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Abstract: In this paper, we study the results of fixed points for the operator equations of type x =
H(𭟋x, x) using the idea of measure of noncompactness and assuming that the operator 𭟋 is k -set
contractive (strictly k -set contractive, or a continuous) and the family {H(u, .) : u} is equiexpansive or
equicontractive. The obtained results are generalization of Krasnoselskii type fixed point results. Some
examples are given to elaborate new concepts. We use the main result to find the existence of solutions
for the stationary radiative transfer equation in a channel. We demonstrate our theory with an example
by comparison of an approximate solution with the exact solution.
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1. Introduction

One of the most emerging and applicable branches of nonlinear mathematical analysis is fixed
point theory. A renowned principle states that every operator equation can be altered into a fixed point
equation problem and vice versa. Essentially fixed point theory is divided into two branches, where
the first one is metric fixed point theory and the second is topological fixed point theory [1–5]. In this
article we are intending to develop a theory which is not only based upon topological fixed point theory
but also contains an essence of metric fixed point theory as well. It is based on a blend of two the most
celebrated results of fixed point theory, the first is the Banach contraction principle and the second is
the Schauder fixed point theorem.
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In 1958, whilst studying the existence theory of neutral and perturbed differential equations, Kras-
noselskii found that the solution of these types of equations can be expressed as a sum of a compact
operator and a contractive operator. This ignited an idea in Krasnoselskii’s mind to prove his famous
fixed point result for the sum of compact and contractive operators[6], some related results can be seen
in [7–10].

Astrophysicists analyze the light coming from objects similar to a star’s atmosphere of vastly dif-
ferent physical conditions by solving the radiative transfer equation as a tool [11,12]. The physical
phenomenon of energy transfer in the form of electromagnetic radiation is called radiative transfer.
The transmission of radiation through a medium is affected by many factors like absorption, emission
and scattering processes. At the end we apply our main result to obtain the existence of solution of the
radiative transfer equation [12].

Krasnoselskii [6] generalized the Banach contraction principle and Schauder fixed point theorem in
the following way.

Theorem 1.1 Suppose Ω is a non-empty closed and convex subset of a Banach space Z . Let 𭟋1 and
𭟋2 map Ω into Z such that
(1) 𭟋1κ + 𭟋2y ∈ Ω for all κ, y in Ω;
(2) 𭟋1 is continuous and compact ;
(3) 𭟋2 is contraction mapping.
Then there is κ ∈ Ω such that 𭟋1κ + 𭟋2κ = κ.

Taking 𭟋1 to be the zero operator, we obtain the Banach contraction principle and by taking 𭟋2 to
be the zero operator, we obtain the Schauder fixed point theorem. In the Krasnoselskii fixed point
theorem there are two operators: one is compact and the other is contraction. So, the theorem applies
to contraction and compact operators only. There are also expansive and noncompact operators (k-
set contraction and condensing) for which the fixed point investigation of Krasnoselskii type can be
studied. For applications and the physical significance of noncompact operators, see [13]. Also, for
generalization, there is a need to study the fixed point results for the operator H of two variables the
one special case of which is H(κ, y) = 𭟋1κ + 𭟋2y. This type of work can be seen in [14–18]. For
example, Nashed and Wong [17] proved the following result.

Theorem 1.2 Suppose Ω is the convex closed and bounded subset of a Banach space Z. Consider a
mapping H from Ω ×Ω into Ω such that
(1) ∥H(κ, y1) − H(κ, y2)∥ ≤ γ ∥y1 − y2∥ γ ∈ [0, 1);
and for all y ∈ Z,
(2) ∥H(κ1, y) − H(κ2, y)∥ ≤ ∥𭟋1κ1 − 𭟋1κ2∥ ,

where 𭟋1 maps Ω into Ω and is completely continuous. Then there is κ ∈ Ω such that H(κ, κ) = κ.
Remark 1.1 Theorem 1.1 is the particular case of Theorem 1.2. This can be seen by defining

H(κ, y) = 𭟋1κ + 𭟋2y.
To generalize the concept of compact operators we need a measure of non compactness which

gives the deviation from relative compactness for a given set. Sadovskii [[13], p. 500], using the
idea of measure of a noncompactness, generalized the Schauder fixed point theorem by introducing
condensing operators, i.e., a more general class than the compact operators. The following result is
due to Sadovskii.

Theorem 1.3 [13] (Sadovskii) Suppose Ω is the nonempty convex closed bounded subset of a
Banach space Z and T : Ω −→ Ω is condensing. Then, T has a fixed point.
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Xiang and Yuan [[19], see also in [20]] proved the result as a variant of the Banach contraction
principle. They proved that there exists a unique fixed point for the expansive operators in a complete
metric space. The result can be stated as follows:

Theorem 1.4 Let Z be a complete metric space, Ω be a non-empty closed subset and T be an
expansive mapping of Ω into Z such that Ω ⊆ T (Ω). Then there is a unique κ ∈ Ω such that Tκ = κ.

Remark 1.2 In the Banach contraction principle T (Ω) ⊆ Ω and T is a contraction, while in the
above result, T is an expansive and Ω ⊆ T (Ω).

To generalize and find variants of Krasnoselskii’s fixed point theorem, we need the following defi-
nitions and results.

Definition 1.1 [[15] , see also in ([21], p. 497)] The family {H(κ, .) : κ} is called equicontractive if
there is an α ∈ [0, 1) such that

∥H(κ, y1) − H(κ, y2)∥ ≤ α ∥y1 − y2∥

for all (κ, y1), (κ, y2) in the domain of H.
Similarly we define the following.
Definition 1.2 [22] The family {H(κ, .) : κ} is known as equiexpansive if there exists h > 1 such

that
∥H(κ, y1) − H(κ, y2)∥ ≥ h ∥y1 − y2∥

for all (κ, y1), (κ, y2) in the domain of H.
The next example demonstrates the above definition.
Example 1.1 Consider Z = R with subset Ω = [0, 1] with standard metric d (κ, y) = |κ − y| for all

κ, y ∈ Ω. Define the mappings H1,H2 : Ω ×Ω→ R by

H1 (κ, y) =
arctan κ
π + arctan κ

+
1 + y
1 − y

for all κ, y ∈ Ω

and

H2 (κ, y) =
arctan y
π + arctan y

+
1 + κ
1 − κ

for all κ, y ∈ Ω

Then, clearly

|H2(κ, y1) − H2(κ, y2)| ≤
1
2
|y1 − y2|

and
|H1(κ, y1) − H1(κ, y2)| ≥ 2 |y1 − y2| .

That is, H2 is equicontractive and H1 is equiexpansive.
Definition 1.3 [23] Let B(Z) be the family of all bounded subsets of Banach space Z. A mapping

µ : B(Z) −→ [0,+∞) is said to be a measure of noncompactness defined on Z if it satisfies the following
properties:
(1) Regularity: for any 𭟋1 ∈ B (Z) , µ (𭟋1) = 0,⇔ 𭟋1 is pre-compact;
(2) Invariant under closure: for any 𭟋1 ∈ B (Z) , µ (𭟋1) = µ

(
𭟋1

)
;

(3) Semi-additivity: for 𭟋1, 𭟋2 ∈ B (Z) , µ (𭟋1 ∪ 𭟋2) = max{µ (𭟋1) , µ (𭟋2)}.
We can also deduce the following;
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(4) Monotonicity: for 𭟋1, 𭟋2 ∈ B (Z) 𭟋1 ⊆ 𭟋2 implies µ (𭟋1) ≤ µ (𭟋2);
(5) Algebraic semi-additivity: 𭟋1, 𭟋2 ∈ B (Z) , µ (𭟋1 + 𭟋2) ≤ µ(𭟋1) + µ (𭟋2) .

A number of articles related to the fixed point theory using the measure of noncompactness can be
seen in [24–28] and the references therein.

Definition 1.4 [19] Consider a subset Ω of the Banach space Z. A mapping T of Ω into Z is called
k-set contractive if
(1) T is bounded and continuous
(2) µ (T (𭟋1)) ≤ kµ (𭟋1) for any bounded subset 𭟋1 of Ω.
T is called strictly k-set contractive if
(1) T is k-set contractive;
(2) for all bounded subsets 𭟋1 of Ω with µ (𭟋1) , 0, we have µ (T (𭟋1)) < kµ (𭟋1) .
T is called a condensing map if T is strictly 1-set contractive.

Definition 1.5 [19] Let Ω be the subset of a metric space Z. A mapping T of Ω into Z is called
expansive if there is a constant h > 1 such that

d(Tκ,Ty) ≥ hd(κ, y)

for all κ, y ∈ Ω.
Definition 1.6 [6] Consider a metric space Z and T : Z → Z. Then, we state that T is a contraction

mapping if there is a number δ such that 0 < δ < 1 and

d(Tκ,Ty) ≤ δd(κ, y)

for all κ, y ∈ Z.
Theorem 1.5 [6] (Banach) Any contraction mapping of a complete metric space Z into Z has a

unique fixed point in Z.
Lemma 1.1 [19] Suppose Ω is the subset of a Banach space Z and 𭟋1 is a Lipschitizian mapping of

Ω into Z such that
∥𭟋1κ − 𭟋1y∥ ≤ k ∥κ − y∥

for κ, y ∈ Ω. Then we have that µ(𭟋1(S )) ≤ kµ(S ) for every bounded subset S of Ω.

2. Main results

This section is devoted to the existence of a solution of operator equations of the type H(Fs, s) = s,
where F is a k − set contractive or condensing self operator on a given Banach space and H is either
an equicontractive or equiexpansive operator. As a special case one can take H = S + T where S and
T are operators in which one is contractive/expansive and the other is compact type. In this way some
generalized variants of the Krasnoselskii theorem are proved. These results will generalize the results
of Xiang and colleagues [18–20,29] and Krasnoselskii and Schauder [[6], p. 25 and p. 31].

SupposeΩ is the subset of a Banach space Z and consider the mapping H : 𭟋1(Ω)×Ω −→ Z. We, in
this paper, study the existence of a solution of equations κ = H(𭟋1κ, κ) by taking different assumptions
on 𭟋1, H and Ω and using the measure of noncompactness. We assume the following to prove our
fixed-point results;

(i) the family {H(u, .) : u ∈ 𭟋1(Ω)} is equiexpansive or equicontractive.
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(ii) 𭟋1 is a k-set contractive operator of Ω into Z or strictly a k-set contractive operator.
(iii) Ω ⊆ H(u,Ω) for each fixed u ∈ 𭟋1(Ω) with equiexpansive family while H(𭟋1(Ω),Ω) ⊆ Ω with

equicontractive family.

2.1. Results for equiexpansive mappings

Theorem 2.1 Suppose Ω is the nonempty convex closed and bounded subset of the Banach space
Z. Consider a mapping H of 𭟋1(Ω) × Ω into Z such that Ω ⊆ H(u,Ω) for u ∈ 𭟋1(Ω) and 𭟋1 is a k-set
contractive mapping of Ω into Z with the following:
(1) the family {H(u, .) : u ∈ 𭟋1(Ω)} is equiexpansive with h > k + 1;
(2) ∥H(u, y) − H(u′, y)∥ ≤ ∥u − u′∥ for all u, u′ ∈ 𭟋1 (Ω) and y ∈ Ω;
Then there is s ∈ Ω such that H(𭟋1s, s) = s.

Proof. Define M : Ω→ Z by M(y) = H(u, y) for u ∈ 𭟋1(Ω). Then M is expansive because

∥M(y1) − M(y2)∥ = ∥H(u, y1) − H(u, y2)∥ ≥ h ∥y1 − y2∥ ,

and Ω ⊆ H(u,Ω) = M(Ω). From Theorem 1.4, there is a unique point in Ω say Gu such that Gu =
H(u,Gu) . Now

∥Gu −Gu′∥ = ∥H(u,Gu) − H(u′,Gu′)∥
= ∥(H(u′,Gu) − H(u′,Gu′)) − (H(u′,Gu) − H(u,Gu))∥
≥ ∥H(u′,Gu) − H(u′,Gu′)∥ − ∥H(u′,Gu) − H(u,Gu)∥
≥ h ∥Gu −Gu′∥ − ∥u − u′∥ .

This means that
∥Gu −Gu′∥ ≤

1
h − 1

∥u − u′∥ h > 1,

which indicates that G is continuous from 𭟋1(Ω) into Ω. Also G ◦ 𭟋1 is a continuous from Ω into Ω.
From the above inequality and Lemma 1.1 and since 𭟋1 is a k-set contractive mapping, we have

µ(G ◦ 𭟋1(N)) = µ(G(𭟋1(N))) ≤
1

h − 1
µ(𭟋1(N)) ≤

k
h − 1

µ(N) < µ(N)

for all N ⊆ Ω. Hence G ◦ 𭟋1 is condensing and by Theorem 1.3, there is s ∈ Ω such that G ◦ 𭟋1(s) = s
or G(𭟋1s) = s. Since for 𭟋1s ∈ 𭟋1(Ω) there is a unique G(𭟋1s) ∈ Ω such that H(𭟋1s,G(𭟋1s)) = G(𭟋1s)
and also G(𭟋1s) = s; therefore, H(𭟋1s, s) = s. □

Corollary 2.1 Suppose Ω is the nonempty convex closed and bounded subset of the Banach space
Z. H is the mapping of 𭟋1(Ω) ×Ω into Z such that Ω ⊆ H(u,Ω) for u ∈ 𭟋1(Ω) and
(1) 𭟋1 : Ω −→ Z is continuous such that 𭟋1(Ω) resides in a compact subset of Z;
(2) the family {H(u, .) : u ∈ 𭟋1(Ω)} is equiexpansive with h > k + 1;
(3) ∥H(u, y) − H(u′, y)∥ ≤ ∥u − u′∥ for all u, u′ ∈ 𭟋1 (Ω) and y ∈ Ω;
Then there is s ∈ Ω such that H(𭟋1s, s) = s.

Proof. From (1) we have that 𭟋1(Ω) ⊆ C, where C is the compact subset of the Banach space Z.
Therefore µ(𭟋1(N)) ≤ µ(C) = 0 for all N ⊆ Ω. This shows that µ(𭟋1(N)) ≤ kµ(N) and 𭟋1 is a k-set
contractive mapping. Hence using Theorem 2.1, we get the required result. □
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Remark 2.1 Theorem 2.2 in [19] is the special case of the above corollary with the assumption that
Ω is a bounded set. This can be shown by defining H(u, y) = u + 𭟋2y with u = 𭟋1κ ∈ 𭟋1(Ω), where 𭟋1

is a continuous map from Ω into Z and 𭟋2 is an expansive map from Ω into Z.
Corollary 2.2 Suppose Ω is the nonempty bounded convex and closed subset of the Banach space

Z. Consider the mappings 𭟋1 and 𭟋2 such that
(1) 𭟋1 : Ω −→ Z is a k-set contractive mapping;
(2) 𭟋2 : Ω −→ Z is an expansive mapping with h > k + 1;
(3) Ω ⊆ u + 𭟋2(Ω) for u ∈ 𭟋1(Ω).
Then there is s ∈ Ω such that 𭟋1s + 𭟋2s = s.

Proof. Define H(u, y) = u + 𭟋2y with u = 𭟋1κ ∈ 𭟋1(Ω). Here H : 𭟋1(Ω) × Ω −→ Z is a mapping and Ω
is the nonempty bounded convex and closed subset of the Banach space Z. We show that all conditions
of the Theorem 2.1 are satisfied. Since H(u,Ω) = u+ 𭟋2(Ω) and from (3) Ω ⊆ u+ 𭟋2(Ω), Ω ⊆ H(u,Ω).
Now, from (2), since 𭟋2 is an expansive mapping for h > k + 1,

∥H(u, y1) − H(u, y2)∥ = ∥𭟋2y1 − 𭟋2y2∥ ≥ h ∥y1 − y2∥ .

This shows that the family {H(u, .) : u ∈ 𭟋1(Ω)} is equiexpansive with h > k + 1. Also 𭟋1 : Ω −→ Z is
a k-set contractive mapping and

∥H(u, y) − H(u′, y)∥ = ∥u − u′∥ ≤ ∥u − u′∥ .

Hence there is s ∈ Ω such that s = H(𭟋1s, s) = 𭟋1s + 𭟋2s. □

Corollary 2.3 Suppose Ω is the nonempty bounded convex and closed subset of the Banach space
Z. Consider the mappings 𭟋1 and 𭟋2 such that
(1) 𭟋1 : Ω −→ Ω ⊆ Z is a nonexpansive and k-set contractive mapping;
(2) 𭟋2 : Ω −→ Z is an expansive mapping with h > k + 1;
(3) Ω ⊆ 𭟋1u + 𭟋2(Ω) for 𭟋1u ∈ 𭟋1(Ω).
Then there is s ∈ Ω such that (𭟋1 ◦ 𭟋1)s + 𭟋2s = s.

Proof. Define H(u, y) = 𭟋1u + 𭟋2y with 𭟋1u ∈ 𭟋1(Ω) (Theorem 2.1). Since H(u,Ω) = 𭟋1u + 𭟋2(Ω)
and from (3) Ω ⊆ 𭟋1u + 𭟋2(Ω) for 𭟋1u ∈ 𭟋1(Ω); therefore, Ω ⊆ H(u,Ω). Now since 𭟋2 is an expansive
mapping therefore,

∥H(u, y1) − H(u, y2)∥ = ∥𭟋2y1 − 𭟋2y2∥ ≥ h ∥y1 − y2∥ .

Also from (1), we have

∥H(u, y) − H(u′, y)∥ = ∥𭟋1u − 𭟋1u′∥ ≤ ∥u − u′∥ .

Hence there is s ∈ Ω such that s = H(𭟋1s, s) = (𭟋1 ◦ 𭟋1)s + 𭟋2s. □

Corollary 2.4 Suppose Ω is the nonempty bounded convex and closed subset of the Banach space
Z. Consider the mappings 𭟋1 and 𭟋2 such that
(1) 𭟋1 : Ω −→ Ω ⊆ Z is nonexpansive and 𭟋1(Ω) resides in a compact subset of Z.;
(2) 𭟋2 : Ω −→ Z is an expansive mapping with h > k + 1;
(3) Ω ⊆ 𭟋1u + 𭟋2(Ω) for 𭟋1u ∈ 𭟋1(Ω).
Then there is s ∈ Ω such that (𭟋1 ◦ 𭟋1)s + 𭟋2s = s.
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Proof. We use similar arguments as in the above corollaries. □

Remark 2.2 Theorem 2.1 is the generalized form of Theorems 2.2 and 2.6 in [19] and a variant of
the Krasnoselskii fixed point theorem.

2.2. Results for equicontractive mappings

Theorem 2.2 Suppose Ω is the nonempty bounded closed and convex subset of a Banach space Z.
Let 𭟋1 be a continuous mapping of Ω into Z and H be a mapping of Ω ×Ω into Ω such that
(1) µ(H(N,Ω)) < µ(N) for all N ⊆ Ω with µ(N) , 0;
(2) the family {H(κ, .) : κ ∈ Ω} is equicontractive;
(3) ∥H(κ, y) − H(κ′, y)∥ ≤ ∥𭟋1κ − 𭟋1κ

′∥ for all κ, κ′ ∈ Ω and y ∈ Ω;
Then there is s ∈ Ω such that H(s, s) = s.

Proof. Define M : Ω→ Ω by M(y) = H(κ, y) for κ ∈ Ω. Then, M is a contraction and there is a unique
point in Ω say Gκ such that Gκ = H(κ,Gκ). Now,

∥G(κ) −G(κ′)∥ = ∥H(κ,Gκ) − H(κ′,Gκ′)∥
= ∥(H(κ′,Gκ) − H(κ′,Gκ′)) − (H(κ′,Gκ) − H(κ,Gκ))∥
≤ ∥H(κ′,Gκ) − H(κ′,Gκ′)∥ + ∥H(κ′,Gκ) − H(κ,Gκ)∥
≤ α ∥Gκ −Gκ′∥ + ∥𭟋1κ − 𭟋1κ

′∥ .

This means that
∥Gκ −Gκ′∥ ≤

1
1 − α

∥𭟋1κ − 𭟋1κ
′∥ .

Continuity of 𭟋1 implies that G : Ω −→ Ω is a continuous function. Since N ⊆ Ω, G(N) ⊆ G(Ω) ⊆ Ω
and H(N,G(N))) ⊆ H(N,Ω)). Hence µ(H(N,G(N))) ≤ µ(H(N,Ω)). Now, from (1), we have

µ(G(N)) = µ(H(N,G(N))) ≤ µ(H(N,Ω)) < µ(N).

Hence G : Ω −→ Ω is condensing. By Theorem 1.3, there exists s ∈ Ω such that Gs = s. As for s ∈ Ω,
there is a unique Gs ∈ Ω such that H(s,Gs) = Gs and Gs = s; therefore, H(s, s) = s. □

Corollary 2.5 Suppose Ω is the nonempty bounded closed and convex subset of a Banach space Z.
Consider the mappings 𭟋1 and 𭟋2 of Ω into Z such that
(1) 𭟋1κ + 𭟋2y ∈ Ω for all κ, y in Ω;
(2) 𭟋1 is a condensing mapping;
(3) 𭟋2 is a contraction and 𭟋2(Ω) lies in a compact subset of Z.
Then there is κ ∈ Ω such that 𭟋1κ + 𭟋2κ = κ.

Proof. Define H(κ, y) = 𭟋1κ + 𭟋2y. Obviously H : Ω ×Ω −→ Ω and

µ(H(N,Ω) = µ(𭟋1(N) + 𭟋2(Ω)) ≤ µ(𭟋1(N)) + µ(𭟋2(Ω))) ≤ µ(𭟋1(N)) < µ(N).

Now using (3),
∥H(κ, y1) − H(κ, y2)∥ = ∥𭟋2y1 − 𭟋2y2∥ ≤ α ∥y1 − y2∥ ,

and, also,
∥H(κ, y) − H(κ′, y)∥ = ∥𭟋1κ − 𭟋1κ

′∥ ≤ ∥𭟋1κ − 𭟋1κ
′∥ .

Hence there exists κ ∈ Ω such that 𭟋1κ + 𭟋2κ = κ. □
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Remark 2.3 Theorem 2.2 and the above corollary are variants of the Krasnoselskii fixed point
theorem.

Corollary 2.6 Suppose Ω is the nonempty bounded closed and convex subset of a Banach space Z.
Suppose 𭟋1 : Ω −→ Z is a continuous mapping and 𭟋2 : Ω −→ Z is a contraction mapping such that
(1) 𭟋1κ + 𭟋2y ∈ Ω;
(2) µ(𭟋1(N) + 𭟋2(Ω)) < µ(N) for all N ⊆ Ω with µ(N) , 0.
Then there is s ∈ Ω such that 𭟋1s + 𭟋2s = s.

Proof. Define H(κ, y) = 𭟋1κ + 𭟋2y (Theorem 2.2). Now since 𭟋2 is a contraction mapping,

∥H(κ, y1) − H(κ, y2)∥ = ∥𭟋2y1 − 𭟋2y2∥ ≤ α ∥y1 − y2∥ .

Also,
∥H(κ, y) − H(κ′, y)∥ = ∥𭟋1κ − 𭟋1κ

′∥ ≤ ∥𭟋1κ − 𭟋1κ
′∥ ,

and using (2),
µ(H(N,Ω)) = µ(𭟋1(N) + 𭟋2(Ω)) < µ(N).

Hence there is s ∈ Ω such that s = H(s, s) = 𭟋1s + 𭟋2s. □

Theorem 2.3 Suppose Ω is the nonempty bounded closed convex subset of a Banach space Z and
𭟋1 : Ω −→ Z is continuous. Let H : 𭟋1(Ω) ×Ω −→ Ω be the mapping such that
(1) µ(H(𭟋1(N),Ω)) < µ(N) for all N ⊆ Ω with µ(N) , 0;
(2) the family {H(u, .) : u ∈ 𭟋1(Ω)} is equicontractive;
(3) ∥H(u, y) − H(u′, y)∥ ≤ ∥u − u′∥ for all u, u′ ∈ 𭟋1 (Ω) and y ∈ Ω;
Then there is s ∈ Ω such that H(𭟋1s, s) = s.

Proof. Let u ∈ 𭟋1(Ω), and define a map M : Ω −→ Ω by M(y) = H(u, y). Clearly M is a contraction
and there is a unique point in Ω say Gu such that Gu = H(u,Gu). Now

∥G(u) −G(u′)∥ = ∥H(u,Gu) − H(u′,Gu′)∥
= ∥(H(u′,Gu) − H(u′,Gu′)) − (H(u′,Gu) − H(u,Gu))∥
≤ ∥H(u′,Gu) − H(u′,Gu′)∥ + ∥H(u′,Gu) − H(u,Gu)∥
≤ α ∥Gu −Gu′∥ + ∥u − u′∥ .

This means that

∥Gu −Gu′∥ ≤
1

1 − α
∥u − u′∥ α ∈ (0, 1),

which indicates that G is continuous from 𭟋1(Ω) into Ω and G ◦ 𭟋1 is a continuous from Ω into Ω.
Also for N ⊆ Ω and using (1), we get

µ(G ◦ 𭟋1(N)) = µ(G(𭟋1(N))) = µ(H(𭟋1(N),G(𭟋1(N))) ≤ µ(H(𭟋1(N),Ω) < µ(N).

Thus G ◦ 𭟋1 is a condensing mapping of Ω into Ω and by Theorem 1.3, there is s ∈ Ω such that
G(𭟋1s) = s. Hence, s = G(𭟋1s) = H(𭟋1s,G(𭟋1s)) = H(𭟋1s, s). □
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Corollary 2.7 Suppose Ω is the nonempty bounded closed and convex subset of a Banach space Z.
Consider the mappings 𭟋1 and 𭟋2 of Ω into Z such that
(1) 𭟋1κ + 𭟋2y ∈ Ω;
(2) 𭟋2 : Ω −→ Z is a contraction with k < 1 and 𭟋2(Ω) resides in a compact subset of Z;
(3) 𭟋1 : Ω −→ Z is strictly a (1 − k)-set contractive mapping;.
Then κ = 𭟋1κ + 𭟋2κ has a solution in Ω.

Proof. Define H(u, y) = u + 𭟋2y with u = 𭟋1κ ∈ 𭟋1(Ω) (Theorem 2.3). Using (1) H(u, y) ∈ Ω
for all u = 𭟋1κ, κ ∈ Ω and y ∈ Ω. Now since 𭟋2 is contraction mapping, ∥H(u, y1) − H(u, y2)∥ =
∥𭟋2y1 − 𭟋2y2∥ ≤ k ∥y1 − y2∥ . Also, ∥H(u, y) − H(u′, y)∥ = ∥u − u′∥ ≤ ∥u − u′∥ . Now, for N ⊆ Ω,

µ(H(𭟋1(N),Ω)) = µ(𭟋1(N) + 𭟋2(Ω)) ≤ µ(𭟋1(N)) + µ(𭟋2(Ω)) < (1 − k)µ(N) < µ(N).

Hence, there is s ∈ Ω such that s = H(𭟋1s, s) = 𭟋1s + 𭟋2s. □

Remark 2.4 If we take 𭟋2 = O with k = 0 in the above corollary, we obtain Sadovskii fixed point
theorem.

Theorem 2.4 Suppose Ω is the nonempty bounded closed and convex subset of a Banach space Z.
Let H : 𭟋1(Ω) ×Ω −→ Ω be a mapping such that
(1) ∥H(u, y) − H(u′, y)∥ ≤ ∥u − u′∥ ;
(2) the family {H(u, .) : u ∈ 𭟋1(Ω)} is equicontractive with k < 1;
(3) 𭟋1 : Ω −→ Z is strictly a (1 − k)-set contractive mapping;
Under these conditions, κ = H(𭟋1κ, κ) has a solution in Ω.

Proof. Consider a mapping M : Ω −→ Ω by M(y) = H(u, y) for u ∈ 𭟋1(Ω). Clearly M is a contraction
and there is a unique point in Ω say Gu such that Gu = H(u,Gu). Now

∥G(u) −G(u′)∥ = ∥H(u,Gu) − H(u′,Gu′)∥
= ∥(H(u′,Gu) − H(u′,Gu′)) − (H(u′,Gu) − H(u,Gu))∥
≤ ∥H(u′,Gu) − H(u′,Gu′)∥ + ∥H(u′,Gu) − H(u,Gu)∥
≤ k ∥Gu −Gu′∥ + ∥u − u′∥ .

This means that
∥Gu −Gu′∥ ≤

1
1 − k

∥u − u′∥ k ∈ (0, 1),

which indicates that G is continuous from 𭟋1(Ω) into Ω and G ◦ 𭟋1 is a continuous from Ω into Ω.
Also, from (3), the above inequality and Lemma 1.1, we have

µ(G ◦ 𭟋1(N)) = µ(G(𭟋1(N))) ≤
1

1 − k
µ(𭟋1(N)) <

1 − k
1 − k

µ(N) = µ(N)

for all N ⊆ Ω. Hence G ◦ 𭟋1 is a condensing mapping of Ω into Ω and by Theorem 1.3, there is s ∈ Ω
such that G(𭟋1s) = s. Hence s = G(𭟋1s) = H(𭟋1s,G(𭟋1s)) = H(𭟋1s, s). □

Corollary 2.8 Suppose Ω is the nonempty bounded closed and convex subset of a Banach space Z.
Consider the mappings 𭟋1 and 𭟋2 of Ω into Z such that
(1) 𭟋1κ + 𭟋2y ∈ Ω;
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(2) 𭟋2 : Ω −→ Z is a contraction with k < 1;
(3) 𭟋1 is strictly a (1 − k)-set contractive mapping;
Then κ = 𭟋1κ + 𭟋2κ has a solution in Ω.

Proof. Define H(u, y) = u+𭟋2y with u = 𭟋1κ ∈ 𭟋1(Ω). Using (1), H(u, y) ∈ Ω for all u = 𭟋1κ, κ ∈ Ω and
y ∈ Ω. Now, since 𭟋2 is a contraction mapping, ∥H(u, y1) − H(u, y2)∥ = ∥𭟋2y1 − 𭟋2y2∥ ≤ k ∥y1 − y2∥ .

Also, ∥H(u, y) − H(u′, y)∥ = ∥u − u′∥ ≤ ∥u − u′∥ . Hence, there is s ∈ Ω such that s = H(𭟋1s, s) =
𭟋1s + 𭟋2s. □

Remark 2.5 If we take 𭟋2 = O and k = 0, (in the above corollary) we obtain the Sadovskii fixed
point theorem. Taking 𭟋1 = O, we get the Banach contraction principle.

Corollary 2.9 Suppose Ω is the nonempty bounded closed and convex subset of a Banach space Z.
Consider the mappings 𭟋1 and 𭟋2 of Ω into Z such that
(1) 𭟋1κ + 𭟋2y ∈ Ω;
(2) 𭟋2 : Ω −→ Z is a contraction with k < 1;
(3) 𭟋1 is compact and continuous.
Then κ = 𭟋1κ + 𭟋2κ has a solution in Ω.

Proof. Since every compact operator is strictly (1− k)-set contractive, using the above corollary we get
the required result. □

Remark 2.6 Taking 𭟋2 = O, we obtain the Schauder fixed point theorem and with 𭟋1 = O we obtain
the Banach contraction principle.

3. Application

Astrophysicists analyze the light coming from objects similar to a star’s atmosphere with vastly
different physical conditions by solving the radiative transfer equation as a tool. In this section we
prove an existence result for the radiative transfer equation of a specific type. A quantity that describes
the field of radiation is known as the diffuse radiance/emission variable ξ. All other terms can be
considered as a source terms. The most generalized form is given by

µ
∂ξ

∂x
(τ, κ, v) = ξ (τ, κ, v) − J (τ, κ, v) ,

here ξ is the diffuse radiation and J is the source function.
Consider a class of stationary radiative transfer equations in a channel:

v3
∂ξ

∂κ
(τ, κ, v) + σ (κ, v) ξ (τ, κ, v) − λξ (τ, κ, v) =

∫
U2

r (κ, v, u, ξ (τ, κ, u)) du (1)

in (0, 1) × (0, 1) × U2, λ ∈ C, where U is a unit sphere in R3 and ξ (τ, κ, v) is an unknown complex
function (energy density function) with

ξ (τ, τ, v) = ξτ (v) (2)
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where

ξτ (v) = (1 − τ)
1
θ ξ (0, 0, v) |U2 + τ

1
θ ξ (1, 1, v) |U2

= (1 − τ)
1
θ M1 (ξ (1, 1, v) |U2) + τ

1
θ M2 (ξ (0, 0, v) |U2)

with 0 < θ ≤ 1. Clearly for θ = 1, we get the problem (4.3) + (4.4) in [29], and for θ = 1 and τ = 0, we
get problem (4.1) + (4.2) of [29] [and, also, see [11]]. In fact, we generalize the problem and present
an implicit way of finding solution of the problem (1) + (2) .

To prove the existence of solutions of (1) + (2) , we consider the following assumptions.
(A1) : r ∈ C

(
(0, 1) × U2 × U2 × C

)
, and r (y, v, u, ξ) = 0 for every (y, v, u, ξ) ∈ (0, 1) ×U2 ×U2 ×C

with v3 ≤
1
2 ; there is some a ∈ L1

(
(0, 1) × U2

)
and q > 0 such that

|r (κ, v, u, ξ) − r (κ, v, u, ζ)| ≤ a (κ, u) |ξ − ζ | ,

and |r (κ, v, u, ξ)| ≤ qa (κ, u) for every (κ, v, u, ξ) ∈ (0, 1) × U2 × U2 × C.

(A2) : Mi : C
(
U2

)
→ C

(
U2

)
, with Mi (0) = 0 satisfying∣∣∣Mi (ζ) − Mi (ξ)

∣∣∣ ≤ q |ζ − ξ|

on U2 for every ξ, ζ ∈ C
(
U2

)
, i = 1, 2.

(A3) : q + sup
v∈U2

1∫
0
|σ (y, v)| dy + |λ| +

1∫
0

∫
U2

a (κ, u) dudy ≤ γ < 1 and 2γ ≤ q + 1.

We use Theorem 2.1 to prove the next existence result for the solution of radiative transfer equation
(1) .

Theorem 3.1 Suppose (A1) , (A2) and (A3) are satisfied; then, there exists a solution ξ ∈
C

(
[0, 1] × [0, 1] × U2

)
of (1) + (2) .

Proof. Let E =
{
ξ ∈ C

(
[0, 1] × [0, 1] × U2

)
: ξ (τ, κ, v) = 0 for v3 ≤

1
2

}
be the Banach space with the

norm ∥ξ∥ = sup
{
|ξ (τ, κ, v)| : (τ, κ, v) ∈ [0, 1] × [0, 1] × U2

}
. Let K = {ζ ∈ E : ∥ζ∥ ≤ q1} be the convex

and closed subset of E.We define H : S (K) × K → K by

H
(
S ξ1, ξ2

)
= −bv3ξ

τ
1 + b

κ∫
τ

σ (y, v) ξ1 (τ, y, v) dy − λb

κ∫
τ

ξ1 (τ, y, v) dy

−b

κ∫
τ

∫
U2

r
(
κ, v, u, ξ1 (τ, κ, u)

)
dudy + (1 + bv3) ξ2 (τ, κ, v) ,

where

S (ξ) = −bv3ξ
τ + b

κ∫
τ

σ (y, v) ξ (τ, y, v) dy

−λb

κ∫
τ

ξ (τ, y, v) dy − b

κ∫
τ

∫
U2

r (κ, v, u, ξ (τ, κ, u)) dudy.
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Clearly, every ζ ∈ E satisfying ζ = H (S ζ, ζ) is the solution of problem (1) + (2). Now, we show that
H satisfies all conditions of Theorem 2.1. For this, first consider∣∣∣H (

S ξ, ξ1
)
− H

(
S ξ, ξ2

)∣∣∣ = ∣∣∣(1 + bv3) ξ1 (τ, κ, v) − (1 + bv3) ξ2 (τ, κ, v)
∣∣∣

=
∣∣∣(1 + bv3)

(
ξ1 (τ, κ, v) − ξ2 (τ, κ, v)

)∣∣∣
≥

(
1 +

b
2

) ∣∣∣ξ1 (τ, κ, v) − ξ2 (τ, κ, v)
∣∣∣

for ξ1, ξ2 ∈ K. Therefore we get∥∥∥H
(
S ξ, ξ1

)
− H

(
S ξ, ξ2

)∥∥∥ ≥ (
1 +

b
2

) ∥∥∥ξ1 − ξ2

∥∥∥ ;

hence H (ζ, ·) is equiexpansive. Now, consider

∣∣∣H (
S ξ1, ζ

)
− H

(
S ξ2, ζ

)∣∣∣ =
∣∣∣∣∣∣∣∣bv3

(
ξτ2 − ξ

τ
1
)
+ b

κ∫
τ

σ (y, v)
(
ξ1 (τ, y, v) − ξ2 (τ, y, v)

)
dy

−λb

κ∫
τ

(
ξ1 (τ, y, v) − ξ2 (τ, y, v)

)
dy

−b

κ∫
τ

∫
U2

(
r
(
κ, v, u, ξ1 (τ, κ, u)

)
− r

(
κ, v, u, ξ2 (τ, κ, u)

))
dudy

∣∣∣∣∣∣∣∣∣
=

∣∣∣S ξ1 − S ξ2

∣∣∣ ;
this implies ∥∥∥H

(
S ξ1, ζ

)
− H

(
S ξ2, ζ

)∥∥∥ ≤ ∥∥∥S ξ1 − S ξ2

∥∥∥ ,
which shows that H satisfies (2) of Theorem 2.1.
Now, we will show that S is a k-set contraction; for this consider

∣∣∣S ξ1 − S ξ2

∣∣∣ ≤ b



q
∥∥∥ξ1 − ξ2

∥∥∥ + 1∫
0
|σ (y, v)|

∣∣∣ξ1 (τ, y, v) − ξ2 (τ, y, v)
∣∣∣ dy

+ |λ|
1∫
0

∣∣∣ξ1 (τ, y, v) − ξ2 (τ, y, v)
∣∣∣ dy

+
1∫
0

∫
U2

∣∣∣r (
κ, v, u, ξ1 (τ, κ, u)

)
− r

(
κ, v, u, ξ2 (τ, κ, u)

)∣∣∣ dudy



≤ b



q
∥∥∥ξ1 − ξ2

∥∥∥ + 1∫
0
|σ (y, v)|

∣∣∣ξ1 (τ, y, v) − ξ2 (τ, y, v)
∣∣∣ dy

+ |λ|
1∫
0

∣∣∣ξ1 (τ, y, v) − ξ2 (τ, y, v)
∣∣∣ dy

+
1∫
0

∫
U2

a (κ, u)
∣∣∣ξ1 (τ, κ, u) − ξ2 (τ, κ, u)

∣∣∣ dudy
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≤ b

q +
1∫
0

|σ (y, v)| dy + |λ| +

1∫
0

∫
U2

a (κ, u) dudy

 ∥∥∥ξ1 − ξ2

∥∥∥ .
Clearly, from above we have ∥∥∥S ξ1 − S ξ2

∥∥∥ ≤ γb ∥∥∥ξ1 − ξ2

∥∥∥ ,
which means that S is a γb-set contraction (also for γ = 1

2 ). Hence, all conditions of Theorem 2.1 are
satisfied to obtain ζ ∈ K such that ζ = H (S ζ, ζ) , a solution of (1) + (2) . □

In the following example, we consider the special case of (1) without parameter τ.
Example 3.1 Consider the following radiative transfer equation:

ξ (x, u) = αξ (x, u) + b

x∫
0

σ (y, u) ξ (y, u) dy − λb

x∫
0

ξ (y, u) dy − b

x∫
0

1∫
0

r (y, u, ) ξ (y, u) dudy.

For a more simplified case let σ (y, u) = λ and b = 1
10 ; then it reduces to

ξ (x, u) = αξ (x, u) −

x∫
0

1∫
0

b · r (y, u, ) ξ (y, u) dudy

with source term b

x∫
0

1∫
0

r (y, u, ) ξ (y, u) dudy. To reduce the complexities, we consider the following

form:

ξ (x, u) = 1 + xe−u − bx sin (ξ (x, u)) −

x∫
0

1∫
0

b
sin (ξ (x, u))

√
1 + ξ (y, s)

(1 + ye−s)
1
2

dsdy.

The exact solution of the above equation is

ξ (x, u) = 1 + xe−u.

Since ∣∣∣∣∣∣∣bsin (ξ (x, u))
√

1 + ξ (x, u)

(1 + xe−u)
1
2

− b
sin

(
ξ1 (x, u)

) √
1 + ξ1 (x, u)

(1 + xe−u)
1
2

∣∣∣∣∣∣∣ ≤ b
∣∣∣ξ (y, s) − ξ1 (y, s)

∣∣∣
for (x, u) ∈ [0, 1]× [0, 1], the above integral equation satisfies all conditions of the above theorem; now,
we take the initial guess

ξ0 (x, u) = 1 + x.

The iterative process is as follows:

ξn+1 (x, u) = 1 + xe−u − bx sin
(
ξn (x, u)

)
−

x∫
0

1∫
0

b
sin

(
ξ0 (x, u)

) √
ξ0 (y, s)

(1 + ye−s)
1
2

dsdy for n = 0, 1, 2, 3, ...
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Taking initial guess ξ0 (x, u) = 1+x, the approximate solution is obtained after two iterations. The graph
of the exact solution and the approximate solution are given below in Figures 1 and 2, respectively.

Figure 1. Exact solution.

Figure 2. Approximate solution.

We calculated the absolute error with the formula

Error =
∣∣∣ξ (x, u) − ξ2 (x, u)

∣∣∣ for (x, u) ∈ [0, 1] × [0, 1] .

The graph of the absolute error is given below in Figure 3; clearly, no significant error has occurred.
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Figure 3. Absolute error.

4. Conclusions

Some new variants of Krasnoselskii fixed point theorems are proved using the notions of equicon-
tractive and equiexpansive mappings. The tool of the measure of noncompactness is used to weaken
the compactness of the operator. An application for the existence of solutions of radiative transfer
equations has been established. An example is given as a special case of radiative transfer equation.
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26. J. Banaś, M. Jleli, M. Mursaleen, B. Samet, C. Vetro, Eds, Advances in nonlinear analysis via the
concept of measure of noncompactness, Singapore: Springer Singapore; 2017 Apr 25.

27. V. I. Istratesecu, On a measure of noncompactness, B. Math. Soc. Sci. Math., 16 (1972), 195–197.
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