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Abstract: For sparse signal reconstruction (SSR) problem in compressive sensing (CS), by the
splitting technique, we first transform it into a continuously differentiable convex optimization
problem, and then a new self-adaptive gradient projection algorithm is proposed to solve the SSR
problem, which has fast solving speed and pinpoint accuracy when the dimension increases. Global
convergence of the proposed algorithm is established in detail. Without any assumptions, we establish
global R−linear convergence rate of the proposed algorithm, which is a new result for constrained
convex (rather than strictly convex) quadratic programming problem. Furthermore, we can also obtain
an approximate optimal solution in a finite number of iterations. Some numerical experiments are
made on the sparse signal recovery and image restoration to exhibit the efficiency of the proposed
algorithm. Compared with the state-of-the-art algorithms in SSR problem, the proposed algorithm is
more accurate and efficient.
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1. Introduction

Sparse signal reconstruction (SSR), i.e., using the least entries from a complete dictionary to
represent the signal of interest, is a popular technique for recovering a sparse signal or an image
from an under-determined linear system [1, 2], which can be formulated as the following non-smooth
minimization problem

min ‖x‖0
s.t. Ax = b,

(1.1)
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where A ∈ Rm×n (m � n) is the design matrix, b ∈ Rn is the observation vector and ‖x‖0 denotes the
number of nonzero elements of vector x ∈ Rn to be estimated. Since the problem (1.1) is NP hard [3,4],
it cannot be solved approximately within a fixed ratio unless P = NP. In addition, as for Ax = b, it
is often the case that is ill-posed due to possible ill-conditionedness of A. To deal with the ill-posed
case, and take into consideration sparse structure of (1.1), the `1-norm regularization techniques have
successfully been used for inducing sparsity of solutions [5]. Thus, the problem (1.1) is transformed
into the following Lagrangian form or penalty form, which is usually written as the following form

min
x∈Rn

f (x) =
1
2
‖Ax − b‖22 + ρ‖x‖1, (1.2)

where ρ is a positive parameter and ‖x‖1 =
n∑

j=1
|x j| denotes the `1-norm of x.

Based on the convex relaxation form (1.2), many researchers have developed various algorithms for
solving this problem, including interior-point methods [6], projected gradient methods [7], spectral
gradient methods [8], spectral residual methods [9], conjugate gradient projection methods [10],
alternating direction algorithms [11], and iterative thresholding [12] and so on.

A large class of the first order `1-minimization algorithms (abbreviated as the first order algorithms)
for problem (1.2) is based on the iterative shrinkage/thresholding (IST) method or on variants of
IST [12, 13]. Recently, many extensions and modifications of these basic algorithms have been
introduced and investigated. For instance, Hale et al. [14] present a fixed-point continuation method by
shrinkage operator. Beck and Teboulle [15] propose a fast iterative shrinkage-thresholding algorithm
(FISTA), which has virtually the same complexity as IST, but has better convergence properties.
Bioucas-Dias and Figueiredo [16] present a two-step IST method, which has exhibited much faster
convergence rate than IST. Another closely related method to IST is the proximal thresholding
algorithm by Combettes et al. [17]. A gradient based algorithm is especially one of the most popular
methods for solving (1.2). One of the earliest gradient projection method for sparse reconstruction
was developed by Figueiredo et al. [7]. Another method, SPGL1, was proposed by van den Berg
and Friedlander [18]. Other gradient based methods include Nesterov’s algorithm (NESTA) [19]
and Sparse Reconstruction by Separable Approximation method (SpaRSA) [20] all have good
performance. A large class of the second order information of the underlying function based algorithms
(abbreviated as the second order algorithms) is also popular for solving problem (1.2), which include
Orthant-Based adaptive method (OBA) [21], FBS-Newton [22], Semismooth Newton method with
multidimensional filter globalization (SNF) [23], Inexact successive quadratic approximation (SQA)
method [24] and so on. Although the second order algorithms often outperform the first order
algorithms in seeking high-precision solutions, the computational cost of each step is usually much
higher than that of the first order algorithms.

In recent years, a lot of numerical algorithms about the equivalent forms of (1.2) have been
extensively developed. For instance, Xiao and Zhu [25] transformed (1.2) into convex constrained
monotone equations, and presented a conjugate gradient method for this equivalent form. Sun and
Tian [26] gave a class of derivative-free conjugate gradient projection method for the equivalent
form of (1.2). Sun et al. [27] reformulated (1.2) as variational inequality problem, and proposed
a novelly inverse matrix-free proximal point algorithm for the equivalent form of (1.2). Based on
the same transformation, Feng and Wang [28] also proposed a projection-type algorithm without any
backtracking line search. Xiao et al. [29] proposed a spectral gradient method for solving an equivalent
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non-smooth equation of (1.2). Liu et al. [30, 31] presented a projection method to solve monotone
nonlinear equations with convex constraints, and applied it to solve an equivalent non-smooth equation
of (1.2). In [32], Wang et al. proposed a smooth and convex Lagrange-dual reformulation of (1.2),
and many state of the art gradient-type algorithms can be used to solve the reformulation. Landi [33]
considers the nonnegative constrained quadratic program reformulation of (1.2), and proposes modified
Newton projection method to solve it. On the other hand, since (1.2) can be equivalently converted into
a separable convex programming by introducing an auxiliary variable, the numerical methods which
can solve the separable convex programming are applicable to solving (1.2), such as the alternating
direction method of multipliers and its linearized version [11, 34], the Peaceman-Rachford splitting
method (PRSM) or Douglas-Rachford splitting method (DRSM) of multipliers [35,36], the symmetric
alternating direction method of multipliers [37], etc. Certainly, problem (1.1) can be formulated as a
splitting feasible problem (SFP) [38], and the numerical methods which are designed for SFP are also
applicable to solve (1.1) [38, 39].

As can be seen from this brief review, existing methods are able to solve (1.2). However, the solving
speed and accuracy are adversely affected when the dimension increases greatly. In the paper, we will
establish a new self-adaptive gradient projection method for solving (1.2), which have closed-form
solutions, the motivation for this approach is to achieve better numerical performance, especially for
large-scale problem (1.1). From theoretical perspectives, the global linear rate convergence result for
new algorithms is established without any assumptions, which is a new result for constrained convex
(rather than strictly convex) quadratic programming problem. In addition, an approximate optimal
solution is obtained in a finite number of iterations, and these stronger convergence results are one of
the most important motivations for this work.

The remainder of this paper is organized as follows. In Section 2, we use the separating technique to
transform (1.2) into a differentiable problem and present some related properties, which are the basis
of our analysis. In Section 3, we propose a new self-adaptive gradient projection method, in which
line search step is different from that in Qu [39]. The global convergence of the proposed method is
discussed in detail. We establish a global R-linear rate convergence theorem without any assumptions,
which is weaker than the condition in Theorem 3.3 in [34]. Furthermore, we can obtain an approximate
optimal solution in a finite number of iterations. In Section 4, some numerical experiments on sparse
signal reconstruction or image restoration are given, and compare the CPU time and the mean of
squared error among the Algorithm 2.1 in [30], the CQ algorithm in [39], FISTA [15], the primal
alternating direction method [11] and our proposed algorithm, and show that our algorithm is much
faster than other algorithms, and also have higher accuracy. Finally, some remarks and conclusions are
presented in Section 5 and Section 6, respectively.

To end this section, some notations used in this paper are in order. We use Rn
+ to denote the

nonnegative quadrant in Rn, and the x+ denotes the orthogonal projection of vector x ∈ Rn onto Rn
+, that

is, (xi)+ := max{xi, 0}, 1 ≤ i ≤ n; the norm ‖ · ‖ and ‖ · ‖1 denote the Euclidean 2-norm and 1-norm,
respectively. For x, y ∈ Rn, use (x; y) to denote the column vector (x>, y>)>. We denote by det(M) the
determinant of a matrix M and, by In the identity matrix of order n.

2. Preliminaries

In this section, a smooth equivalence transformation of the problem (1.2) is established.
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Firstly, we briefly review the process for constructing a convex quadratic program problem of
Figueiredo et al. [7]. For any vector x ∈ Rn, it can be formulated for x = µ − ν, µ ≥ 0, ν ≥ 0,
where µ ∈ Rn, ν ∈ Rn, and µi = (xi)+, νi = (−xi)+ for all i = 1, 2, · · · , n. Subsequently, the `1-norm of
the vector can be represented as ‖x‖1 = (e>, e>)(µ; ν), where e ∈ Rn denotes the vector composed by
elements 1, i.e., e = (1, 1, · · · , 1)>. Thus, we can reformulate (1.2) into

min(µ;ν)∈R2n
1
2‖(A,−A)(µ; ν) − b‖22 + ρ(e>, e>)(µ; ν)

s.t. (µ; ν) ≥ 0.
(2.1)

In order to make the description more concise, we let ω = (µ; ν). Thus, the problem (2.1) can be
further written as

min f (ω) = 1
2 (ω>Mω − 2p>ω + b>b)

s.t. ω ∈ R2n
+ ,

(2.2)

where M =

(
A>A −A>A
−A>A A>A

)
, p =

(
A>

−A>

)
b − ρ

(
e
e

)
. We assume the solution of the problem is

nonempty and denote it by Ω∗.
Although the dimension of (2.2) is twice of the original problems, it is shown that this increases

only slightly the impact of computation. In addition, the computation of the function values or the
gradient requires two matrix-vector multiplications involving A and A> [7].

Obviously, the problem (2.2) is a convex optimization problem, then the stationary set of (2.2)
coincides with its solution set which also coincides with the solution set of the following problem: find
ω∗ ∈ R2n

+ such that
(ω − ω∗)>∇ f (ω∗) ≥ 0, ∀ω ∈ R2n

+ , (2.3)

where ∇ f (ω) = Mω − p.
Secondly, we will give the definition of projection operator and some related properties [40], which

are the basis of our analysis.
For a nonempty closed convex set K ⊂ Rn and vector z ∈ Rn, the orthogonal projection of z onto K,

i.e., arg min {‖z − y‖ | y ∈ K}, is denoted by PK(z).

Proposition 2.1. Let K be a closed convex subset of Rn, then ‖PK(z1)−PK(z2)‖ ≤ ‖z1−z2‖, ∀z1, z2 ∈ Rn.

For (2.3) and ω ∈ R2n, define the projection residue

r(ω, ρ̂) = ‖ω − PR2n
+
{ω − ρ̂(Mω − p)} ‖, (2.4)

where ρ̂ > 0 is some constant. The projection residue is intimately related to the solution of (2.3) as
shown by the following well-known result, which is due to Noor [41].

Proposition 2.2. The vector ω∗ is a solution of (2.3) if and only if r(ω∗, ρ̂) = 0 with some ρ̂ > 0.

Finally, we recall the following lemma, which is the well-known fundamental property for a smooth
function in the class C1,1.

Lemma 2.1. (Lemma 3.2 [42]) Let F : Rn → R be a continuously differentiable function with Lipschitz
continuous gradient and Lipschitz constant LF .Then, for any L ≥ LF , one has

F(y) ≤ F(ȳ) + 〈y − ȳ,∇F(ȳ)〉 +
L
2
‖y − ȳ‖2, ∀y, ȳ ∈ Rn. (2.5)
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For any ω, ω̄ ∈ R2n and the function f defined in (2.2), one has ‖∇ f (ω) − ∇ f (ω̄)‖ ≤ ‖M‖‖ω −
ω̄‖, i.e., the gradient function ∇ f (ω) be Lipschitz continuous and Lipschitz constant ‖M‖. Applying
Lemma 2.1, it follows that

f (pL(ω̄)) ≤ f (ω̄) + 〈pL(ω̄) − ω̄,∇ f (ω̄)〉 + L
2 ‖pL(ω̄) − ω̄‖2

= Q(pL(ω̄), ω̄), for L ≥ ‖M‖,
(2.6)

where
QL(ω, ω̄) := f (ω̄) + 〈ω − ω̄,∇ f (ω̄)〉 +

L
2
‖ω − ω̄‖2, (2.7)

and
pL(ω̄) = arg min

ω∈R2n
+

{QL(ω, ω̄)}. (2.8)

From (2.7) and (2.8), it is easy to calculate that

pL(ω̄) = arg min
ω∈R2n

+

{‖ω − (ω̄ −
1
L
∇ f (ω̄))‖2}. (2.9)

3. Algorithm and global convergence

In this section, we will propose a new algorithm for solving the model (2.3), and prove global
convergence and R-linear convergence rate of the new algorithm in detail.

Now, we formally state our algorithm.

Algorithm 3.1

Step 0. Select β > 0, η > 1, ε ≥ 0, γ ∈ (0, 1), ω0 ∈ R2n, and let k := 0.
Step 1. For the current iterate points ωk−1, compute

ωk : = pLk(ω
k−1)

= arg minω∈R2n
+

{
‖ω − (ωk−1 − 1

Lk
∇ f (ωk−1)‖2

}
= max

{
ωk−1 − 1

Lk
∇ f (ωk−1), 0

}
,

(3.1)

where Lk = ηmkβ, and mk is the smallest nonnegative integer m such that

f (ωk) ≤ f (ωk−1) − γ〈ωk − ωk−1,∇ f (ωk−1)〉, (3.2)

and
0 ≤ (1 + γ)〈ωk − ωk−1,∇ f (ωk−1)〉 +

ηmβ

2
‖ωk − ωk−1‖2. (3.3)

Step 2. If ‖ωk − ωk−1‖ ≤ ε, stop. Then, ωk is an approximate solution of (2.3). Otherwise, go to Step1
with k := k + 1.

From (3.2) and (3.3), one has

f (ωk) ≤ f (ωk−1) +
〈
ωk − ωk−1,∇ f (ωk−1)

〉
+
ηmβ

2

∥∥∥ωk − ωk−1
∥∥∥2
. (3.4)

If Lk ≥ ‖M‖, using (3.4) and (2.6), we get

f (ωk) = f (pLk(ω
k−1)) ≤ Q(pLk(ω

k−1), ωk−1) = Q(ωk, ωk−1). (3.5)
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Furthermore,
f (ωk) ≤ QLk(ω

k, ωk−1) ≤ QLk(ω
k−1, ωk−1) = f (ωk−1), k ≥ 1. (3.6)

Thus, the sequence { f (ωk)} produced by Algorithm 3.1 is nonincreasing.

The termination criteria in step 2 of Algorithm 3.1 is reasonable, which can be proved by (3.20)
and Theorem 3.2 below. It can make Algorithm 3.1 terminate in a finite step, which can be proved in
Theorem 3.1 below.

Remark 3.1. By (3.2) and (3.3), we assure the existence of upper and lower bounds of the parameter
Lk, see details from Lemma 3.1 below. Furthermore, we adopted Armijo-like technique in a new way,
such that the iteration stepsize 1

Lk
can be self-adaptive updated in Algorithm 3.1.

Lemma 3.1. Assume parameters β > 0, η > 1 defined as in Algorithm 3.1, then β ≤ Lk <

η ‖M‖ ,∀k ≥ 1.

Proof. By Lk = ηmkβ and η > 1, one has Lk ≥ β,∀k ≥ 1. Since (3.2) and (3.3) are satisfied for some
ηmβ ≥ ‖M‖, combining this with the definition of mk, we ensure that Lk/η = ηmk−1β must violate (3.2)
or (3.3), it follows that (3.4) does not holds. Combining this with Lemma 2.1, we obtain that Lk/η <

‖M‖ for every k ≥ 1. Hence, the desired result follows. �

Lemma 3.2. For any ω ∈ R2n
+ , we have

f (ω) − f (ωk) ≥
Lk

2

∥∥∥ωk − ωk−1
∥∥∥2

+ Lk

〈
ω − ωk−1, ωk−1 − ωk

〉
, ∀k ≥ 1. (3.7)

Proof. By (3.5), one has
f (ω) − f (ωk) ≥ f (ω) − QLk(ω

k, ωk−1). (3.8)

By (2.7) with ω = ωk, ω̄ = ωk−1, L = Lk, then

QLk(ω
k, ωk−1) = f (ωk−1) +

〈
ωk − ωk−1,∇ f (ωk−1)

〉
+

Lk

2

∥∥∥ωk − ωk−1
∥∥∥2
. (3.9)

Since f is convex, one has

f (ω) ≥ f (ωk−1) +
〈
ω − ωk−1,∇ f (ωk−1)

〉
. (3.10)

Combining (3.8) and (3.10) with (3.9), one has

f (ω) − f (ωk) ≥ f (ω) − QLk(ω
k, ωk−1)

= f (ω) − f (ωk−1) −
〈
ωk − ωk−1,∇ f (ωk−1)

〉
−

Lk
2

∥∥∥ωk − ωk−1
∥∥∥2

≥
〈
ω − ωk−1,∇ f (ωk−1)

〉
−

〈
ωk − ωk−1,∇ f (ωk−1)

〉
−

Lk
2

∥∥∥ωk − ωk−1
∥∥∥2

=
〈
ω − ωk,∇ f (ωk−1)

〉
−

Lk
2

∥∥∥ωk − ωk−1
∥∥∥2
.

(3.11)

Applying the first-order optimality condition of (3.1), one has〈
ω − ωk,∇ f (ωk−1) + Lk(ωk − ωk−1)

〉
≥ 0, ∀ω ∈ R2n

+ , (3.12)
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i.e.,
〈
ω − ωk,∇ f (ωk−1)

〉
≥ Lk

〈
ω − ωk, ωk−1 − ωk

〉
, ∀ω ∈ R2n

+ . Combining this with (3.11), one has

f (ω) − f (ωk) ≥ Lk

〈
ω − ωk, ωk−1 − ωk

〉
−

Lk
2

∥∥∥ωk − ωk−1
∥∥∥2

= Lk

〈
(ω − ωk−1) + (ωk−1 − ωk), ωk−1 − ωk

〉
−

Lk
2

∥∥∥ωk − ωk−1
∥∥∥2

= Lk

〈
ω − ωk−1, ωk−1 − ωk

〉
+ Lk

2

∥∥∥ωk − ωk−1
∥∥∥2
.

We next prove that the sequence {ωk} terminates in a finite number of steps at an approximate
optimal solution of (2.2).

Theorem 3.1. Assume that ω∗ is a solution of (2.3), and the sequence {ωk} generated by Algorithm 3.1.
Then, for any k ≥ 1, one has

f (ωk) − f (ω∗) ≤
η‖M‖

2k
‖ω∗ − ω0‖2. (3.13)

Proof. In order to make the description more concise. In (3.7), let ω = ω∗, and replace ωk with ωm, we
obtain

2
Lm

( f (ω∗) − f (ωm)) ≥ ‖ωm − ωm−1‖2 + 2〈ω∗ − ωm−1, ωm−1 − ωm〉

= ‖ωm − ωm−1‖2 + 〈(ω∗ − ωm) + (ωm − ωm−1), ωm−1 − ωm〉

+ 〈ω∗ − ωm−1, (ωm−1 − ω∗) + (ω∗ − ωm)〉
= 〈ω∗ − ωm, ωm−1 − ωm〉

+ 〈ω∗ − ωm−1, ωm−1 − ω∗〉 + 〈ω∗ − ωm−1, ω∗ − ωm〉

= 〈ω∗ − ωm, ωm−1 − ω∗ + ω∗ − ωm〉

+ 〈ω∗ − ωm−1, ωm−1 − ω∗〉 + 〈ω∗ − ωm−1, ω∗ − ωm〉

= ‖ω∗ − ωm‖2 − ‖ω∗ − ωm−1‖2.

(3.14)

Since ω∗ be a solution of (2.3), then it be also a solution of (2.2), and one has f (ω∗) − f (ωm) ≤ 0.
Combining this with Lemma 3.1, we obtain

2
η‖M‖

( f (ω∗) − f (ωm)) ≥
2

Lm
( f (ω∗) − f (ωm) ≥ ‖ω∗ − ωm‖2 − ‖ω∗ − ωm−1‖, (3.15)

Summing (3.15) over m = 1, 2, · · · , k gives

2
η‖M‖

[k f (ω∗) −
k∑

m=1

f (ωm)] =

k∑
m=1

2
η‖M‖

( f (ω∗) − f (ωm)) ≥ ‖ω∗ − ωk‖2 − ‖ω∗ − ω0‖2, (3.16)

We note that Lemma 3.2 holds for any ω ∈ R2n
+ . Hence, we take ω = ωm−1, and replace ωk with ωm

in (3.7), we get
2L−1

m ( f (ωm−1) − f (ωm)) ≥
∥∥∥ωm − ωm−1

∥∥∥2
. (3.17)

Since Lm ≥ β and f (ωm−1) − f (ωm) ≥ 0, it follows that

2β−1( f (ωm−1) − f (ωm)) ≥
∥∥∥ωm − ωm−1

∥∥∥2
, (3.18)
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i.e., 2β−1[(m − 1) f (ωm−1) − m f (ωm) + f (ωm)] ≥ (m − 1)‖ωm − ωm−1‖2. Multiplying both sides of the
above inequality by β

η‖M‖ and summing over m = 1, 2, · · · , k, we have

2
η‖M‖

[−k f (ωk) +

k∑
m=1

f (ωm)] ≥
β

η‖M‖

k∑
m=1

(m − 1)‖ωm − ωm−1‖2. (3.19)

Adding (3.16) and (3.19), we have

2k
η‖M‖

( f (ω∗) − f (ωk)) ≥ ‖ω∗ − ωk‖2 +
β

η‖M‖

k∑
m=1

(m − 1)‖ωm − ωm−1‖2 − ‖ω∗ − ω0‖2 ≥ −‖ω∗ − ω0‖2.

Combining this with f (ω∗) − f (ωk) ≤ 0, the desired result follows. �

Remark 3.2. Theorem 3.1 above means that we can obtain an ε-optimal solution, denoted by ω̂,
requires the number of iterations at most [c/ε]+1, such that f (ω̂)− f (ω∗) ≤ ε, where c := 1

2η‖M‖‖ω
0−

ω∗‖2. In fact, using (3.13), and set f (ωk) − f (ω∗) ≤ η‖M‖
2k ‖ω

∗ − ω0‖2 ≤ ε, then one has k ≥ c/ε, i.e.,
requiring the number of iterations at most [c/ε] + 1.

In the following convergence analysis, we assume that Algorithm 3.1 generates an infinite sequence,
and first prove the global convergence of the proposed algorithm.

Theorem 3.2. Suppose that the solution set of (2.3) is bounded. Then, the sequence ωk generated by
Algorithm 3.1 converges globally to a solution of (2.3).

Proof. By (3.6) and f (ω) ≥ 0, we know that the nonnegative sequence f (ωk) is monotonically
decreasing, so it converges. Combining this with (3.18), one has

lim
k→∞
‖ωk − ωk−1‖ = 0. (3.20)

Applying (3.14) and the fact f (ω∗) − f (ωk) ≤ 0, we have

‖ω∗ − ωk‖ ≤ ‖ω∗ − ωk−1‖, (3.21)

i.e., the nonnegative sequence {‖ωk − ω∗‖} is monotonically decreasing, so it converges. Thus, the
sequence {ωk} is bounded, and there exits a convergent subsequence {ωki} of {ωk}, we assume that
limk→∞ ω

ki = ω̄. Combining this with (3.20), we have

lim
k→∞
‖ωki−1 − ω̄‖ ≤ lim

k→∞
‖ωki − ωki−1‖ + lim

k→∞
‖ωki − ω̄‖ = 0. (3.22)

From the second equality of (3.1), we obtain
〈
ω − ωki ,∇ f (ωki−1) + Lki(ω

ki − ωki−1)
〉
≥ 0, ∀ω ∈ R2n

+ .

Combining this with (3.20) and (3.22), we have 〈ω − ω̄,∇ f (ω̄)〉 ≥ 0, ∀ω ∈ R2n
+ , i.e., ω̄ is a solution

of (2.3). So, the ω̄ can be used as ω∗ to discuss in Theorem 3.1 above, we obtain that the sequence
{‖ωk − ω̄‖} is also convergent, combining this with limk→∞ ‖ω

ki − ω̄‖ = 0, one has limk→∞ ‖ω
k − ω̄‖ = 0.

Thus, the desired result follows. �

Theorem 3.3. The sequence{xk} converges globally to a solution of (1.2), where xk = µk−νk, (µk; νk) =

ωk.
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Proof. From Theorem 3.2, we know that ωk converges globally to a solution of (2.3), say ω∗, and
assume ω∗ = (µ∗; ν∗), x∗ = µ∗ − ν∗. A direct computation yields that

‖xk − x∗‖ = ‖(µk − νk) − (µ∗ − ν∗)‖
≤ ‖(µk − µ∗)‖ + ‖(νk − ν∗)‖
≤ ‖(µk − µ∗)‖1 + ‖(νk − ν∗)‖1
= ‖µk − µ∗; νk − ν∗‖1
≤
√

2n‖µk − µ∗; νk − ν∗‖

=
√

2n‖ωk − ω∗‖ → 0,

(3.23)

as k → ∞. Thus, the desired result follows. �

In the end of this section, we discuss the convergence rate of Algorithm 3.1. To this end, the
following lemmas are needed.

Lemma 3.3. For the sequence {ωk} generated by Algorithm 3.1. Then, there exists a positive constant
τ such that

dist(ωk,Ω∗) ≤ τr(ωk, L−1
k ), (3.24)

where dist(ωk,Ω∗) denotes the distance from point ωk to the solution set Ω∗.

Proof. By Theorem 3.2, we obtain that the sequence {ωk} is bounded, i.e., there exists a constant c0 > 0
such that ‖ωk‖ ≤ c0. The following proof uses a similar technique to that of Corollary 3.2 in [43]. �

Lemma 3.4. For the sequence {ωk} generated by Algorithm 3.1, it holds that

dist(ωk,Ω∗) ≤ τ(1 +
‖M‖
β

)‖ωk − ωk−1‖, (3.25)

where positive constant τ defined in Lemma 3.3.

Proof. By (3.1), one has

ωk − PR2n
+
{ωk−1 −

1
Lk
∇ f (ωk−1)} = 0. (3.26)

Then, by (2.4), one has

r(ωk, 1
Lk

) =
∥∥∥∥ωk − PR2n

+

{
ωk − 1

Lk
(Mωk − p)

}∥∥∥∥
=

∥∥∥∥[ωk − PR2n
+

{
ωk − 1

Lk
(Mωk − p)

}]
−

[
ωk − PR2n

+
{ωk−1 − 1

Lk
(Mωk−1 − p)}

]∥∥∥∥
=

∥∥∥∥PR2n
+

{
ωk − 1

Lk
(Mωk − p)

}
− PR2n

+
{ωk−1 − 1

Lk
(Mωk−1 − p)}

∥∥∥∥
≤

∥∥∥∥{ωk − 1
Lk

(Mωk − p)
}
−

{
ωk−1 − 1

Lk
(Mωk−1 − p)

}∥∥∥∥
≤ ‖ωk − ωk−1‖ + 1

Lk
‖M(ωk − ωk−1)‖

≤ (1 + 1
Lk
‖M‖)‖ωk − ωk−1‖

≤ (1 + ‖M‖
β

)‖ωk − ωk−1‖,

(3.27)

where the second equality follow from (3.26), the second inequality follows from Proposition 2.1.
Combining (3.27) with Lemma 3.3 yields (3.25). �
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Lemma 3.5. For the sequence {ωk} generated by Algorithm 3.1, it holds that

f (ωk) − f (ω̄k) ≤ σ‖ωk − ωk−1‖2, (3.28)

where σ is a positive constant, ω̄k ∈ Ω∗ is the point closest to ωk.

Proof. By (2.2), and using the Mean Value Theorem with some n-vector zk lying on the line segment
joining ω̄k with ωk, we have

f (ωk) − f (ω̄k) = (ωk − ω̄k)>(Mzk − p)
≤ (ωk − ω̄k)>(Mzk − p) + (ω̄k − ωk)>(Mωk−1 − p) + Lk(ω̄k − ωk)>(ωk − ωk−1)
= (ωk − ω̄k)>(Mzk − p) + (ω̄k − ωk)>(Mω̄k − p)

+ (ω̄k − ωk)>M(ωk−1 − ω̄k) + Lk(ω̄k − ωk)>(ωk − ωk−1)
= (ωk − ω̄k)>M(zk − ω̄k) + Lk(ω̄k − ωk)>(ωk − ωk−1)

+ (ω̄k − ωk)>M(ωk−1 − ωk) + (ω̄k − ωk)>M(ωk − ω̄k)
≤ ‖M‖‖ωk − ω̄k)‖‖zk − ω̄k‖ + Lk‖ω̄

k − ωk‖‖ωk − ωk−1‖

+ ‖M‖‖ω̄k − ωk‖‖ωk−1 − ωk‖ + ‖M‖‖ωk − ω̄k‖2

≤ 2‖M‖‖ωk − ω̄k‖2 + (η + 1)‖M‖‖ω̄k − ωk‖‖ωk − ωk−1‖

= 2‖M‖dist(ωk,Ω∗)2 + (η + 1)‖M‖‖ωk − ωk−1‖dist(ωk,Ω∗)

≤
{
2‖M‖[τ(1 + ‖M‖

β
)]2 + (η + 1)‖M‖[τ(1 + ‖M‖

β
)]
}
‖ωk − ωk−1‖2,

(3.29)
where the first inequality follows from (3.12) with ω̄k ∈ R2n

+ , and the second inequality is by the
Cauchy-Schwartz inequality, the third inequality follows from the fact that ‖zk − ω̄k‖ ≤ ‖ωk − ω̄k‖ and
Lemma 3.1, the last inequality is by (3.25), let σ = 2‖M‖[τ(1 + ‖M‖

β
)]2 + (η + 1)‖M‖[τ(1 + ‖M‖

β
)], and

thus, the desired result follows. �

Theorem 3.4. The generated sequence {ωk} by Algorithm 3.1 converges global linearly to an element
of Ω∗.

Proof. For ω∗, ω̄k ∈ Ω∗, by (2.2), one has f (ω∗) = f (ω̄k). Combining this with (3.28) and (3.18), we
obtain

f (ωk) − f (ω∗) = f (ωk) − f (ω̄k)

≤ σ‖ωk − ωk−1‖2

≤ 2σ
β

( f (ωk−1) − f (ωk))

= 2σ
β

( f (ωk−1) − f (ω∗)) − 2σ
β

( f (xk) − f (ω∗)),

i.e.,
f (ωk+1) − f (ω∗) ≤ %( f (ωk) − f (ω∗)), (3.30)

where 0 < % :=
2σ
β

1+ 2σ
β

< 1. Since f (ωk) − f (ω∗) > 0, f (ωk+1) − f (ω∗) > 0, so (3.30) implies that { f (ωk)}

converges global linearly to f (ω∗).
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By (3.18) and (3.30), we obtain

‖ωk − ωk−1‖2 ≤ 2
β
( f (ωk) − f (ωk−1))

≤ 2
β
( f (ωk) − f (ω∗))

≤ 2
β
%( f (ωk−1) − f (ω∗))

≤ · · · · · · · · ·

≤ [ 2
β
( f (ω0) − f (ω∗))]%k.

Combining this with (3.25), we obtain

dist(ωk,Ω∗) ≤ τ(1 + ‖M‖
β

)‖ωk − ωk−1‖

≤

{
τ(1 + ‖M‖

β
)
√

2
β
( f (ω0) − f (ω∗))

}
√
%k,

where 0 <
√
% < 1. Thus, the sequence {ωk} converges global linearly an element of Ω∗. �

Remark 3.3. Riahi et al.(Theorem 2 [44]) give a linear rate of convergence of the Fletcher-Reeves’
nonlinear conjugate gradient method (NCG), satisfying strong Wolfe conditions when the Hessian
matrix of the cost function is positive definite and continuous and has bounded eigenvalues, which is
the first result with a linear rate of convergence reported for such NCG in a general framework. In this
paper, we propose a gradient projection method with global R-linear rate convergence. Our method
is very different because first, the iterative method and line search step of the proposed algorithm are
different from that in [44], and second because the Hessian matrix of objective function in (2.2) is
semi-positive definite instead of positive definite. In fact, since m � n in (1.1), we know that the rank
of the sensing matrix A is less than m, then the matrix A>A is semi-positive definite instead of positive
definite, and according to (2.2), one has(

In 0
In In

)
M =

(
A>A −A>A

0 0

)
,

it follows that det(M) = 0. Hence, the desired result follows. Finally because the proof method of
linear convergence in this paper is different from that of Theorem 2 in [44].

Thus, the global R-linear rate convergence of the proposed Algorithm 3.1 is a new result for
constrained convex (rather than strictly convex) quadratic programming problem.

4. Numerical experiments

In this section, some numerical experiments on sparse signal recovery were provided to prove the
efficiency of the proposed method. All codes are written by version of Matlab 9.20.538062 and
performed on a Windows 10 PC with Intel(R) Core(TM) i3-10105F CPU @ 3.70GHz 3.70 GHz
and 16GB of memory. For experiments below, we set the matrix A is generated by Matlab scripts:

[Q, R]=qr(A’,0); A=Q’.
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The original signal x̄ is generated by

p=randperm(n); x(p(1:k))=randn(k,1).

Then, the observed signal is y = Ax̄+n̄, where n̄ is generated by a standard Gaussian distribution N(0, 1)
and then it is normalized. The initial points ω0 = (µ0; ν0),where µ0 = max{0, A>y}, ν0 = max{0,−A>y}.

The stop criterion is

‖ fk − fk−1‖

‖ fk−1‖
< 10−5,

where fk denotes the objective value of (2.2) at iteration ωk.

In our experiment, we assess the quality of restoration by mean of squared error (MSE) to the
original signal x̄, i.e.,

MS E =
1
n
‖x̄ − x∗‖

where x∗ denotes the recovery signal.

We compare the proposed Algorithm 3.1 with several state-of-the-art algorithms, all of which were
the most popular in iterative algorithms for solving the `1− norm regularization problem arising from
compressive sensing. In Section 4.1 and 4.2, we compare the proposed Algorithm 3.1 with PCG [30]− a
projection conjugate gradient algorithm for monotone nonlinear equations with convex constraints, and
GCQ [39]− a CQ algorithm for splitting feasible problems. In Section 4.3, we compare the proposed
Algorithm 3.1 with FISTA [15]− a fast iterative shrinkage-thresholding algorithm for linear inverse
problems, and PADM [11]− a primal alternating direction method for `1− problems in compressive
sensing. In Section 4.4, we compare the proposed Algorithm 3.1 with PCG for debluring image. In
Section 4.5, we present convergence curve of the proposed Algorithm 3.1.

4.1. Test on additive Gaussian white noise

In this subsection, we will illustrate the feasibility and effectiveness of the proposed Algorithm 3.1
by recovering sparse signal of which observation data is corrupted by additive Gaussian white noise,
and give some comparisons with PCG and GCQ.

We set n = 213,m = 211, k = 29, and the parameters in the three tested algorithms are listed as
follows:

Algorithm 3.1 : β = 0.6, γ = 0.5, η = 1.1;
GCQ : β = 0.6, γ = 0.5, η = 1.1;
PCG : ξ = 1, ρ = 0.55, γ = 0.1.

The original signal, the measurement and the reconstructed signal (marked by red point) by
Algorithm 3.1, GCQ and PCG are given in Figure 1.
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Figure 1. Compare the signal restoration results of the three algorithms.

Comparing the first, third, fourth and the last plots in Figure 1, all elements in the original signal are
circled by the red points, which indicates that the three methods can recover the original signal quite
well. Furthermore, we record the number of iterations (abbreviated as Iter), the CPU time in seconds
(abbreviated as CPUTime) and MSE of three methods. Figure 1 indicates that Algorithm 3.1 is always
faster than GCQ and PCG methods, and also have higher accuracy. Thus, Algorithm 3.1 is an efficient
method for sparse signal recovery.

4.2. Comparison with GCQ and PCG in different dimension

In this subsection, we compare MSE, CPUTime and Iter among Algorithm 3.1, GCQ and PCG
in different dimension n, where some parameters in the tested algorithms are given above. We set
m = n

4 , k = m
8 . The following experiments is divided into two cases: adding noise and not adding noise.

The numerical results are listed in Table 1. From Table 1, whether it is Free noise or Gaussian
noise, we can see that the CPU time of Algorithm 3.1 are always less than that of both GCQ and PCG
in different dimensions except for n = 1024, which shows that Algorithm 3.1 converges faster than
both GCQ and PCG. In the not noise case, the MSE of Algorithm 3.1 is almost smaller than that of
GCQ. In other cases, although the MSE of Algorithm 3.1 is occasionally bigger than that of GCQ
or PCG, the difference between them is very small. Specially, as the dimensionality of the recovered
signal increases, the recovery speed advantage of Algorithm 3.1 becomes more obvious.
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Table 1. Compare Iter, CPUTime and MSE among Algorithm 3.1, GCQ and PCG in different
dimension n (k = n

32 ).

NO-NOISE NOISE
Dimension Tested method Iter CPUTime MSE Iter CPUTime MSE
1024 Algorithm 3.1 40 0.1406 2.33e-04 58 0.1606 2.75e-04

GCQ 106 0.2031 2.35e-04 153 0.2500 2.73e-04
PCG 117 0.1250 1.71e-04 197 0.1875 1.13e-04

2048 Algorithm 3.1 52 0.5781 1.77e-04 58 0.6469 1.90e-04
GCQ 135 1.0781 1.79e-04 130 1.1094 1.90e-04
PCG 128 0.6250 1.12e-04 163 0.7344 8.52e-05

3072 Algorithm 3.1 45 1.2375 1.59e-04 45 1.4031 1.53e-04
GCQ 147 2.6563 1.59e-04 122 2.8500 1.55e-04
PCG 141 2.1656 9.65e-05 111 2.6094 1.77e-04

4096 Algorithm 3.1 41 1.9844 1.40e-04 52 2.4688 1.33e-04
GCQ 116 4.0313 1.40e-04 138 4.5000 1.34e-04
PCG 145 4.1719 8.27e-05 150 4.9063 7.68e-05

5120 Algorithm 3.1 54 3.5156 1.27e-04 57 3.3281 1.18e-04
GCQ 140 7.4375 1.27e-04 145 6.9531 1.19e-04
PCG 100 4.1250 1.81e-04 160 6.1094 5.73e-05

6144 Algorithm 3.1 43 3.4844 1.16e-04 56 5.1250 1.07e-04
GCQ 117 7.8281 1.17e-04 125 10.1250 1.07e-04
PCG 121 6.6250 7.42e-05 145 8.6406 6.05e-05

7168 Algorithm 3.1 45 5.1500 9.65e-05 49 5.7313 9.94e-05
GCQ 120 10.9531 9.74e-05 128 11.1094 9.03e-05
PCG 117 7.3438 8.07e-05 155 8.0938 5.26e-05

8192 Algorithm 3.1 43 6.1563 8.56e-05 45 6.9844 8.56e-05
GCQ 115 12.1250 8.60e-05 120 14.6406 8.60e-05
PCG 110 8.6563 5.37e-05 115 9.5875 5.37e-05

9216 Algorithm 3.1 50 8.8281 8.57e-05 55 9.5469 8.76e-05
GCQ 122 16.3750 8.39e-05 132 18.3906 8.84e-05
PCG 128 11.4219 5.36e-05 128 12.3750 5.96e-05

10240 Algorithm 3.1 47 10.7500 8.01e-05 47 11.8456 8.95e-05
GCQ 122 24.3750 8.86e-05 132 28.3906 8.84e-05
PCG 117 14.8281 4.99e-05 117 15.8125 4.86e-05
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4.3. Comparison with FISTA and PADM in different dimension

In this subsection, we present comparison results of the proposed Algorithm 3.1 and FISTA [15],
PADM [11] on Gaussian noise, where some parameters in FISTA and PADM are listed as follows:

FIS T A : β = 0.6, η = 6, σ = 0.01, γ = 0.5;
PADM : β = 1.5, α = 1.5, τ = 2,

some parameters in the proposed Algorithm 3.1 are given Subsection 4.1. Comparison with
Subsection 4.2, The sparse signal is double that of Subsection 4.2, i.e., m = n

4 , k = m
4 .

The numerical results are listed in Table 2. From Table 2, we obtain that the CPU time of
Algorithm 3.1 are obviously less than that of FISTA and PADM in different k-Sparse signal, which
shows that the recovery speed of Algorithm 3.1 is faster than that of FISTA and PADM, respectively.
The MSE of Algorithm 3.1 is smaller than that of FISTA. Although the MSE of algorithm 3.1 is
larger than that of PADM, the difference between the two is only slightly. Especially, the recovery
speed advantage of Algorithm 3.1 becomes more obvious with the increase of dimension. All of these
indicate that Algorithm 3.1 is an efficient method for different k-Sparse signal recovery.

Table 2. Compare Iter, CPUTime and MSE among Algorithm 3.1, FISTA and PADM in
different dimension n (k = n

16 ).

Dimension k-Sparse signal Tested method Iter CPUTime MSE
3072 192 Algorithm 3.1 92 1.2281 1.49e-04

FISTA 89 2.0625 1.51e-04
PADM 100 1.2500 1.47e-04

4096 256 Algorithm 3.1 90 1.9063 1.32e-04
FISTA 87 3.3125 1.34e-04
PADM 103 2.4063 1.31e-04

5120 320 Algorithm 3.1 99 2.7969 1.18e-04
FISTA 97 5.1563 1.19e-04
PADM 112 4.0156 1.17e-04

6144 384 Algorithm 3.1 88 3.5000 9.87e-05
FISTA 86 6.6406 9.90e-05
PADM 102 5.3125 9.73e-05

7168 448 Algorithm 3.1 89 4.2500 9.33e-05
FISTA 87 8.3125 9.36e-05
PADM 102 6.8906 9.17e-05

8192 512 Algorithm 3.1 94 6.5625 9.00e-05
FISTA 91 11.2031 9.03e-05
PADM 107 9.3906 8.38e-05

4.4. Noisy image restoration

In this subsection, we will use the proposed Algorithm 3.1 and PCG to deblur image with salt-and-
pepper noise. Some parameters in tested algorithms are given above. We choose Lena (512 × 512),
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Barbara (512×512) and Baboon (512×512) as the test images, and assess the restoration performance
by applying the peak signal to noise ratio (PSNR), that is

PS NR = 10 × log10
(N − 1)2

1
MN

∑
i, j(u∗i, j − xi, j)2

.

For three different test images, we use different noise levels for numerical comparison to verify the
resilience of the Algorithm 3.1 and PCG, and calculate numerical result for each noise sample of each
image for each noise level. The detailed numerical results are listed in Table 3, where r denotes the
noise level, where r = 1 means that the picture is all noise. Iter, CPUTime and PSNR denote numerical
results for the proposed Algorithm 3.1 denoising, Iter PCG, CPUTime PCG and PSNR PCG denote
numerical results for PCG denoising, PSNR Noise denotes peak signal to noise ratio with noise.

Table 3. Algorithm 3.1 and PCG restore images with different salt and pepper noise r =

0.1, 0.3, 0.5, 0.7 and different test images.

r Image Iter/Iter PCG CPUTime/CPUTime PCG PSNR Noise PSNR/PSNR PCG
0.1

Lena 1/13 0.7188/2.7344 15.3759 48.2876 /45.0947
Barbaba 1/13 0.5938/2.4063 15.2665 39.2428 /34.8734
Baboon 2/13 1.0781/2.2969 15.5923 37.1912 / 32.9240

0.3

Lena 1/20 0.7813/3.0625 10.5662 41.0399 / 40.5378
Barbaba 2/13 1.3125/3.5938 10.5093 33.4399 / 32.4564
Baboon 3/19 1.2656/5.0469 10.7793 31.5139 /30.5613

0.5

Lena 3/11 1.5000/3.0469 8.3642 37.0211 / 36.9201
Barbaba 2/8 1.8125/3.5469 8.2810 30.3528 / 30.1411
Baboon 5/15 2.1250/4.2031 8.5936 28.4595 / 28.2282

0.7

Lena 1/9 1.3750/3.6875 6.9164 33.5518 / 33.5431
Barbaba 2/8 1.6250/3.0781 6.8222 27.9891 / 27.9719
Baboon 4/8 2.2500/3.5005 7.1119 26.0362 / 26.0117

From Table 3, using different salt-and-pepper noise level r = 0.1, 0.3, 0.5, 0.7, we can see that the
Algorithm 3.1 and PCG could restore the image very well. Compared with PCG, the Algorithm 3.1 not
only has a faster denoising speed, but also a higher PSNR, which means the effective of Algorithm 3.1
to remove salt and pepper noise.

Figure 2 shows the restoration results obtained by using the tested methods to the test images
corrupted with 30%. From Figure 2, we could obtain that the Algorithm 3.1 and PCG could restore the
image with salt-and-pepper noise very well.
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(a) Original image (b) Noised image (c) Restore image by
Algorithm 3.1

(d) Restore image by
PCG

(e) Original image (f) Noised image (g) Restore image by
Algorithm 3.1

(h) Restore image by
PCG

(i) Original image

(j) Noised image (k) Restore image by
Algorithm 3.1

(l) Restore image by
PCG

Figure 2. Algorithm 3.1 and PCG restore images with the noise level 0.3 (Lena, Barbaba
and Baboon).

4.5. Convergence curve with different dimension

In this subsection, we respective draw convergence curve of the proposed Algorithm 3.1 for n =

4096, 6144, 8192, where m = n
4 , k = m

4 . The experiments divided into two cases: adding Gaussian
noise and not adding Gaussian noise. The numerical results are drawn in Figure 3. As can be seen
from Figure 3, ‖xk− x∗‖ is approximately an exponential function of the number of iterations k whether
it is free noise or Gaussian noise, i.e., ‖xk − x∗‖ ≈ c0ak where c0 and a are two positive constants, and
0 < a < 1, which means R− linearly convergence behavior of proposed algorithm.

(a) Convergence curve with not Gaussian noise (b) convergence curve with Gaussian noise

Figure 3. Convergence curve of Algorithm 3.1 with different dimensions.
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5. Discussion

This work has possible extensions. First, the parameters β = 0.6, γ = 0.5 of Algorithm 3.1 is
adjusted dynamically to further enhance the efficiency of the corresponding method. Second, Riahi [45]
present a new steepest-descent type algorithm for the optimization of a positive definite quadratic
form, which can effectively handle ill-conditioned quadratic programming problem. Motivated by this
technique, we will investigate the feasibility of applying the algorithm presented by Riahi to (2.2)
with ill-conditioned the matrix A and the semi-positive definite Hessian matrix. Finally, since the
regularized nuclear norm minimization (RNNM) model defined in [46, 47] is a convex program, we
explore the possibility of the proposed algorithm developed for (1.2) model to solve the RNNM model
from theoretical results and numerical experiments. These will be our further research directions.

6. Conclusions

In this paper, we propose a new self-adaptive gradient projection algorithm for solving sparse signal
reconstruction problem in compressive sensing. Its global convergence is established in detail. Without
any assumptions, we establish global R-linear convergence rate, which is a new result for constrained
convex (rather than strictly convex) quadratic programming problem, and also obtain an approximate
optimal solution in a finite number of iterations. Thus, it has fast solving speed and pinpoint accuracy
when the dimension increases. It makes the proposed algorithm very attractive for solving large-scale
problems. We present numerical a comparison of five tested methods on sparse signal recovery. The
proposed method is competitive with other existing ones in terms of recovery speed and computational
efficiency.
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