4
[x,1; [x,1;
0.2
N
‘ﬁ'—
)
=
-0.2
-0.4 -0.4
(0] 10 20 30 (0] 10 20 30
time t time t

Figure 2. Transient states of the solutions ([x;],, [x>] p)T with the initial value (0.3, —0.3)7,
where p = 4,5,6,7.

Nr
—
NIk
—
=
-0.2 -0.2
o] 10 20 30 0 10 20 30
time t time t
0.2
[x,1, [x,1,
0.1
N N
i o
& Of o
X X
-0.1
-0.2 -0.2
(0] 10 20 30 10 20 30
time t time t

Figure 3. Transient states of the solutions ([x],, [x2] p)T with the initial value (0.15, -0.15)7,

where p =0, 1,2, 3.
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N__
—
AL
—o
=
time t time t
N_
—i
AL
—
=
-0.2
(0] 10 20 30 (0] 10 20 30
time t time t

Figure 4. Transient states of the solutions ([x;],, [x:] ,,)T with the initial value (0.15, -0.15)7,
where p = 4,5,6,7.

5. Conclusions

In this paper, we consider a class of octonion-valued neural networks with leakage delays and mixed
delays. By using the Banach fixed point theorem, the proof by contradiction and the direct method, we
obtain some sufficient conditions for the existence and global exponential stability of weighted pseudo
almost periodic solutions for octonion-valued neural networks. To demonstrate the usefulness of the
presented results, some examples are given. Our method can be extended to study the almost periodic
solutions or anti-periodic solutions for other types of octonion-valued neural networks.

Meanwhile, future directions will include the study of octonion-valued neural network systems with
impulses, reaction-diffusion terms, Markovian jump parameters and so on. We can specifically explore
the stability and synchronization of the above systems, which will be a direction worth exploring.
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