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Abstract: In this paper, we develop a mathematical model for the spread of COVID-19 outbreak,
taking into account vaccination in susceptible and recovered populations. The model divides the
population into eight classes, including susceptible, vaccinated in S class, exposed, infected
asymptomatic, infected symptomatic, hospitalized, recovery, and vaccinated in recovered class. By
applying a vaccine-distribution scenario, we investigate the impact of vaccines on the COVID-19
outbreak. After analyzing the equilibrium point and computing the basic reproduction number, we
perform numerical simulation and sensitivity analysis to identify the most influential parameters and
evaluate the impact of vaccine distribution on policies to control the spread of COVID-19. Our findings
suggest that vaccine distribution can effectively suppress the spread of COVID-19, and increasing the
v parameter (vaccine distribution) and α1 parameter (acceleration of detection of undetected infected
individuals who have recovered) can help control the outbreak. Moreover, decreasing the contact
between vulnerable and infected individuals can lower the β1 parameter, leading to R0 < 1, which
indicates a disease-free population. This study contributes to understanding the impact of vaccination
on the spread of COVID-19 and provides insights for policymakers in developing control strategies.
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1. Introduction

On March 9th, 2020, the World Health Organization (WHO) declared COVID-19 a global
pandemic. The virus can be transmitted from person to person through droplets that are expelled
when an infected individual coughs or sneezes. These droplets can contaminate objects or surfaces
and can cause infection if an uninfected individual touches their eyes, nose, or mouth after touching
the contaminated object or surface. The first case of COVID-19 was reported in Wuhan, China in
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December 2019 and had spread to 230 countries by November 2020 [1]. In Indonesia, the first case of
COVID-19 was reported on March 2nd, 2020. As of November 15th, 2022, Indonesia has
recorded 6,565,912 confirmed cases of COVID-19, with 6,356,794 people recovered and 159,158
patients who have died [2].

The Indonesian government has made various efforts to reduce the number of positive COVID-19
cases, including requiring the use of masks, implementing large-scale social restriction policies, and
controlling transportation. Additionally, the government has administered various types of vaccines,
including Sinovac, Astra Zeneca, Pfizer, Moderna, Janssen, and Sinopharm, to the community. The
government also continues to boost Testing, Tracing, and Treatment (3T) and encourages the use of
the PeduliLindungi application for digital tracing. Digital tracing is the government’s effort to identify
and detect individuals through tracking location data and information digitally. This application is
connected and integrated with existing systems and databases at the Ministry of Health, and by using
a QR code, it can track data on individuals who have been vaccinated and their test results. Tracing
results with the PeduliLindungi application will make it easier for people to receive treatment or
necessary handling if needed.

Several researchers in mathematics have modeled the spread of COVID-19 in Indonesia. Nuraini
et al. used Richard’s curve and the least squares method to represent the dynamics of COVID-19
patients in Indonesia [3]. Suwardi utilized the SEIR (susceptible, exposed, infectious, and recovery)
model to describe the dynamics of COVID-19 spread in Indonesia [4]. Susanto used the SI
(susceptible and infectious) model to depict the spread of COVID-19, assuming that there is a
lockdown but citizens perform their activities as usual [5]. Additionally, Susanto et al. developed their
research using the SIQRD (susceptible, infected, quarantine, recovery, and death) model to describe
the administration of vaccines to a class of vulnerable populations [6]. Mukandavire, Nyabadza, and
Malunguza, used the SEIR model to quantify early COVID-19 outbreak transmission in South Africa
and explore vaccine efficacy scenarios [7]. Olivares and Staffetti used the SEIsIAQR (susceptible,
exposed, infected symptomatic, infected asymptomatic, quarantine, and recovery) model for
uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with a mass
vaccination strategy. Model of spread and control of CCOVID-19 in China is studied in [8]. For a
more general epidemic model, [9] provide a stochastic bifurcation analysis and stochastic delayed
optimal control. Finally, Diagne used the SVEAIHR (susceptible, vaccinated, exposed, infected
asymptomatic, infected symptomatic, hospitalized, and recovery) model to describe the
administration of vaccines to a class of vulnerable populations [10]. Thus, researchers have developed
various mathematical models to study the spread of COVID-19 with vaccines.

This paper is based on a previous study by Diagne [10] on constructing a model for the spread of
COVID-19. The researcher added a compartment for recovered individuals who have been vaccinated
to the model. In the previous research, infected individuals with no symptoms, infected individuals
with symptoms, and quarantined individuals were assumed to be the ones who spread the virus. In
this study, the model was modified to assume that the individuals who spread the virus are those
without symptoms. Additionally, vulnerable individuals, recovered individuals, and vaccinated
recovered individuals can be infected again if they come into close contact with infected individuals
without symptoms. The study determined the basic reproduction number, which is a threshold
parameter that indicates whether a disease is spreading or not. The next generation matrix
method [11, 12] was used to compute the basic reproduction number. The paper then conducted a
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sensitivity analysis on the basic reproduction number to identify the parameters that have the most
significant impact on the spread of COVID-19. The results of this analysis can be used to inform
policies regarding the control of the COVID-19 outbreak. The structure of this paper includes sections
on the mathematical model and formulation, equilibrium point, basic reproduction number, numerical
simulation, and sensitivity analysis of the basic reproduction number.

2. Model formulation

The COVID-19-vaccine mathematical model presented in this study includes eight population
classes. The vulnerable population class (S ) represents individuals who are susceptible to COVID-19
infection. The population class (Vs) represents individuals who have been vaccinated from the
vulnerable population. The population class (E) represents individuals who have been exposed to
COVID-19. The asymptomatic infected population class (A) represents individuals who are infected
with COVID-19 but do not exhibit symptoms. The infected population class with symptoms (I)
represents individuals who are infected with COVID-19 and exhibit symptoms. The hospitalized
population class (H) represents individuals who are infected with COVID-19 and have been
hospitalized or are in quarantine. The recovered population class (R) represents individuals who have
recovered from COVID-19. The vaccinated and recovered population class (VR) represents
individuals who have been vaccinated and have recovered from COVID-19. The total population is
represented by N, where

N = S + Vs + E + A + I + H + R + VR.

In this model, the birth rate and death rate are different, which causes the population to be dynamic.
Vulnerable individuals are assumed to be infected through contact with undetected infected individuals.

The assumptions in constructing the model of vaccination policy in controlling the spread of
COVID-19 are as follow:

(1) Infectious disease through a direct contact with infected individuals who show no symptoms.
Infected individuals who show symptoms do not have a direct contact with vulnerable individuals
and will perform self-quarantine or be hospitalized, so the individuals with symptoms will not
spread the virus.

(2) Individuals in the population are assumed to be not infected by COVID-19, therefore the increase
of individuals in vulnerable population are from migration and birth rate.

(3) The illness may cause death. The decrease caused by death from the illness happen in infected
class (I) and hospitalized (H).

(4) Population in hospitalized (H) class do not interact with vulnerable and recovered population,
therefore the spread of COVID-19 does not happen in hospitalized (H) population.

(5) The population who are exposed to COVID-19 will be the asymptomatic and symptomatic
population.

(6) The reduction in individuals in the population is caused by natural death, with a constant natural
death rate and the same value for each class of the population.

(7) The population in individuals who have been vaccinated and in the individual population who
have recovered can be re-infected if interacting or making contact with individuals in the infected
population is not detected.
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(8) Infected individuals with symptoms requiring more intensive care are admitted to the
hospitalized(H) class

The parameters used in the vaccination policy in controlling the spread of COVID-19 are shown in
Table 1:

Table 1. Table of parameter of the vaccination policy in controlling the spread of COVID-19
model.

Parameters Notation
Contact between vulnerable individuals and asymptomatic infected individuals rate β1

Contact between individuals in Vs and individuals in A rate β2

Contact between individuals in R and individuals in A rate A β3

Contact between individuals in VR and individuals in A rate β4

Natural death rate µ

Vaccination rate on S class v
Vaccination rate on R class θ

COVID-infected death rate on I class d1

COVID-infected death rate on H class d2

E class proportion to become infected by COVID-19 ω

E class become infected by COVID-19 rate γ

E class to be infected by COVID-19 rate α1

Conversion rate from asymptomatic infected (A class) to recovery rate (R class) α2

Conversion rate from A class to I class δ1

Conversion rate from I class to H class δ2

Recovery rate on H infected class σ

The transfer diagram model represents the spread of the Corona virus. The differential equation for
the spread of the Corona virus model from the diagram is:

dS
dt
= Λ − β1S A − vS − µS ,

dVs

dt
= vS − β2VsA − µVs,

dE
dt
= β1S A + β2VsA + β3RA + β4VRA − γωE − γ(1 − ω)E − µE,

dA
dt
= γ(1 − ω)E − (α1 + α2 + µ)A, (2.1)

dI
dt
= γωE + α2A − (δ1 + δ2 + µ + d1)I,

dH
dt

= δ1I − (σ + µ + d2)H,

dR
dt
= α1A + δ2I + σH − β3RA − (µ + θ)R,

dVR

dt
= θR − β4VRA − µVR.
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The solution to Eq (2.1) is in the domain:

D =





S
Vs

E
A
I
H
R
VR


∈ R8

∣∣∣∣∣∣

S ≥ 0,
Vs ≥ 0,
E ≥ 0,
A ≥ 0,
I ≥ 0,
H ≥ 0,
R ≥ 0,
VR ≥ 0,

N ≤
Λ

µ
,

N > 0



. (2.2)

Theorem 1. The solution to the system of Eq (2.1) is within the domainD in R8.

Proof. Consider the total population

N = S + Vs + E + A + I + H + R + VR.

We can derive the following equation by taking the derivative of N with respect to time:

dN
dt
= Λ − µN − d1I − d2H. (2.3)

Integrating Eq (2.3), we obtain

N(t) ≤ Ke−µt +
Λ

µ
.

By taking the limit as t approaches infinity, we have

N(t) ≤
Λ

µ
for all t ≥ 0.

This implies that there is a maximum limit of
Λ

µ
for the population. Therefore, the solution to

Eq (2.1) lies within the domainD. □

3. Model analysis

This part will discuss about equilibrium point, basic reproduction number, and stability analysis.

3.1. Equilibrium point

The disease-free equilibrium point is a point where there is no disease in a population. In order to
find the disease-free equilibrium point, we evaluate the system of Eq (2.1) when

E = A = I = H = 0.
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Theorem 2. COVID-19 outbreak model (2.1) has only one equilibrium point

xd f e = (
Λ

µ + v
,

vΛ
µ(µ + v)

, 0, 0, 0, 0, 0, 0),

which represents the disease-free equilibrium point. At this point, there is no disease in the population.

Proof. There is only one equilibrium point for the COVID-19 outbreak model (2.1), which is the
disease-free equilibrium point xd f e. This point corresponds to the situation where there is no disease
in the population. By substituting the values from xd f e to Eq (2.1), all derivatives become zero, which
confirms that xd f e is indeed an equilibrium point for the model. Additionally, it can be concluded
that the equilibrium point on D fulfills E = A = I = H = 0 condition, which is the condition for a
disease-free equilibrium point. □

3.2. Basic reproduction number

To understand the disease or infection spread level, the parameter to see how big is the potential of a
disease spreading in a population is needed. The parameter is called basic reproduction number, whic
is notated by R0. The basic reproduction number (R0) is defines as the average sum of the secondary
case caused by an infected individual during their infection span in the vulnerable population. The
method used in obtaining the basic reproduction number is next generation matrix. Suppose the matrix
F represents the occurence of new infection rate, matrixV− represents the mobility of individuals who
migrate from the first class to another class and matrixV+ represents the mobility of individuals who
get into one class from another class. Equation (2.1) may be written into

ẋ = f (x) = Fi(x) −Vi(x),

with
Vi(x) = V+i(x) −V−i(x),

defines matrix F andV with

F =
∂ fi

∂x j
(xd f e)

and

V =
∂vi

∂x j
(xd f e).

The basic reproduction number is a spectral radius from next generation matrix FV−1. According to
Eq (2.1), we get

F =


0 β1

Λ

µ + v
+ β2

vΛ
µ(µ + v)

0 0

0 0 0 0
0 0 0 0
0 0 0 0

 ,
and
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V =


(γ + µ) 0 0 0
−γ(1 − ω) (α1 + α2 + µ) 0 0
−γω −α2 (δ1 + δ2 + µ + d1) 0

0 0 −δ1 (σ + µ + d1)

 ,
therefore the basic reproduction number is

R0 =

(
β1
Λ

µ + v
+ β2

vΛ
µ(µ + v)

)(
γ(1 − ω)

(γ + µ)(α1 + α2 + µ)

)
. (3.1)

The basic reproduction number (R0) is defined as the number of new infections produced by an
infected individual in a fully vulnerable population. The disease-free equilibrium point is
asymptotically stable if R0 < 1. When R0 < 1, the number of infected individuals will decrease and,
on average, an infected individual will infect less than one individual. This means that the infection
cannot develop into a plague and the COVID-19 outbreak will eventually run out of the population.
However, if R0 > 1, the system will be unstable, leading to an increasing number of infected
individuals. This enables the COVID-19 outbreak to develop and potentially cause significant harm to
the population.

4. Numerical simulation

This chapter will discuss the numerical simulation of vaccination distribution related to COVID-19
outbreak. The parameter values used in the simulation are shown in Table 2 below:

Table 2. Parameter value.

Parameter Value sources
Λ 250 Assumption
β1 0,00815 Assumption
β2 0.00000049 Assumption
β3 0.00000058 Assumption
β4 0.000000011 Assumption
ω 0,58 [13]
α1 0,27 [13]
α2 0,19 [13]
γ 0,11 [13]
µ 0,000042 [13]
d1 0,018 [13]
d2 0,06 [13]
v 0,4 [10]
θ 0,05 Assumption
δ1 0,125 Assumption
δ2 0,165 Assumption
σ 0,0701 [10]
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The initial condition is given to find the disease-free equilibrium point and the endemic equilibrium
point. The condition is S (0) = 100.000, Vs(0) = 50.000, E(0) = 150, A(0) = 100, I(0) = 150, H(0) =
45, R(0) = 259 and VR(0) = 35.After that, we get the value of β1 = 0, 000815, β2 = 0, 00000059, β3 =

0.00000045, β4 = 0.000000011.

Figure 1. Disease-free equilibrium point.

Figure 1 shows the disease-free equilibrium point. Class S will decrease until it converges to the
disease-free equilibrium point and each class in E, A, I, H, and R classes will initially increase, then
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decreases until it converges to zero point. Based on that condition, the solution for each class with a
given initial value and parameter value will reach its equilibrium point. Furthermore, the values for
endemic equilibrium point are β1 = 0, 00815, β2 = 0, 0000059, β3 = 0.0000045, β4 = 0.000000011
and we get:

Figure 2. Endemic equilibrium point.

An endemic equilibrium point is an equilibrium point with the existence of a disease. The endemic
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equilibrium point has a basic reproduction number value of R0 = 3.782 > 1, which means the outbreak
will always happen. Figure 2 shows that many individuals in class S undergo a decrease as time goes
by and will converge to the equilibrium point. In addition, many individuals in classes E, A, I, H, R
undergo an initial increase, followed by a decrease until they converge into the equilibrium point.

The initial simulation of vaccine distribution is conducted using the given initial conditions: S (0) =
100, 000, E(0) = 150, A(0) = 50, I(0) = 100, H(0) = 100, R(0) = 249, Vs(0) = 0, and VR(0) = 0.
Based on the parameter values in Table 2, the simulation is carried out.

The blue color in Figures 3–5 represents the scenario where individuals are not vaccinated, the
yellow color represents the vaccination of the vulnerable population in class S , and the purple color
represents the vaccination of the vulnerable populations in classes S and R. The simulation results
show that providing vaccines to both classes S and R can lead to the elimination of the disease, while
vaccinating only class S is not sufficient to prevent an outbreak.

Figure 3. Compartment A to time completion curve.

Figure 4. Compartment I to time completion curve.
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Figure 5. Compartment H to time completion curve.

Figure 6 shows the effect of vaccine rate v and vaccine effectiveness θ on the populations of classes
A, I, and H. From the figure, it can be concluded that the vaccine rate v and vaccine effectiveness
θ significantly affect the populations of classes A, I, and H. When both vaccine rate v and vaccine
effectiveness θ are equal to zero, the population of individuals in class A is 175, the population in class
I is 650, and the population in class H is 620. As the vaccine rate v and vaccine effectiveness θ increase,
the populations of classes A, I, and H decrease. The results show that the vaccination of the vulnerable
group is more effective in suppressing the increase in the populations of classes A, I, and H compared
to vaccination of class R.

Figure 6. Compartment A, I, and H to time completion curve.

Sensitivity analysis is conducted to understand the most influential parameter of the COVID-19
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outbreak. The sensitivity to p is defined by the equation

CR0
p =

∂R0

∂p
×

p
R0
, (4.1)

using Eq (4.1) based on Table 2, the sensitivity value of a parameter is shown in Table 3:

Table 3. Parameter value.

Parameter sensitivity value
β1 0, 6237
β2 0, 3794
v −0, , 6206
µ −0, 1621
γ 0, 0003816
α1 −0, 4214

According to Table 3, the influential parameters of the COVID-19 outbreak are β1, β3, and γ. If
we increase the value of these parameters, the R0 value will also increase. However, if we decrease
the parameter values of v, µ, and α1, the value of R0 will decrease. When R0 > 1, the parameters that
positively affect the COVID-19 outbreak are β1 and β2. If the values of these parameters are decreased,
it will reduce the value of R0. Furthermore, a simulation of the connection between β1 and β2 to R0 is
conducted by modifying the parameter v as follows:

Figure 7 shows the relationship between β1 and v parameters in the spread of the COVID-19
outbreak, where R0 = 1. Eq (3.1) is used to form the function of β1 in terms of v. Based on the
parameters in Table 2, we obtain a linear function of β1 in terms of v, which is
β1 = 0.000815 − 0.00000013v. The blue line represents the linear function of β1 in terms of v, and the
red line represents the value of R0 = 1. The intersection point between the blue and red line is the
critical point, which is v ≈ 0.023. If the value of v is greater than 0.023, then the value of R0 will be
less than 1, and the outbreak will not happen. However, if the value of v is less than 0.023, then the
outbreak will occur. This simulation shows that the parameter v plays a significant role in controlling
the COVID-19 outbreak.

Figure 7. Sensitivity of β1 and v.

From Figure 8, we get that the area above the graph is an area with a basic reproduction number
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value of more than one, in other words, the area is an area of disease existence, while the area below
the graph is an area with a basic reproduction number value of less than one, in other words, the area
is a disease-free area. From the figure above it is also obtained that even though the vaccination rate
is large, when the contact rate with an infected individual is large, the individual will be infected, for
example from the figure the vaccine rate is 0.9 but if the contact rate is 3.5 × 10−3 then the spread of
the disease in a population will still exist.

Figure 8. Boundary of R0 = 1.

5. Conclusions

In this paper, a mathematical model (S VsEIAHRVR) for the spread of COVID-19 is constructed.
The results show that vaccine distribution can suppress the spread of COVID-19. If the vaccine is
distributed only once to the S class, COVID-19 outbreak may still occur in the population. However,
if the vaccine is distributed more than once, or distributed to the R class, COVID-19 outbreak can be
suppressed and the population can become disease-free. According to the sensitivity analysis, one of
the ways to suppress COVID-19 is by increasing the v parameter, which means increasing vaccine
distribution, and the α1 parameter, which means accelerating the detection of undetected infected
individuals who have recovered. In addition, decreasing the contact between vulnerable individuals
and infected individuals will decrease the β1 parameter, causing R0 < 1. This means that an infected
individual has the potential to infect less than one individual, leading to a disease-free population.
Based on the sensitivity analysis, for a total susceptible population of 100,000 people, with 150
exposed, 50 undetected infected, 100 detected infected, 100 quarantined, and 259 recovered
individuals, and based on the parameter values in Table 2, if the value of v is set to 0.65 and
β1 < 3.8 × 10−3 and β2 < 0.25 × 10−6, then the population will be disease-free.
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