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Abstract: In this study, we investigated the threshold dynamics of a spatially heterogeneous
nonlocal diffusion West Nile virus model. By employing semigroup theory and continuous Fréchet-
differentiable, we established the well-posedness of the solution. The expression for the basic
reproduction number derived using the next-generation matrix method. The authors demonstrated the
threshold dynamics of the system by constructing a Lyapunov function and applying the comparison
principle. Finally, numerical simulations were used to validate the theorem results. It can be
suggested that to control disease development rapidly, measures should be taken to reduce the spread
of mosquitoes and birds.
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1. Introduction

West Nile virus disease is zoonotic and is becoming increasingly prevalent in Africa, Europe,
the Americas, Australia, the Middle East, the Indian subcontinent and other regions. This poses a
significant risk to human and animal health, with severe cases resulting in encephalitis, and even death.
In nature, birds act as reservoirs for the West Nile virus, which circulates through a mosquito-bird
cycle. Mosquitoes carrying the virus bite susceptible birds, leading to the development of toxemia in
the birds. Subsequently, susceptible mosquitoes bite infected birds, contributing to the spread of the
virus. Over 60 mosquito species and hundreds of bird species have been implicated in the transmission
of the virus in the United States of America [1]. There is no specific treatment for the disease, and
mathematical models can help us understand the pathogenesis of disease.

There is currently no specific treatment for the disease, but mathematical models can help us
understand its pathogenesis. Numerous models have been developed to study the dynamic behavior
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of the West Nile virus [2–13]. Bai and Zhang [2] examined the dynamics of a periodic West Nile
virus model, and concluded that using time-averaged extrinsic incubation period might underestimate
the risk of disease outbreaks. Ge et al. [6] investigated the spatial transmission of reaction-diffusion
West Nile virus with free boundaries in a heterogeneous environment, providing sufficient conditions
for virus persistence and extinction based on the spatial risk index. Cheng and Zheng [9] explored the
spatiotemporal spread and asymptotic behavior of the West Nile virus through a reaction-advection-
diffusion system with free boundaries. They considered the impact of advection terms on the virus’s
extinction and persistence. Tarboush and Zhang [13] analyzed the effects of a periodically evolving
domain on the dynamics of the West Nile virus spread. They introduced a spatiotemporal basic
reproduction number that varies with the rate of periodic evolution to study the virus long-term
behavior.

The existing literature West Nile virus models predominantly focus on reaction-diffusion
approaches, in which the Laplacian operator accounts for the local behavior of random diffusion at
adjacent spatial locations. However, the reaction-diffusion model represented by the Laplacian operator
may not accurately capture the long-distance effects of disease transmission [14]. Consequently, to
better represent the spread of the disease, integral operators are employed to describe the diffusion
process, which accounts for the movement between non-adjacent spatial locations. Generally,∫

Ω
J(x − y)ϕ(y)dy − ϕ(x) (convolution operator ) is utilized to model the nonlocal diffusion [15]. For

instance, Du and Nie [16] explored the long-term dynamic behavior of a West Nile virus model with
non-local spread and free boundaries. Additionally, Pu et al. [17] incorporated the influence of seasonal
variation into the model based on Reference [16]. Some studies, e.g., [16] and [17] only considered the
impact of non-local diffusion on the infected population; thus, we introduce a model [18] to facilitate
the analysis of non-local diffusion’s influence on both susceptible and infected populations.


dS m
dt = Λm − µmS m −

b1βm
Nb

S mIb,
dIm
dt =

b1βm
Nb

S mIb − µmIm,
dS b
dt = Λb − µbS b −

b1βb
Nb

S bIm,
dIb
dt =

b1βb
Nb

S bIm − µbIb − dbIb,

(1.1)

where S m and Im represent the populations of uninfected and infected female mosquitoes, respectively.
S b and Ib denote the population of susceptible and infected birds, respectively. Λm and Λm are the
recruitment rates of susceptible mosquitoes and birds, respectively. b1 is the per capita biting rate of
mosquitoes on the bird. βm and βb are the West Nile virus transmission probabilities from infected
birds to uninfected mosquitoes and from mosquitoes to birds, respectively. µm and µb are the natural
death rates of mosquitos and birds, respectively; db denotes the disease-induced death rate of infected
birds. The parameters in this model are all positive constants.

It is worth noting that the activity range of mosquitoes is generally limited, in general, with most
only flying tens to hundreds of meters, and the longest flight distance being one to two kilometers.
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Therefore, we disregard the non-local spread of mosquitoes and we consider the following model.

∂S m
∂t = Λm(x) − µm(x)S m −

b1(x)βm(x)
Nb

S m(x, t)Ib(x, t),
∂Im
∂t =

b1(x)βm(x)
Nb

S m(x, t)Ib(x, t) − µm(x)Im(x, t),
∂S b
∂t = d1

∫
Ω
J(x − y)S b(y, t)dy − d1S b(x, t) + Λb(x) − µb(x)S b(x, t) − b1(x)βb(x)

Nb
S b(x, t)Im(x, t),

∂Ib
∂t = d2

∫
Ω
J(x − y)Ib(y, t)dy − d2Ib(x, t) +

b1(x)βb(x)
Nb

S b(x, t)Im(x, t) − µb(x)Ib(x, t) − dbIb(x, t),
S m(x, 0) = S m,0(x), Im(x, 0) = Im,0(x), S b(x, 0) = S b,0(x)Ib(x, 0) = Ib,0(x),
x ∈ Ω, t > 0.

(1.2)
with the boundary condition

∂S m

∂ν
=
∂Im

∂ν
=
∂S b

∂ν
=
∂Ib

∂ν
= 0, x ∈ ∂Ω, t > 0, (1.3)

and initial condition

S m(x, 0) = S m,0(x), Im(x, 0) = Im,0(x), S b(x, 0) = S b,0(x), Ib(x, 0) = Ib,0(x), x ∈ Ω. (1.4)

d1 > 0 and d2 > 0 represent the diffusion coefficient of susceptible and infectious for birds, respectively.
µh(x), µ(x), βH(x), b(x), γH(x), βv(x) and ν(x) are positive continuous functions on Ω. The dispersal
kernel function J is continuous and satisfies the following properties

J(0) > 0,
∫

R
J(x)dx = 1, J(x) > 0 on Ω, J(x) = J(−x) ≥ 0 on R. (1.5)

This paper is organized as follows. In Section 2, we prove the existence, uniqueness, positivity,
and boundedness of solutions, and derive the expression for the basic reproduction number using the
next-generation matrix method. In Section 3, we establish the global asymptotic stability and uniform
persistence of the system by constructing Lyapunov functions and applying the comparison principle.
Section 4 presents numerical simulations, and Section 5 concludes the paper with some final remarks.

2. Well-posedness of the solution

Let us consider the following function spaces and positive cones.

X := C(Ω), X+ := C+(Ω), Y := C(Ω)×C(Ω)×C(Ω)×C(Ω), Y+ := C+(Ω)×C+(Ω)×C+(Ω)×C+(Ω).

The norms in X and Y are defined as follows, respectively: ‖ϑ‖X := supX∈Ω |ϑ(x)|, ϑ ∈ X, and

‖(z1, z2, z3, z4)‖Y := sup
x∈Ω

√
|z1(x)|2 + |z2(x)|2 + |z3(x))|2 + |z4(x))|2, (z1, z2, z3, z4) ∈ Y.

Next, we define the linear operators on X.

A1ϑ1(x) := −µm(x)ϑ1(x),
A2ϑ2(x) := −µm(x)ϑ2(x),

A3ϑ3(x) := d1

∫
Ω

J(x − y)ϑ3(y)dy − d1ϑ3(x) − µb(x)ϑ3(x),

A4ϑ4(x) := d2

∫
Ω

J(x − y)ϑ4(y)dy − d2ϑ4(x) − µb(x)ϑ4(x) − db(x)ϑ4(x).

(2.1)
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From the above, we know that A1, A2, A3 and A4 are bounded linear operators; by virtue of
[19, Theorem 1.2], we obtain that A1(t)t≥0, A2(t)t≥0, A3(t)t≥0 and A4(t)t≥0 are uniformly continuous
semigroups on X. Furthermore, according to [20, Section 2.1.1], the semigroups A1(t)t≥0, A2(t)t≥0,
A3(t)t≥0 and A4(t)t≥0 are positive.

Next, we will prove the existence and uniqueness of the solution for system (1.2).

Lemma 2.1. For any initial data (S m,0, Im,0, S b,0, Ib,0) and t ∈ [0, t0), the solution (S m(x, t), Im(x, t),
S b(x, t), Ib(x, t)) of system (1.2) satisfies that

lim sup
t→∞

∫
Ω

[S m(x, t) + Im(x, t) + S b(x, t) + Ib(x, t)]dx < ∞.

Here |Ω| denotes the volume of Ω.

Proof. By (1.2), we have

d
dt

∫
Ω

[S m(x, t) + Im(x, t) + S b(x, t) + Ib(x, t)]dx

=

∫
Ω

Λm(x)dx −
∫

Ω

µm(x)S mdx −
∫

Ω

b1(x)βm(x)
Nb

S m(x, t)Ib(x, t)dx
∫

Ω

b1(x)βm(x)
Nb

S m(x, t)Ib(x, t)dx

−

∫
Ω

µm(x)Im(x, t)dx + d1

∫
Ω

∫
Ω

J(x − y)S b(y, t)dydx − d1

∫
Ω

S b(x, t)dx +

∫
Ω

Λb(x)dx

−

∫
Ω

µb(x)S b(x, t)dx −
∫

Ω

b1(x)βb(x)
Nb

S b(x, t)Im(x, t)dx + d2

∫
Ω

∫
Ω

J(x − y)Ib(y, t)dydx − d2

∫
Ω

Ib(x, t)dx

+

∫
Ω

b1(x)βb(x)
Nb

S b(x, t)Im(x, t)dx −
∫

Ω

µb(x)Ib(x, t)dx −
∫

Ω

db(x)Ib(x, t)dx

=

∫
Ω

Λm(x)dx −
∫

Ω

µm(x)(S m + Im(x, t))dx + d1

∫
Ω

∫
Ω

J(x − y)S b(y, t)dydx − d1

∫
Ω

S b(x, t)dx

+

∫
Ω

Λb(x)dx −
∫

Ω

µb(x)(S b(x, t) + Ib(x, t))dx + d2

∫
Ω

∫
Ω

J(x − y)Ib(y, t)dydx − d2

∫
Ω

Ib(x, t)dx

−

∫
Ω

db(x)Ib(x, t)dx.

Moreover, according to (1.5), we obtain

d
dt

∫
Ω

[S m(x, t) + Im(x, t) + S b(x, t) + Ib(x, t)]dx

≤

∫
Ω

Λm(x)dx −
∫

Ω

µm(x)(S m(x, t) + Im(x, t))dx + d1

∫
Ω

∫
Ω

J(x − y)dyS b(y, t)dx − d1

∫
Ω

S b(x, t)dx

+

∫
Ω

Λb(x)dx −
∫

Ω

µb(x)(S b(x, t) + Ib(x, t))dx + d2

∫
Ω

∫
Ω

J(x − y)dyIb(y, t)dx − d2

∫
Ω

Ib(x, t)dx

≤(Λ̄m + Λ̄b)|Ω| −
∫

Ω

min{µ
m
, µ

b
}(S m + Im(x, t) + S b(x, t) + Ib(x, t))dx,

where |Ω| denotes the volume of Ω; Λ̄m and Λ̄b represent the upper bound of Λm and Λb, respectively.
µ

m
and µ

b
denote the lower bound of µm and µb, respectively. By calculating, we have

lim sup
t→∞

∫
Ω

[S m(x, t) + Im(x, t) + S b(x, t) + Ib(x, t)]dx ≤
(Λ̄m + Λ̄b)|Ω|
min{µ

m
, µ

b
}
.
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Lemma 2.2. If (S m(·, t), Im(·, t), S b(·, t)Ib(·, t)) ∈ Y is the solution of system (1.2) with
(S m,0, Im,0, S b,0Ib,0) ∈ Y+, then (S m(·, t), Im(·, t), S b(·, t)Ib(·, t)) ∈ Y+ for all t ∈ [0, t0).

Proof. By calculation, we have

S m(x, t) =S m,0(x)e−
∫ t

0 (µm(x)+ b1(x)βm(x)
Nb

Ib(x,u))du
+

∫ t

0
Λme

∫ t
τ

(−µm(x)+ b1(x)βm(x)
Nb

Ib(x,u))dudτ,

Im(x, t) =Im,0(x)e−µ(x)t +

∫ t

0

b1(x)βm(x)
Nb

S m(x, u)Ib(x, u)e−µ(x)(t−τ)dτ,
(2.2)

and

S b(x, t) =S b,0(x)e−
∫ t

0 (d1+µb(x)+ b1(x)βb(x)
Nb

Im(x,u))du
+

∫ t

0
(d1

∫
Ω

J(x − y)S b(y, t)dy + Λb(x))

× e−
∫ t
τ

(d1+µb(x)+ b1(x)βb(x)
Nb

Im(x,u))dudτ,

Ib(x, t) =Ib,0(x)e−(d2+db+µb(x))t +

∫ t

0
(d2

∫
Ω

J(x − y)Ib(y, t)dy +
b1(x)βb(x)

Nb
S b(x, u)Im(x, u))

× e−(d2+µb(x))(t−τ)dτ

(2.3)

for all t ∈ [0, t0) and x ∈ Ω̄. Due to (S m,0, Im,0, S b,0Ib,0) ∈ Y+ and J(x) > 0 on R, it means that
S m(x, t) ≥ 0, Im(x, t) ≥ 0, S b(x, t) ≥ 0 and Ib(x, t) ≥ 0; further, S m(·, t) > 0, Im(·, t) > 0, S b(·, t) > 0 and
Ib(·, t) > 0 for t ∈ [0, t0).

Theorem 2.1. Suppose that (S m,0, Im,0, S b,0, Ib,0) ∈ Y. Then, there exists a t0 > 0 such that system (1.2)
has the unique solution (S m(·, t), Im(·, t), S b(·, t)Ib(·, t)) for all t ∈ [0, t0), and either t0 = +∞ or
lim supt→t0−0

‖(S m(·, t), Im(·, t), S b(·, t), Ib(·, t)‖ = +∞.

Proof.

z(ς1, ς2, ς3, ς4)(x) =


Λm(x) − βm(x)b1(x)

Nb
ς1ς4

βm(x)b1(x)
Nb

ς1ς4

Λb(x) − βb(x)b1(x)
Nb

ς2ς3
βb(x)b1(x)

Nb
ς2ς3

 .
Let z′[%1, %2, %3, %4] be a linear operator on Y defined as follows:

z′[%1, %2, %3, %4](ς1, ς2, ς3, ς4)(x) =


−
βm(x)b1(x)

Nb
%4ς1 −

βm(x)b1(x)
Nb

%1ς4
βm(x)b1(x)

Nb
%4ς1 +

βm(x)b1(x)
Nb

%1ς4

−
βb(x)b1(x)

Nb
%3ς2 −

βb(x)b1(x)
Nb

%2ς3
βb(x)b1(x)

Nb
%3ς2 +

βb(x)b1(x)
Nb

%2ς3

 .
By calculating, we have

z(ς1, ς2, ς3, ς4)(x) = F(%1, %2, %3, %4)(x) + z′[%1, %2, %3, %4](ς1 − %1, ς2 − %2, ς3 − %3, ς4 − %4)(x)

+


−
βm(x)b1(x)

Nb
(ς1 − %1)(ς4 − %4)

βm(x)b1(x)
Nb

(ς1 − %1)(ς4 − %4)
−
βb(x)b1(x)

Nb
(ς2 − %2)(ς3 − %3)

βb(x)b1(x)
Nb

(ς2 − %2)(ς3 − %3)

 ;
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due to the coefficients being positive and bounded, we have that the last term on the right-hand side
of this equation is o{(ς1, ς2, ς3, ς4)T − (%1, %2, %3, %4)T }. It means that z is Fréchet-differentiable for
(%1, %2, %3, %4)T on Y. Moreover, we have

‖z′[%1, %2, %3, %4] − z′[%̃1, %̃2, %̃3, %̃4]‖
= sup
‖(ς1,ς2,ς3,ς4)T ‖Y≤1

‖{z′[%1, %2, %3, %4] − z′[%̃1, %̃2, %̃3, %̃4]}(ς1, ς2, ς3, ς4)‖Y

= sup
‖(ς1,ς2,ς3,ς4)T ‖Y≤1

‖{−
βm(x)b1(x)

Nb
(%4 − %̃4)ς1 −

βm(x)b1(x)
Nb

(%1 − %̃1)ς4,

βm(x)b1(x)
Nb

(%4 − %̃4)ς1 +
βm(x)b1(x)

Nb
(%1 − %̃1)ς4,−

βb(x)b1(x)
Nb

(%3 − %̃3)ς2

−
βb(x)b1(x)

Nb
(%2 − %̃2)ς3,

βb(x)b1(x)
Nb

(%3 − %̃3)ς2 +
βb(x)b1(x)

Nb
(%2 − %̃2)ς3}‖

≤2
β̄b̄1

Nb
‖(%1 − %̃1, %2 − %̃2, %3 − %̃3, %4 − %̃4)T ‖Y,

where (%̃1, %̃2, %̃3, %̃4)T ∈ Y; this implies that z is continuously Fréchet-differentiable [21, Lemma 3.1]
on Y.

Due to A1(t)t≥0, A2(t)t≥0, A3(t)t≥0 and A4(t)t≥0 being generators of uniformly continuous semigroups
A1(t)t≥0, A2(t)t≥0, A3(t)t≥0 and A4(t)t≥0, the solution (S m(x, t), Im(x, t), S b(x, t), Ib(x, t)) of system (1.2)
can be written as follows:

w(x, t) = eA(t)w(·, t)(x) +

∫ t

0
EA(t−s)F(w(·, τ))(x)ds, t ≥ 0, x ∈ Ω̄,

where

w(x, t) =


S m(x, t)
Im(x, t)
S b(x, t)
Ib(x, t)

 , A(t) =


A1(t)
A2(t)
A3(t)
A4(t)

 , z(w(x, t)) =


Λm(x) − b1(x)βm(x)

Nb
S m(x, t)Ib(x, t)

b1(x)βm(x)
Nb

S m(x, t)Ib(x, t)
Λb(x) − b1(x)βb(x)

Nb
S b(x, t)Im(x, t)

b1(x)βb(x)
Nb

S b(x, t)Im(x, t)

 .
Due to A being the infinitesimal generator of etA

t≥0 and z being continuously Fréchet-differentiable on
Y, from [22, Proposition 4.16], the result holds.

3. Threshold dynamics of system

3.1. Basic reproduction number

To give the expression of the basic reproduction number in an abstract way using the next-generation
matrix method [23], we consider the following linearized equations around the disease-free equilibrium
E0 = (S 0

m(x), 0, S 0
b(x), 0):∂Im

∂t =
b1(x)βm(x)

Nb
S 0

mIb(x, t) − µm(x)Im(x, t),
∂Ib
∂t = d2

∫
Ω
J(x − y)Ib(y, t)dy − d2Ib(x, t) +

b1(x)βb(x)
Nb

S 0
bIm(x, t) − µb(x)Ib(x, t) − dbIb(x, t).

(3.1)
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System (3.1) is equivalent to

∂Ξ

∂t
= (M − N)Ξ + QΞ, x ∈ Ω, t > 0,

where

Ξ =

(
Im

Ib

)
, M =

(
0 0
0 d2

∫
Ω
J(x − y)dy

)
,

and

N =

(
µm 0
0 d2 + µb + db

)
Q =

 0 b1(x)βm(x)
Nb

S 0
m

b1(x)βb(x)
Nb

S 0
b 0

 .
Let K(t) be the solution semigroup with respect to the following linear reaction-diffusion equation

∂Ξ

∂t
= (M − N)Ξ, x ∈ Ω, t > 0. (3.2)

Define
K(ς)(x) :=

∫ ∞

0
Q[K(t)(ς)](x)dt.

By virtue of the next-infection operator, the spectral radius ofK can be defined as the basic reproduction
number

R0 := r(K).

Moreover, by virtue of [24], we can obtain the following lemma:

Lemma 3.1. sign(R0 − 1) = signλ0.

The principal eigenvalue λ0 is related to eigenfunction (Θ0(x),Υ0(x)), which satisfies the following
equation:λΘ(x) =

b1(x)βm(x)
Nb

S 0
mΥ(x) − µm(x)Θ(x),

λΥ(x) = d2

∫
Ω
J(x − y)Υ(x)dy − d2Υ(x) +

b1(x)βb(x)
Nb

S 0
bΘ(x)) − µb(x)Υ(x) − dbΥ(x).

(3.3)

3.2. Global stability of the disease-free equilibrium

Before proving the global asymptotic stability of the disease-free equilibrium point, some lemmas
need to be given; we first consider the following eigenvalue problem, which has been studied by
García-Melián and Rossi [15].

∫
RN J(x − y)(Ψ(y) − Ψ(x))dy = −λeΨ(x), in Ω,

Ψ(x) = 0, on RN \Ω.
(3.4)

Lemma 3.2. For system (3.4), there exists a unique principal eigenvalue λ1 corresponding to
eigenfunction Ψ(x). Furthermore, 0 < λ1 < 1 and

λ1 = inf
ψ∈L2(Ω),Ψ,0

∫
Ω

Ψ2(x)dx −
∫

Ω

∫
Ω
J(x − y)Ψ(y)Ψ(x)dydx∫

Ω
Ψ2(x)

.
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Now, we have the following global stability result.

Theorem 3.1. If R0 < 1, the solution (S m(x, t), Im(x, t), S b(x, t)Ib(x, t)) of system (1.2) satisfies that

lim
t→+∞

S m(x, t) = S 0
m(x), lim

t→+∞
Im(x, t) = 0, lim

t→+∞
S h(x, t) = S 0

h(x), lim
t→+∞

Ih(x, t) = 0.

Proof. By virtue of Eqs (2.2) and (2.3), we can obtain that Im → 0 and Ib → 0 as t → +∞.
Moreover, we prove that S m(x, t)→ S 0

m(x) on x as t → +∞; let p1(x, t) = S m(x, t)− S 0
m(x); then, we

have
∂p1(x, t)

∂t
= −µm(x)p1(x, t) −

b1(x)βm(x)
Nb

S m(x, t)Ib(x, t), x ∈ Ω. (3.5)

By calculating, we have

p1(x, t) = p1,0(x)e−µm(x)t −
1

µm(x)
b1(x)βm(x)

Nb
S m(x, t)Ib(x, t),

as t → ∞, we obtain that p1(x, t)→ 0; hence, S m(x, t)→ S 0
m(x).

Next, we prove that S b(x, t) → S 0
b(x) on x as t → +∞; let p2(x, t) = S b(x, t) − S 0

b(x). Furthermore,
we have

∂p2(x, t)
∂t

= d1

∫
Ω

J(x−y)p2(y, t)dy−d1 p2(x, t)−µb(x)p2(x, t)−
b1(x)βb(x)

Nb
S b(x, t)Im(x, t), x ∈ Ω. (3.6)

Let P(t) =
∫

Ω
p2

2(x, t)dx; we can obtain

dP(t)
dt

=2
∫

Ω

p2(x, t)
∂p2(x, t)

∂t
dx

=2
∫

Ω

p2(x, t){d1

∫
Ω

J(x − y)p2(y, t)dy − d1 p2(x, t) − µb(x)p2(x, t) −
b1(x)βb(x)

Nb
S b(x, t)Im(x, t)}dx

=2{d1

∫
Ω

∫
Ω

J(x − y)p2(y, t)p2(x, t)dydx −
∫

Ω

p2
2(x, t)dx}

− 2
∫

Ω

{µb(x)p2(x, t) +
b1(x)βb(x)

Nb
S b(x, t)Im(x, t)}p2(x, t)dx

≤ − 2d1λ1P(t).
(3.7)

By calculation we have that
P(t) ≤ c0e−2d1λ1t.

Hence, there exists a constant c0; we have

‖p2(·, t)‖L2(Ω) ≤ c0e−d1λ1t.

By virtue of Eq (3.6), we can obtain

p2(x, t) = p0(x)e−(d1+µb)t + e−(d1+µb)t
∫ t

0
e(d1+µb)s(d1

∫
Ω

J(x − y)p2(y, t)dy −
b1(x)βb(x)

Nb
S b(x, t)Im(x, t))ds. (3.8)
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Applying the Hölder inequality to the following equation, there exists some positive constant satisfying
that ∫

Ω

J(x − y)p2(y, t)dy ≤ C‖p2(·, s)‖L2(Ω). (3.9)

Combine (3.8) and (3.9); there exists some positive constants ci(i = 1, 2) we have

|p2(x, t)| ≤ c1e−(d1+µb)t + c2e−d1λ1t.

Hence, as t → ∞, p2(x, t)→ 0 uniformly on x ∈ Ω. Furthermore, we obtain that S b(x, t)→ S 0
b(x).

3.3. Uniform persistence

In this section, we consider the uniform persistence of system (1.2). To achieve these goals, we first
consider the following problem.

Theorem 3.2. If R0 > 1, then there exists a function Π(x), such that

lim
t→∞

in f (S m(x, t) + Im(x, t) + S b(x, t) + Ib(x, t)) ≥ Π(x);

hence, the disease is uniformly persistent.

Proof. Due to R0 > 1, there exists a κ > 0 such that λ(S ∗m − κ, S
∗
b − κ) > 0 (where (S ∗m, I

∗
m, S

∗
b, I
∗
b)

represents that the endemic equilibrium). It means that there exists a t̃1 > 0 satisfying that S m(x, t) >
S m,0 − κ and S b(x, t) > S b,0 − κ for t ≥ t̃1 and x ∈ Ω. For x ∈ Ω, t > t̃1; according to the comparison
principle, we can obtain∂Im

∂t ≥
b1(x)βm(x)

Nb
(S m,0 − k)Ib(x, t) − µm(x)Im(x, t),

∂Ib
∂t ≥ d2

∫
Ω
J(x − y)Ib(y, t)dy − d2Ib(x, t) +

b1(x)βb(x)
Nb

(S b,0 − κ)Im(x, t) − µb(x)Ib(x, t) − dbIb(x, t).

Define (Ĩm(x, t), Ĩb(x, t)) = (Neλ̃tψ̃1(x),Neλ̃tψ̃2(x)), (Ĩm(x, t), Ĩb(x, t)) to satisfy the following equation∂Ĩm
∂t =

b1(x)βm(x)
Nb

(S m,0 − k)Ib(x, t) − µm(x)Im(x, t),
∂Ĩb
∂t = d2

∫
Ω
J(x − y)Ib(y, t)dy − d2Ib(x, t) +

b1(x)βb(x)
Nb

(S b,0 − κ)Im(x, t) − µb(x)Ib(x, t) − dbIb(x, t),

where (ψ̃1(x), ψ̃2(x)) is the eigenfunction with respect to λ̃ < 0. According to the comparison principle,
we know that Im(x, t) ≥ Ĩm(x, t), Ib(x, t) ≥ Ĩb(x, t) for x ∈ Ω, t > t̃1. Therefore, Im(x, t) ≥ Neλ̃tψ̃1(x),
Ib(x, t) ≥ Neλ̃tψ̃2(x) such that

lim
t→∞

in f IH(x, t) ≥ Nψ̃1(x), lim
t→∞

in f IV(x, t) ≥ Nψ̃2(x).

On the basis of Lemma (2.1), we know that there exists constants K > 0 and t̃2 such that

Im(x, t) ≤ K, Ib(x, t) ≤ K, t ≥ t̃2, x ∈ Ω.

Then, S H and S V satisfy the following equation
∂S m
∂t ≥ Λm(x) − µm(x)S m −

b1(x)βm(x)K
Nb

S m(x, t),
∂S b
∂t ≥ d1

∫
Ω
J(x − y)S b(y, t)dy − d1S b(x, t) + Λb(x) − µb(x)S b(x, t) − b1(x)βb(x)K

Nb
S b(x, t),

x ∈ Ω, t > t̃2.
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By virtue of Eq (3.4), we obtain
∂S m
∂t ≥ Λm(x) − µm(x)S m −

b1(x)βm(x)K
Nb

S m(x, t),
∂S b
∂t ≥ −d1λeS b(x, t) + Λb(x) − µb(x)S b(x, t) − b1(x)βb(x)K

Nb
S b(x, t),

x ∈ Ω, t > t̃2.

Hence

lim
t→∞

in f S m(x, t) ≥ (Λm(x))/(µm(x) +
b1(x)βm(x)K

Nb
),

lim
t→∞

in f S b(x, t) ≥ (Λb(x))/(d1λe + µb(x) +
b1(x)βb(x)K

Nb
).

Let Π(x) := min{(Λm(x))/(µm(x)+
b1(x)βm(x)K

Nb
), (Λb(x))/(d1λe +µb(x)+

b1(x)βb(x)K
Nb

), Nψ̃1(x), Nψ̃2(x)}. The
disease uniformly persistent is obtained.

4. Numerical simulations

In order to present the theoretical results, some numerical simulations are presented in this section.
The parameter values (Table 1) and initial value are selected as follows (all rates are per capita per day
(day−1)):

Table 1. The partial parameter values.

Parameter Value Parameter Value Parameter Value Parameter Value
b1 1.6 Nb 150 µm 0.15 Λm 6.5
µb 0.01 [25] Λb 1.5 d1 0.025 d2 0.025

Initial value:

(S m,0(x), Im,0(x), S b,0(x), Ib,0(x)) = (0.03sinx + 0.05cosx, 0.02cosx, 0.01sinx + 0.03cosx, 0).

Moreover, the nonlocal kernel function [20] is selected as follows:

Jx =

Aexp(
1

x2 − 1
), − 1 < x < 1,

0, otherwise.

Here, A = 2.6423, x ∈ [−1, 1] ⊂ R and
∫

R
J(x)dx =

∫ 1

−1
J(x)dx ≈ 1.

4.1. Dynamics of system (1.2)

In Figure 1, let βm = 0.12, βb = 0.15. In Figure 3, set βm = 0.075(1 − 0.85cosx), βb = 0.15. As
t → ∞, the density of the infected mosquitoes and infected bird will converge to 0, that is, the disease
will become extinct.

In Figure 2, let βm = 1.2, βb = 0.88. In Figure 4, set βm = 0.75(1 − 0.85cosx), βb = 0.88 [18]. It can
be seen that the solution of system (1.2) finally converges to a steady state, indicating the persistence
of the diseases.
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Figure 1. The evolution paths of S H, IH, S V , IV for system (1.2) with R0 =

0.901080450518523 < 1.

Figure 2. The evolution paths of S H, IH, S V , IV for system (1.2) with R0 =

6.901750796765820 > 1.

AIMS Mathematics Volume 8, Issue 6, 14253–14269.



14264

Figure 3. The evolution paths of S H, IH, S V , IV for system (1.2) with R0 =

0.537588764329462 < 1.

Figure 4. The evolution paths of S H, IH, S V , IV for system (1.2) with R0 =

4.117616446354086 > 1.
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For R0 < 1, we can see that when the transmission rate is constant, the number of infected drops
to 0 relatively quickly; on the contrary, when the transmission rate is spatially dependent, the number
of infected tends to 0 for a long time. As R0 > 1, spatial heterogeneity can increase in the number
of susceptible mosquitoes and birds, and the number of infected mosquitoes and birds become more
evenly distributed in space.

4.2. The impacts of the diffusion rate for mosquitoes and birds

In this section, we aim to examine the impact of the diffusion coefficient on disease persistence
considering that the spread of extinct diseases is meaningless. For Figures 4–7, we set d1 = d2 = 0.025,
d1 = d2 = 0.10, d1 = d2 = 0.20 and d1 = d2 = 0, respectively. The results indicate that an increase
in the diffusion coefficient leads to an increase in the number of suspected mosquitoes and birds while
decreasing the number of infected mosquitoes and birds. However, the differences in mosquito and
bird populations across in different spatial distributions become more apparent, resulting in a higher
persistence of the disease and making it challenging to control. Therefore, in the event of a disease
outbreak, we recommend employing physical or chemical methods to kill mosquitoes in order to better
control the spread of the disease.

Figure 5. The evolution paths of S H, IH, S V , IV for system (1.2) with R0 =

2.684224435524666 > 1.
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Figure 6. The evolution paths of S H, IH, S V , IV for system (1.2) with R0 =

2.019457012742855 > 1.

Figure 7. The evolution paths of S H, IH, S V , IV for system (1.2) with R0 =

5.557541598765930 > 1.
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5. Conclusions

We investigated the threshold dynamics of a nonlocal diffusion West Nile virus model with spatial
heterogeneity. The well-posedness of the solution is proven using the semigroup theory, and it is
continuously Fréchet differentiable. The basic reproduction number is expressed using the next-
generation matrix method. Global stability and uniform persistence of the system are proven by
constructing a Lyapunov function and applying the comparison principle. Numerical simulations
were performed to verify the theorem. The values of the transmission rate were adjusted to examine
extinction and persistence of the disease, and the impact of diffusion was considered. Simulation
results demonstrated that an increase in the diffusion coefficient leads to an increase in the number
of susceptible mosquitoes and birds and a decrease in the number of infected mosquitoes and birds.
However, differences in mosquito and bird populations in different spatial distributions become more
pronounced, leading to enhanced disease persistence and reduced chances of rapid disease control.
Therefore, to better control the spread of the disease, physical or chemical methods for mosquito
control are recommended when a disease outbreak occurs.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Chinese Center for Disease Control and Prevention. Available from: https://www.chinacdc.
cn/.

2. Z. Bai, Z. Zhang, Dynamics of a periodic West Nile virus model with mosquito demographics,
Commun. Pure Appl. Anal., 21 (2022), 3755–3775. http://doi.org/10.3934/cpaa.2022121

3. J. Ge, Z. Lin, A. K. Tarboush, H. Zhu, Dynamics of West Nile virus driven by seasonal
fluctuations in a spatially variable habitat, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 2081–
2103. http://doi.org/10.3934/dcdsb.2022159

4. S. A. Moon, L. W. Cohnstaedt, D. S. McVey, C. M. Scoglio, A spatio-temporal individual-based
network framework for West Nile virus in the USA: spreading pattern of West Nile virus, PLoS
Comput. Biol., 15 (2019), e1006875. http://doi.org/10.1371/journal.pcbi.1006875

5. A. K. Tarboush, J. Ge, Z. Lin, Coexistence of a cross-diffusive West Nile virus
model in a heterogenous environment, Math. Biosci. Eng., 15 (2018), 1479–1494.
http://doi.org/10.3934/mbe.2018068

6. J. Ge, Z. Lin, H. Zhu, Modeling the spread of West Nile virus in a spatially
heterogeneous and advective environment, J. Appl. Anal. Comput., 11 (2021), 1868–1897.
http://doi.org/10.11948/20200258

7. C. Cheng, Z. Zheng, Spatial and temporal dynamics of an almost periodic reaction-diffusion system
for West Nile virus, arXiv:2012.11789.

AIMS Mathematics Volume 8, Issue 6, 14253–14269.

https://www.chinacdc.cn/
https://www.chinacdc.cn/
http://dx.doi.org/http://doi.org/10.3934/cpaa.2022121
http://dx.doi.org/http://doi.org/10.3934/dcdsb.2022159
http://dx.doi.org/http://doi.org/10.1371/journal.pcbi.1006875
http://dx.doi.org/http://doi.org/10.3934/mbe.2018068
http://dx.doi.org/http://doi.org/10.11948/20200258


14268

8. Z. Lin, H. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes
with free boundary, J. Math. Biol., 75 (2017), 1381–1409. https://doi.org/10.1007/s00285-017-
1124-7

9. C. Cheng, Z. Zheng, Dynamics and spreading speed of a reaction-diffusion system
with advection modeling West Nile virus, J. Math. Anal. Appl., 493 (2021), 124507.
https://doi.org/10.1016/j.jmaa.2020.124507

10. M. J. Wonham, T. De-Camino-Beck, M. A. Lewis, An epidemiological model for West Nile
virus: invasion analysis and control applications, Proc. R. Soc. Lond. B, 271 (2004), 501–507.
https://doi.org/10.1098/rspb.2003.2608

11. A. Abdelrazec, S. Lenhart, H. Zhu, Transmission dynamics of West Nile virus in mosquitoes and
corvids and non-corvids, J. Math. Biol., 68 (2014), 1553–1582. https://doi.org/10.1007/s00285-
013-0677-3

12. N. A. Maidana, H. M. Yang, Spatial spreading of West Nile virus described by traveling waves, J.
Theor. Biol., 258 (2009), 403–417. https://doi.org/10.1016/j.jtbi.2008.12.032

13. A. K. Tarboush, Z. Zhang, The diffusive model for West Nile virus on a periodically evolving
domain, Complexity, 2020 (2020), 6280313. https://doi.org/10.1155/2020/6280313

14. J. D. Murray, Mathematical biology II: spatial models and biomedical applications, 3 Eds., New
York: Springer, 2003. https://doi.org/10.1007/b98869

15. J. García-Melián, J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J.
Differ. Equations, 246 (2009), 21–38. https://doi.org/10.1016/j.jde.2008.04.015

16. Y. Du, W. Ni, Analysis of a West Nile virus model with nonlocal diffusion and free boundaries,
Nonlinearity, 33 (2020), 4407–4448. https://doi.org/10.1088/1361-6544/ab8bb2

17. L. Pu, Z. Lin, Y. Lou, A West Nile virus nonlocal model with free boundaries and seasonal
succession, J. Math. Biol., 86 (2023), 25. https://doi.org/10.1007/s00285-022-01860-x

18. J. Jiang, Z. Qiu, J. Wu, H. Zhu, Threshold conditions for West Nile virus outbreaks, Bull. Math.
Biol., 71 (2009), 627–647. https://doi.org/10.1007/s11538-008-9374-6

19. A. Pazy, Semigroups of linear operators and applications to partial differential equations, New
York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1

20. C. Y. Kao, Y. Lou, W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst.,
26 (2010), 551–596. https://doi.org/10.3934/dcds.2010.26.551

21. T. Kuniya, J. Wang, Lyapunov functions and global stability for a spatially diffusive SIR epidemic
model, Appl. Anal., 96 (2017), 1935–1960. https://doi.org/10.1080/00036811.2016.1199796

22. G. F. Webb, Theory of nonlinear age-dependent population dynamics, CRC Press, 1985.

23. O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic
reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol.,
28 (1990), 365–382. https://doi.org/10.1007/BF00178324

24. V. Hutson, S. Martinez, K. Mischaikow, G. T. Vickers, The evolution of dispersal, J. Math. Biol.,
47 (2003), 483–517. https://doi.org/10.1007/s00285-003-0210-1

AIMS Mathematics Volume 8, Issue 6, 14253–14269.

http://dx.doi.org/https://doi.org/10.1007/s00285-017-1124-7
http://dx.doi.org/https://doi.org/10.1007/s00285-017-1124-7
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2020.124507
http://dx.doi.org/https://doi.org/10.1098/rspb.2003.2608
http://dx.doi.org/https://doi.org/10.1007/s00285-013-0677-3
http://dx.doi.org/https://doi.org/10.1007/s00285-013-0677-3
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2008.12.032
http://dx.doi.org/https://doi.org/10.1155/2020/6280313
http://dx.doi.org/https://doi.org/10.1007/b98869
http://dx.doi.org/https://doi.org/10.1016/j.jde.2008.04.015
http://dx.doi.org/https://doi.org/10.1088/1361-6544/ab8bb2
http://dx.doi.org/https://doi.org/10.1007/s00285-022-01860-x
http://dx.doi.org/https://doi.org/10.1007/s11538-008-9374-6
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-5561-1
http://dx.doi.org/https://doi.org/10.3934/dcds.2010.26.551
http://dx.doi.org/https://doi.org/10.1080/00036811.2016.1199796
http://dx.doi.org/https://doi.org/10.1007/BF00178324
http://dx.doi.org/https://doi.org/10.1007/s00285-003-0210-1


14269

25. M. Maliyoni, Probability of disease extinction or outbreak in a stochastic epidemic model for West
Nile virus dynamics in birds, Acta Biotheor., 69 (2021), 91–116. https://doi.org/10.1007/s10441-
020-09391-y

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 6, 14253–14269.

http://dx.doi.org/https://doi.org/10.1007/s10441-020-09391-y
http://dx.doi.org/https://doi.org/10.1007/s10441-020-09391-y
http://creativecommons.org/licenses/by/4.0

	Introduction
	Well-posedness of the solution
	Threshold dynamics of system
	Basic reproduction number
	Global stability of the disease-free equilibrium
	Uniform persistence

	Numerical simulations
	Dynamics of system (1.2)
	The impacts of the diffusion rate for mosquitoes and birds

	Conclusions

