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1. Introduction

Fractional differential equations have been of great interest during the last few years as such
equations provide appropriate mathematical models for real world problems arising in physics,
engineering, economics, robotics, control theory, etc. A systematic development of fractional calculus
and fractional differential equations can be found in the monographs [1-5]. Unlike the classical
derivative operator, one can find a variety of its fractional counterparts, such as the
Riemann-Liouville, Caputo, Hadamard, Erdelyi-Kober, Hilfer, Caputo-Hadamard, etc. In [6-8], the
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authors discussed the concept of a proportional fractional derivative and its generalizations. The
authors in [9] proposed a Hilfer type generalized proportional fractional derivative. In [10], the
authors discussed a generalization of the y,-Hilfer fractional derivative.

Initial and boundary value problems for differential equations and inclusions involving different
fractional derivative operators have also been investigated by many researchers, such as [11-16].
Recently, in [17], the authors studied a nonlocal initial value problem of order in (0, 1) for Z*-Hilfer
generalized proportional fractional derivative of a function with respect to another function. Very
recently, in [18], the authors studied a nonlocal mixed boundary value problem for i, -Hilfer
fractional proportional differential equations and inclusions of order in (1, 2] given by

D24 n(s) = Mz n(2) or €H(za(2), z€lanbil, by >a; >0,
n(ay) =0,

x(b) = ) en(@)+ ) G L R O) + ) Dot auw).
=1 i=1 k=1

Here, Dz)l’f’ﬂ*’w* is the y,-Hilfer fractional proportional derivative operator of order w € {p, 6}, p, 5k €
(1,2], and type ¢ € [0, 1], ¥ € (0,1], and €;,;, A4 € R.II: [a;,b;] X R — R is a continuous function
(or H: [ay,b] X R — P(R) is a multi-valued map), I[ﬁff*’w* is the fractional integral operator of order
¢; > 0,and {}, 0, 4 € (a1, by), j=1,2,....m,i=1,2,....,n,k=1,2,...,r

The objective of the present work is to enrich the literature on boundary value problems involving
¥ .-Hilfer fractional proportional derivative operators. In precise terms, we consider and investigate a
new problem consisting of a v, -Hilfer fractional proportional differential equation and nonlocal
integro-multistrip-multipoint boundary conditions given by

D24 (2) = Wz, 0°(2)), 7 € [ar, by,
o(a;) =0,

b _, n ni_, m
T (oeds= > ff T.()ods + 6,0,
1 i=1 &i

J=1

(1.1)

a

where D‘Zﬂﬁ*"//* denotes the y,-Hilfer fractional proportional derivative operator of order p € (1,2] and
type o € [0,1], 9 € (0,11, a1 < ¢ < & <mi <bi,¢,0; €Ri=12,....nj=12,....,my,:
[ai;,b;] — R is an increasing function with J;(z) # 0 for all z € [ay, by], and J*: [a;,b] XR —» R
is a continuous function. As a second problem, we investigate the multivalued analogue (4.1) of the
problem (1.1) in Section 4.

Here, we emphasize that the problems (1.1) and (4.1) investigated in this paper are new in the
sense of integro-multistrip-multipoint boundary conditions. In order to establish the existence and
uniqueness results for the problem (1.1), our strategy is to convert it into a fixed point problem and
then apply the fixed point theorems due to Banach, Krasnosel’skii, Schaefer and Leray-Schauder
alternative. In the case of the multi-valued problem (4.1), we prove two existence results via nonlinear
alternative for Kakutani maps and Covitz-Nadler fixed point theorem for convex and non-convex
valued multivalued maps in (4.1), respectively. It is imperative to mention that the tools of the fixed
point theory provide an excellent platform for analyzing the nonlinear problems. All the results

AIMS Mathematics Volume 8, Issue 6, 14086—-14110.



14088

accomplished in the present study are novel and give rise to some new results as special cases (for
details, see Section 5). We also demonstrated the application of the main results by constructing
numerical examples.

The rest of the paper is constructed as follows. In Section 2, some basic definitions and
preliminary results related to our work are recalled. Section 3 contains the existence and uniqueness
results for the single valued problem (1.1), while the existence results for the multi-valued analogue
of the problem (1.1) are proved in Section 4. The paper concludes with some interesting observations.

2. Preliminaries

Let us begin this section with basic definitions.
Definition 2.1. ([7, 8]) For 9. € (0,1] and p € R*, the fractional proportional integral of
h € L'([ay, b11,R) with respect to W, of order p is given by

1
T (p)

T hy() = f e VOV (G (@) = G ()Y T)h(s)ds, 2> ay. 2.1)

Definition 2.2. (/7,8]) Let ¢, € C([a1, b1, R) with ¢.(z) > 0, 9, € (0,11, and p € R*. The fractional
proportional derivative for h € C([ay, bi],R) with respect to W, of order p, is given by

_ Db L el o — o — — A
@) = T p)j e COTO(g (2) - P () UDh(s)ds, 2>, (2.2)
* - at+

where n = [p] + 1, and [p] denotes the integer part of the real number p.

Definition 2.3. ([17]) Let s, be positive and strictly increasing with Z;(z) # 0, forall z € [ay,b,] and
h,w, € C"™([ay, b1],R). The ¥ -Hilfer fractional proportional derivative for h with respect to another
function W, of order p and type ¢, is defined by

(DP,‘PJ?* W ]:L)(Z) — (]IQD("*P),??* W, (Dn,ﬁ* W, )1[(1*90)(”*[7),?9* . ]’,})(Z) , (2 3)

a)+ a)+ al+

wheren—1<p<n,0<¢<1,neN,andd, € (0,1]. Also,

Dﬂ*,ﬁ;}(z) =(1- ﬁ*)iz(z) + 0*@,
v.(2)

1[;1) . I8 the fractional proportional integral operator defined in (2.1).
Now we recall some known results.

Lemma 2.1. ([17]) The y-Hilfer fractional proportional derivative can be expressed as

00, 7 _ (n—p), 0.0, e, =) (n— ), 0, 7 _ —0),0.V, O, 3
(D7) (z) = AT (@ P ) (2) = (1P DY R) ),

where y; = p + ¢(n — p).
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Remark 2.1. ([17]) The following relations hold:
yvi=p+en—p), n=1<p, y1<n, 0<¢p<1,

and
YiZp, Yi>@, n—yi<n—@n-p).

Lemma 2.2. ([17]) Let
n—1l<p<nneN, 3, €0,1],0<¢<1

and y, = p + ¢(n — p) be such thatn — 1 <y, < n. If h € C([ay, b;],R) and

L f e C'(lar, bl R),

al+
then i
— — no S W@y (a) iy, - y1—k _
B e g g e’ . (2) — ¥ (a1)) k=100, 7
LD @) = ) - ) @ 2" ).

— 9 Ty —k+ 1)

3. Single-valued case

In this section we will establish existence and uniqueness results for the boundary value
problem (1.1).

Lemma 3.1. Let hy € C([a;, b1, R) and
n GO, (5) - F @)y Tols)
b= ds

1 97 ' T(yy)
Fs—1 7 - — — —
n N g W (8)=¥.(a1)) _ yi—1
- Y f e (w*_(f) vy 1g.(s) 3.0)
=1 &i ol I'(yr)
m Dzl oy V=, (a - - -
- 3t oD@ @) - g
i 97" T(y)

j
Then, o is a solution of the linear nonlocal integro-multistrip-multipoint W -Hilfer generalized
proportional fractional boundary value problem
D" o) = ho@),  z € lar, b,
o(ar) =0,

n , m (3.2)
b — i —
V()o(s)ds = ) @i f V(s)o(s)ds + ) 0,0,
ap i=1 & j=1
if and only if
S—1 7 - — —
— e,‘;f*(%(z)—%(al))(d/*(z) —y.(a ))yl—l n i _, -
@ = LY@ + L9 T(y,) 1 {Z} ¢ L L)y o (s)ds
“ v b — oA
+ D Om () - f m(s)ﬂﬁ;li*”*ho(s)ds}, z € lar,byl. (3.3)
Jj=1 a
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Proof. From Lemma 2.2 with n = 2, we have

Ps—1 7 - J— f—
_ _ —— W)Y (a1)) _ vi—1 _
0.0l 1ol e b W.(2) — . (a1)) I
I Des " o (2) o(z) — PR (I, i o) (ay)
* 1

Pl Gy (D) (T, - _
— e’ V@0 l))(lﬁ*(z) - lﬁ*(al))’yl 2(]12—71,19*@* )( )
97T 0r - 1) o TR

which implies that

Bl m N Ty — — B
e 7. WDy 1))(w*(z) — ¥ (a)) 1
977" T(n)

Ps—1 7 7 a —_ — _
ew(l//*(z) U, 1))(¢*(Z) _ w*(al))yl 2
9 Ty, - 1)

7ﬂ*!$*/\
o) = I ho@) +co

+ ¢ , (3.4
where _
co = (ﬂiffl’ﬂ*"”*a)(al)

and a
2~ ,19*,!//*
o = @G o)),

Using (3.4) in the condition o(a;) = 0, we get ¢; = 0 since y; € [p, 2]. Hence, (3.4) takes the form:

del N — — _
e v W@ l//*(al))(w*(z) _ l//*(al))ﬂ 1

@) =1 " o) + ¢o — (35)
Inserting (3.5) in the condition:
by _, n i _, m
Toods= Y6 [ Tooeds+ Y00,
a i=1 &i j=1
we get
b, _ b B U@y (6) — o n-ly’
f Q[/*(S)I[Zﬁ:,w* hO(S)dS + ¢ f € (lf/’l*_(f) w* (al )) l//*(S) ds
a a ﬂ* F()’l)
P—1 7 - — —_ —_
n i, - n 7i e;;T(lﬁ*(S)—l//*(al))(w*(s) _ 1//*(a ))Vl_ll//*(s)
- Yo [ TP hdsra e [ L)~ b ds
i=1 &i i=1 &i v, 1—‘(’yl)
m _ m L=l @ -l iy, - -1
i, 2~ e ! (w*({j) - $*(al))YI
+ HJI[Z;I_}:’w*ho(gj) + Cp Hj — 5
JZI ,Zl 97 T(n)

which, together with notation (3.1), yields
1 2 i — p,ﬂ*,a* 2 - p,ﬂ*,a ~ b — p,ﬂ*,a ~
o=y D 0 | DU h(yds + 3 61 b~ | WL ho(s)ds
i=1 &i j=1 ai

Substituting the above value of ¢ in (3.5) leads to the solution (3.3). The converse of the lemma can
be established by direct computation. O
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Denote by
X = C([ala bl]’ IR)

the Banach space of all continuous functions from [ay, ;] to R endowed with the norm

llo]] := max |o7(2)|.
z€lay,b1]

In view of Lemma 3.1, we define an operator S: X — X as

SO = B, o)+ e T O ()~ Pla)!
ar+ H Lﬂyl—lr(y )

{Z o [T W oo+ Z O o))
i=1 Si

X

b1
f UL ()L, cr(s))ds}, z € [ar, by]. (3.6)

For convenience, in the sequel, the following notation is used:

W) = @)F  @by) ~ g, @)
#.To+1) LI ' T(y)
n @) - Ulan)yt - @) - BLa)yt]
{Z i oD

Z' l(l//*((] —y.(a)y .\ W.(by) —J*ml»ﬂ“}
9T + 1) KT +2) '

Q

X

(3.7

—+

3.1. Uniqueness result

Here, we establish the existence of a wunique solution for the nonlinear nonlocal
integro-multistrip-multipoint 1, -Hilfer generalized proportional fractional boundary value
problem (1.1) by using Banach’s fixed point theorem [19].

Theorem 3.1. Assume that:

(Hy) Y(z,01) — Y(z,0)| < Agloy — o3| for some constant Ay > 0 for all z € [a;,b] and o; € R, i =
1,2.

If AoQ < 1, where Q is given by (3.7), then the nonlinear nonlocal integro-multistrip-multipoint \ -
Hilfer fractional proportional boundary value problem (1.1) has a unique solution on [ay, by].

Proof. Let
Yo = max |¥(z,0)| < oo.
z€lay,b1]
Then, by (H,), we have
(2, ()| < Aolo ()] + [Y(z, 0)] < Aollor]| + Fo. (3.8)
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We give the proof in two steps.
Step I: Consider
By ={oceX:|o|| <7}

with 7 > ¥oQ/(1 — AgQ). Then, we show that S(B;) C B;. For o € B; and using
0 < i 0.0-0.0) < 1,

we get

o
S@E < BTN o)+ L b)) {Zl y f T (s, o (s)ld s
Lo Ton &

A

m

£, @)+ f w*<s>1[§:i‘”|‘1’<s,a<s>)|ds}

=1

@.(b1) - F(ar)Y @) - F.(a)!

A Y

19Pr<p cny el e )
n @) - W@yt - @.E) - v,y

{Z # 9 Tp +2)

@) - 0@y @) - F(a)y”!
3 PTp+D | 9Tp+2)
[@*aal) D@ | @b =)

ﬂ"F(p +1) ILI9Y ' T(yy)

IA

}(AOHU” +'¥o)

IA

n @) - @)Y - @LE) - W)y
. {Z d #Tp+2)

Z 0, 0L v @)f | @bn) — . (ay™!
T 9T+ 9o +2)

= QA7+ Yy <7

—+

}](Ao? +W¥o)

Consequently,
IS(o)ll = _max IS(U)(Z)I <7,

which implies that S(B;) C B;.
Step II: We show that the operator S is a contraction. For 0,0, € X and for any z € [a;, b;], we have

W.(by) - ¥, (a))!
ILI97 ' T(y)

{Zw f LS (s, 0a(s) = W(s, 0 (s)lds

S(2)@) - SN < BV Wz, 0(2) — Bz, 01 ()] +

X

+

SO, 0E)) - PG 1 )
j=1
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+

b1 _
f YL (s, 0 (s5)) — W, (s, m(s))|ds}

P [@*(bl) —p@)y @by - g e
T %+ D LI (1)
{ Z o |@. 1) = ¥ ()Y = (&) - ¥ (a)y™ |
@i
- #T(o +2)
&S W) =@y @b - PLa)yt! }]
10,1 + Agllos = o
; 79T+ #T(p+2) e
AoQllo — o]

X

+

Consequently,

I8(o2) = S(orll = max [8(02)(z) = S(o)(@)] < Aol = orall,

which, by the assumption Ay€2 < 1, shows that the operator S is a contraction. Hence, by Banach’s
contraction mapping principle, the operator S has a unique fixed point. Therefore, the nonlocal
integro-multistrip-multipoint 1,-Hilfer fractional proportional boundary value problem (1.1) has a
unique solution on [ay, b;]. O

3.2. Existence results

Here we present three existence results which are proved with the aid of Krasnosel’skii’s fixed point
theorem [20], Schaefer’s fixed point theorem [21] and Leray-Schauder nonlinear alternative [22].

Theorem 3.2. Suppose that the continuous function ,: [a,,b;] X R — R satisfies (H,). In addition,
we suppose that

(H,) Y(z,0)| < ¢.(2), foreach (z,0) € [a;,b1] XR, and ¢, € C([a,, b1],R").

Then, the nonlinear nonlocal integro-multistrip-multipoint W -Hilfer fractional proportional
boundary value problem (1.1) has at least one solution on [a, b, ], provided that

@.(by) - Ta) ! (@) = Ula)y™ = @) - U,y
QA = — {Z i
L 'Ton 45 9o +2)
n @) @)Y @by - §a)y!
' JZI T erern T wrpe2 }A° <t 39

Proof. For ry > Q||¢.|| with
llg.ll = sup |g.(2)],

z€lay,b1]

we consider a ball
B,, = {o € C([a1,b1],R) : [loll < ro}.

AIMS Mathematics Volume 8, Issue 6, 14086—-14110.
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The operator S given by (3.6) can be decomposed as S = S; + S,, where

S10@) = B o), z€lanbl,

Ll W@ @) (7 (Y _ T -1 (.
(S,0)2) = e y(ll_pl*(Z) Y. (ar)) {Z f a|+ L “W(s, o (s))ds
L3 T(y1) part

&i

+

b1
Z 01" W o (Z) - f LS, a(s))ds} z€lar, byl.

For any o,y € B,,, we have

(S10)(2)

—+

(S2y)(@)|

U.(b) =, (a))" " [ o .
%1 (b, o (b))] + LAY { il f T (L (W (s, y(s))lds
LI, 1r(y) Z

IA

£ O )] + f YA, y(s)>|ds}
j=1 @

5 [(Mao “ @)Y | @)~ @)
B (o + 1) LI~ T(y)
) {Z o |@.0) = y(an)y*! = @& - p(a)y*|
. FT(p +2)
N Z| jl(l/’ (ﬁ‘é?r(plﬂ La)y N (l/’*(l:;gr—(pl/’i(;l;))p“}]lkm”
= anxn <y,

where Q is given by (3.7). Therefore, ||S;0 + Syy|| < ry, which shows that S;0 + S,y € B,,. As in the

proof of Theorem 3.1, it can be shown by using the condition (3.9) that the operator S, is a contraction

mapping. Since y, is continuous, the operator S, is continuous. Moreover, S, is uniformly bounded

on B,,, since

W.(by) = ¢ (a)y
T + 1)

In the final step we will prove that the operator S; is completely continuous. For z;,z, € [ay, b1],
with z; < z,, we obtain

IS101| < [I#-Il-

1
S10(z2) = S10@)| < FO@EOG (29) = ()P U (s. o (5))ds
B f eﬂ*‘“)‘@‘m@le)—J*<s>>p‘@;<s>w<s,a(s>>ds
< |W.(22) = 0. (Y™ = @) = ()Y WL ()P (s, o (s))ds
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i [ e T T o
%[2(%(@) - E*(Zl))p + |(Z*(Z2) - a*(al))f’ _ (J*(Zl) _ J*(al))pl]’

which tends to zero independently of o € B,, when z; — z,. Consequently, we deduce that S; is
equicontinuous. Hence, by the Arzeld-Ascoli theorem, it is compact on B,,. Thus, the hypotheses
of Krasnosel’skii’s fixed point theorem [20] are verified, and hence, its conclusion implies that there
exists at least one solution for the nonlinear nonlocal integro-multistrip-multipoint y,-Hilfer fractional
proportional boundary value problem (1.1) on [ay, b;]. O

Theorem 3.3. Assume that the continuous function J* D ai, b1l XR — Ris bounded, i.e., |Y(z, u)| <IN
forallz € [a;,b1],u € R, M > 0.

Then, there exists at least one solution for the nonlinear nonlocal integro-multistrip-multipoint \ -
Hilfer fractional proportional boundary value problem (1.1) on [ay, b;].

Proof. We will give the proof in two steps. In the first step, we establish the complete continuity of the
operator S: X — X given by (3.6). For the continuity of S, let {0} be a sequence such that o, — o in
X. Then, for each z € [ay, b;], we get

_ - Ry -1
5@ - S@OE < LI 0,0) - W o] + LY@
LI#7 T

n T _, 9.7
X 3ol | WS, (s) = B(s, o(s))lds
i=1 &

A

£ G N o) = W )
j=1
by _
* f J;(sﬂ’;;'i*"”ﬂw(s,an(s))—\P(s,(r(s))us}.

Since [Y¥(s, 0,(s)) — ¥(s,0(s))| = 0as o, — o, as J* is continuous, we have
IS(o) = S(o)|| = 0 as o, — o,

which proves that S is continuous.
Now, we show that S transforms bounded sets into bounded sets in X. For ry > 0, let

B,, ={oc € X |lo|l £ ro}.

Then, for z € [a;, b;], we have

7 . (b1) =¥, (a)" ! [ © i, 0.0
PPz, () + L { @ f (TP N (s, ()l
L9 T(yy) Z &

IS(@)(@)|

IA

+

ai

m _ b1 _, _
DI, (@) + f L s, a(s)>|ds}
j=1

AIMS Mathematics Volume 8, Issue 6, 14086—-14110.
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< W.(b) —J*(Cll))pMJr W, (b)) = (a)!

#T(p + 1) L1927~ T(y)
@) - eyt - @& - d(an)yt]
8 {Z 7 PT(p+2)
W) - w*(amp (b)) = ¢ (a))*!
> P+ | #rp+2) }W

=
which leads to [|S(o)|| < Q.

Finally, we show that S transforms bounded sets into equicontinuous sets. For z;,z, € [ay, b],
71 < z2 and o € B,,, we obtain

S()z) - SE)@)
f (W.(22) = 0. ()Y = (@) = (Y [P (s, o(s)ds

1+

<

1
. F(p)

V()Y W ()W(s, 0 (5))ds

(lr//*(ZZ) '/’*(al))w - ('»D*(Zl) - w*(al))yl { f {p
+ - |il lﬁ (L w+ [Y(s,0(s)lds
LIS~ T(y)) Z

m by _, 1
£ IO, o @)l + f t//*<s>ﬂﬁliwlw<s,a<s»|ds}
J=1 a

m[z@,m — U@ +|.(22) — @)Y - @) - Y@y
W.(22) = @)™ = () = (@)
L9~ T (1)
@) - @)yt = @& - da)y]
X {Zw oD

Z' |(¢’*(§’ J*(al))*’ N W (b)) = ¢ (a))™! }mz
9T + FT(p +2)

IA

which tends to zero, independently of o € B,,, as z; — z. Thus, by the Arzeld-Ascoli theorem, the
operator S: X — X is completely continuous.
In the second step, it will be established that the set

E={ceX|o=vS(0),0<v <1}

is bounded. Let o € &, and then o = vS(o). For any z € [ay, b;], we have 0(z) = vS(0)(z). As in first
step, one can find that

W.(b) — ¥, (a)y .\ W.(b) — ¥, (a))" !

@ < | = gro [LI52~"T ()

AIMS Mathematics Volume 8, Issue 6, 14086—-14110.
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@) = B@)Pt - @) - BLay
X { |l

- 9T (p +2)
@)~ w,xal))ﬂ @.(0) = Fany™!
;'9" FTp+D) | PTp+2) }]Em
Therefore,
ol < M,

and consequently the set & is bounded. Hence, by Schaefer’s fixed point theorem [21], the operator S
has at least one fixed point which is a solution for the nonlinear nonlocal integro-multistrip-multipoint
v, -Hilfer fractional proportional boundary value problem (1.1) on [a;, b;]. This completes the proof.

O

Theorem 3.4. Suppose that the following conditions hold:

(H3) ¥(z, )l < p@Y(llol) for each (z,0) € [a1,bi] X R, where p € C([a1,b1],R") and Y: R* — R*
is a continuous nondecreasing function;

!
(Hy) ———— > 1, for a constant } > 0, where CQ is defined by (3.7).
QYR
Then, the nonlinear nonlocal integro-multistrip-multipoint W -Hilfer fractional proportional boundary
value problem (1.1) has at least one solution on [ay, b].

Proof. In Theorem 3.3, it was shown that the operator S is completely continuous. So, we only need
to prove that there exists an open set U C C([ay, b1],R) with o # uS(o) for u € (0, 1) and o € 9U.

Let o € C([a;,b1],R) be such that o = uS(o) for some 0 < u < 1. Then, for each z € [a;, b;], we
have

o
@ < BTG o)+ L) v {Z| A f UL (s, o (s)lds
Lo G
* Zw 05PN, )] + f v.(s) Zi‘”|\1!<s,cr<s>>|ds}

j=
[( b.b) ~Vlay | @b~ gy
Lo+ 1) L9 ' T(yy)
n @) - @)yt - @LE) - da)y]
X { lpil P T +2)
i=1 *
W) = P.@)F  @.(b) = g.(a)y"!
2 =D PTosD) }]npuY(nan).

Therefore, we have
{teal

—— <
QllpllY ol
where Q is given in (3.7). By (H,), we have that ||o|| # K. Consider the set

U ={oeC(a,b],R) : ol < K}
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The operator S: U — C([ay,b;],R) is continuous and completely continuous. By the definition
of U, we cannot find any o € dU satisfying o = uS(o) for some u € (0, 1). In consequence, by the
application of the Leray-Schauder nonlinear alternative [22], we deduce that there exists a fixed point
o € U for the operator S, which is a solution of the problem (1.1). This finishes the proof. m|

3.3. lllustrative examples: the single-valued case

Consider the following ,-Hilfer fractional proportional boundary value problem:

331 z+1
Do) = ¥ o@). ze(d3].
1

a(g)zo,

f‘s‘ o 1o 2 e (3.10)

1 (s +2)? 66 %(s+2)2 NG (s +2)?
il
55 \4) 77 \8) 99 \8)’

where
p=3/2,0=3/4 9. =1/4, ¥,(2) =@+ 1/(z+2)

with
V@) =1/z+2)% a1 =1/8, by =5/4, n=2, m=3, ¢, = 1/66, ¢, =2/77, n; = 1,

m =9/8, & =3/4, & =1/8, 6, =3/55, 6, =5/77, 0 =7/99, &t = 1/4, & = 3/8, & = 5/8.
Using the given data, it is found that

v1 = 15/8, L ~ 0.00072023486, Q ~ 176.2956671 and Q; ~ 164.531941.
(i) Let the nonlinear function @X [1/8,5/4] X R — R be defined by

1 o]
Y(z,0) = — (k+|o_|)+g(z), (3.11)

where k > 0 and g: [1/8,5/4] — R. Then, we have

I¥(z,01) = ¥(z, 02)| < 2—1k|01 — 0,
that is, the Lipschitz condition (H;) in Theorem 3.1 is satisfied with Ay, = 1/2k. Therefore, by
Theorem 3.1, if k > 88.14783355, then the boundary value problem (3.10) with the function ¥, given
by (3.11) has a unique solution on [1/8,5/4].
(i) Let us consider

1 o] . 1
V(2. o) = 34— 3.12
@0) 8z+1(90+|0'|)+z MR (.12)

Clearly, the function J* in (3.12) satisfies the condition (H,) in Theorem 3.2 as

¥(z,0)| <

2+l lg(@)l == ¢.(2).
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Moreover, Q; Ay = 0.91406634 < 1. Hence, by Theorem 3.2, the boundary value problem (3.10) with
the function i, given by (3.12) has at least one solution on [1/8,5/4].
(ii7) Consider the nonlinear function

Y(z,0) =

1 1 2022 1 1
( g ) (3.13)

—_— + —_—
158z +2)\ 150202 +3 12
and note that [¥(z,0)| < 1/300. Clearly, the conclusion of Theorem 3.3 leads to the existence of at
least one solution for the boundary value problem (3.10) with the function i, given by (3.13) on an
interval [1/8,5/4].
(iv) Let the function ¢, be expressed as

Y(z,0) =

1 1 2024 1 1
( T_* ) (3.14)

1582+ 2)\15092+3 ' 12)

Observe that the function i, does not satisfy the Lipschitz condition, but we can find the quadratic

bound as . . .
I‘P(Z,U)IS—( o )

158z +2)\15° 12
Choosing
p(z) = 1/(15(8z + 2))
and

Y(u) = (1/15)u® + (1/12),
we have ||p|| = 1/45. Then, there exists a constant
! € (0.360396904, 3.468398274),

which satisfies the condition (H,) in Theorem 3.4. Thus, the boundary value problem (3.10) with the
function ¥, given by (3.14) has at least one solution on [1/8,5/4].

4. Multi-valued case

In this section, we study the multi-valued variant of the nonlinear nonlocal
integro-multistrip-multipoint ¢, -Hilfer fractional proportional boundary value problem (1.1) given by

D" 0(2) € Hiz, 0(2)), 2 € [ar, il
o(ar) =0,

D \ @)
hl 4 Th 4

Fwrds = Y [T s+ ) 0,0,
1 i=1 Si j=1

a

where H: [a;, b1] X R — P(R) is a multi-valued map, P(R) denotes the family of all nonempty subsets
of R, and the other symbols are the same as defined in the problem (1.1).

Let (X, ||-|]) be a normed space. We denote, respectively, the classes of all closed, bounded, compact,
and compact and convex sets in X by P, Py, Pp and P, ..

The set of selections of H, for each o € C([a;, b1],R), is defined as

Sue = {2 € L'(la1,b1],R) : 3(z) € H(z, 0(2)) for ae. z € [ay, b1]}.

For details on multi-valued analysis, see [23-25].
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4.1. Existence results for the multi-valued problem (4.1)

Definition 4.1. A function o € C([a;,b1],R) is called a solution of the nonlocal integro-multistrip-
multipoint W -Hilfer fractional proportional inclusion boundary value problem (4.1) if there exists a
function v € L'([a1, b;],R) with v(z) € H(z, o) almost everywhere (a.e.) on [ay, b;] such that

Yl (- - - _
][pﬁ 7. e v W@ %(ﬂl))(w*(z) -y, (a)) 1{

@ = L)+ i bf VL (s)ds

+ Zﬁﬂﬁwwgrif G W@w}

4.1.1. Case 1: the upper semicontinuous case

Applying the nonlinear alternative for Kakutani maps [22] together with a closed graph operator
theorem [26], we establish an existence result for the nonlocal integro-multistrip-multipoint ¢, -Hilfer
fractional proportional inclusion boundary value problem (4.1).

Theorem 4.1. Let the following assumptions be satisfied:

(A1) The multifunction H: [a;,b1] X R — P, (R) is L'-Carathéodory;
(A2) [[H(z, d)llp := supflzl : z € H(z,0)} < a@g(lloll) foreach (z,0) € [a1,bi] X R, where g €

C([ay,b1],R") is a nondecreasing function, and q : [ai, b;] — R* is a continuous function;

M
(A3) —————= > 1, for a positive number M, where Q is given by (3.7).
D Soniia e srensy

Then, the nonlocal integro-multistrip-multipoint \.-Hilfer fractional proportional inclusion boundary
value problem (4.1) has at least one solution on [a, b,].

Proof. Let us introduce a multi-valued operator W: C([a;, b1],R) — P(C([a1, b1],R)) as

w € C([abbl]aR) :

Dl N T ) — _
00y, € W) — @)
L v(z) + -,

W@ =1 o) = {Z%fwum+wws

+ Z 6 I[lei e V(é/,) - f l//*(s)ﬂa1+ V(S)dS}, S S]H[,O'-

It will be verified through several steps that the operator W satisfies the hypotheses of the Leray-
Schauder nonlinear alternative for Kakutani maps [22].

Step 1. W transforms bounded sets into bounded sets of C([a;, b1], R).

For € > 0, we consider a bounded set
B, ={o € C([a;,b1],R) :|lo|| < &}
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in C([a;, b,],R). For each @w € W(o) and o € B,, there exists v € Sy, such that

L @@= 0a) (g (Y — 1
o) = L)+ ‘ Lﬂy(ll—ﬂrlsz() )lﬁ*(al))y { f 75
N &

+ Zeﬂzi‘”v@— f G v(s)ds}.

For z € [ay, b1], using the assumption (A,), we obtain

. W, (@) = ¥, (a)! 9.
o) < B )+ s { il f TS v(s)lds
ILI97 ' T(yy) Zl
I )] + f w(sﬂzi‘”w(snds}
j=1
[@*(bo —y.(a)y .\ W.(b) — ¥, (a))" !
ﬁf’F(p +1) ILI97 ' T(yy)
{ <w (1) = Y)Y = @) — ¥ (a)y*|
X
KT +2)
m (%(4) wal))ﬁ (b)) — ¥, (a))y*!
Fl| PTG+ TR0 }]nqng(nan),
which leads to
lal] < llalla(e)Q.

Step 2. W maps bounded sets into equicontinuous sets of C([ay, b1], R).

Let o € B, and w € W(0). Then, there exists v € Sy, such that

@@ = B+

L2 @ @@ (7 g
e 7(llffl*(Z) v, (ay))” { f v (S)]Ia1+ “v(s)ds
Lﬂ* r(y ) i=1 &

by
+ ZHZ}?‘” () ~ f J;(s)ll’;fi“’v(s)ds}.

Let z1, 22 € [a1,b1], 21 < 22. Then,

|w(22) — w(z1)| <

f @) =0 (Y™ = @) = Y)Y Fs)v(s)ds

1+

1
. F(p)

LS u(s)ld s

(w*(zZ)—w*ml))% ~ W.(z1) = ¥, (@)™ { f
el | v,
IL[97 ' T(y,) Z
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m _ b _
£ l6 )+ f J;(s>ﬂ'2;’i*’”*|v<s>|ds}
j=1 a
< %[2@(@ — 0. + W) - @)y - (Fz) - §.@)Y |
. W) = 0@ - @) - @)
ILI97 ' T(yy)
{ Z | |[@<n,-> — Y@yt = @) - Y@y
X (72H
L FT(p +2)
W) =@y (b)) — L (a))y!
+ ;w S ) }nqng(s) -0,

as 71 — 2z independently of o € B,. Hence, W: C([a,b],R) — P(C([ai,b,],R)) is completely
continuous by virtue of the Arzela-Ascoli theorem.

Step 3. For each o € C([a;,b1],R), W(0) is convex.

Since F has convex values, Sy 1S convex.

Step 4. W has a closed graph.

Let 0, —» 0., w, € W(o,) and w, — w@,.. Then, we show that w, € W(o,). Observe that
w, € W(o,) implies that there exists v, € Sy, such that, for each z € [a;, b;], we have

9.

_ =L (@—¥.a) (77, - 1 (2 i _

e (l//*(Z) - l/’*(al))yl i RT3

@,(2) = BT+ > o | LT vi(s)ds
" Lﬁzl - r()’1 ) i=1 &i "

u — b1 _, _
+ Z 9}.]1‘;’111*"”* va({j) — f lﬁ*(s)ﬂﬁfi’”w* vn(s)ds}.
j=1 ap

For each z € [ay, b,], we must have v, € Sy, such that

— L @@= (a) - 1 i _

e, e W.(2) — ¥ (a))" — 9.,

w.(2) = L")+ - S o | OB vs)ds
La." Ty i=1 &i

. — b1 _
o) - f w*(s)ﬂ'gfi*’”*v*(s)ds}.
j=1 ai

Consider a continuous linear operator ®: L'([a;, b;],R) — C([a;,b;],R) as

Buml 7 N _ _
— e;‘T(l/’*(Z)—lﬁ*(al)) (D) —W.(a yi-1 n mi_, o
Vv — (I)(V)(Z) = ]IZ’:Z_*W*V(Z) + Lﬂy(lllbll(ﬂ() )'70 ( 1)) { Z o f Ql/*(s)]lzli*’w*\}(s)ds
* 7 i=1 &i

m . by B
+ Zejﬂﬁ;’i*"”*v(éj)— f w*(s)ﬂg;%’w*v(s)ds}.
j=1 @

Clearly, ||w, — @.|| = 0 as n — oo, and consequently, by the closed graph operator theorem [26],
® o Sy, is a closed graph operator. Also, we have @, € O(Sy,,) and
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2L, -0, (a) (7, - -1 (. i

x e W.(2) =y (a)) —

@@ = LY@+ i 1 > 6 | BUOEL v (s)ds
Lg: " T(y) = Ja

+ Zeﬂg’l’i%(g,)— f w(s)ﬂg’l’iwv(s)ds},

for some v, € Sy,,. Thus, W has a closed graph. By [23, Proposition 1.2], that is, if a completely
continuous operator has a closed graph, then it is upper semicontinuous, we deduce that the operator
W is upper semicontinuous.

Step 5. There exists an open set U C C([ay, b],R), such that, for any k € (0,1) and all o € 9U,
o ¢ kW(o).

Let o € kW(0), k € (0,1). Then, there exists v € L'([a;,b;],R) with v € Sy, such that, for
z € |ay, b1], we have

B @@y, () — 1o "
o(z) = I['lei Y (@) + <& ﬁy(llﬁ l(f()y )l// (1)) {Z %‘L %(S)I[lei Tey(s)ds

+ ZHZﬁi“’v@,)— f RG] v(s)ds}.

As in Step 1, for each z € [ay, b,], we have

ol < [@*“’0 U@y | @) - @)

ﬁpF(p +1 LW~ T (1)
n @) - Y @)y - @€ - @)y
{ Z i #T(p +2)
W) =@y @.(b) = Gla)y H
16l + llallg(llerlD
JZ; (o + 1) #T(o +2)
lalla(llorIhQ.

X

+

Thus, we have
[l

— <
g(llorIDllall€2
By (A3), ||o|| # M for some M. We define a set

0 ={o € C([a1,51],R) : [loll < M}.

Obviously W: ® — P(C([a1, b1, R)) is a compact, convex valued and upper semicontinuous multi-
valued map. By the definition of ®, we cannot find any o0 € 90 for some « € (0, 1) satisfying o €
kW (o). Therefore, by the Leray-Schauder nonlinear alternative for Kakutani maps [22], the operator W
has a fixed point o € @. So, the nonlocal integro-multistrip-multipoint ¢, -Hilfer fractional proportional
inclusion boundary value problem (4.1) has at least one solution on [a;, b1]. O
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4.1.2. Case 2: the Lipschitz case

Here, we discuss the existence of solutions for the integro-multistrip-multipoint v, -Hilfer fractional
proportional inclusion boundary value problem (4.1) with a possible non-convex valued multi-valued
map. The main tool of our study in this case is a fixed point theorem for contractive multivalued maps
due to Covitz and Nadler [27].

Definition 4.2. ([28]) Let (X, d) be a metric space induced from the normed space (X, || - ||) and
H; : PX) X P(X) - R U {oo}

be defined by
Hy(A, B) = max{sup d(c, d), sup d(c, d)},

ceA deB

where d(c,d) = inf.c d(c,d) and d(c,d) = infep d(c, d).
Theorem 4.2. Assume that

(B1) H: [a1,b1] X R — Pp(R) is such that H(-, o): [a1,b1] — P,(R) is measurable for each o € R,
where P.,(R) denotes a class of compact sets in R;

(By) Hj(H(z,0),H(z,0)) < 0o(2)lo — & for almost all 7 € [ay,b,] and 0,5 € R with o € C([ay,b;],R")
and d(0,H(z,0)) < o(z) for almost all z € [a,, b].

Then, the nonlocal integro-multistrip-multipoint W -Hilfer fractional proportional inclusion boundary
value problem (4.1) has at least one solution on [ay, b1] if

Qlloll < 1,

where Q is given by (3.7).
Proof. Consider the operator
W . C([al’ bl]’ R) - P(C([al’ bl]’ R))»

defined by (4.2). We complete the proof in two steps.

Step I. W is nonempty and closed for every v € Sy, .
By the measurable selection theorem ([29, Theorem III. 6]), the set-valued map H(:, o (-)) is
measurable and admits a measurable selection v: [a;, b;] — R. By the assumption (B,), we get

V(@) < o(2)(1 + |o(2)D),

that is, v € L'([a;, b1],R), and hence, H is integrably bounded. Therefore, Sy, # 0.
For each o € C([ay, b,],R), we verify that

W(o) € Pu(C([ar, b1], R)).

Let
{Up}nz0 € W(o) with u,, — u (n — o0) in C([ay, b1, R).
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Then, u € C([a,,b,],R), and we can find v, € Sy, such that, for each z € [a;, b;],

_ L=l (-v.a) 77, - -1(n i

.. e’ W.(2) — ¥ (a)" — o

u,(z7) = 1[2’1’1 Yoy (2) + LT 1 E @i l//*(S)I[Z.i Y y(s)ds
* Y1 i=1 &i

by
+ Z 60 Hﬁi e V() - f Z;(s)ﬂﬁfi 2 v,,(s)ds}.

Since H has compact values, we can obtain a subsequence (if necessary) v, converging to v in
L'([ay, b1],R). Thus, v € Swu., and for each z € [ay, b;], we have

5RO () — b -1 (. n_
Wn(Z) e V(Z) = I[Z]Ii 2 V(Z) + ¢ ﬁy(llp IEZ(?}/ )lﬂ (al))y {Z (plf l//*(S)]IZ]:_ W, V(S)ds
i=1 &i

- Zﬂﬁi‘”v(@)— f AD) e v(s)ds}.

Thus, u € W(o).
Step II. Here, we establish that there exists 0 < my < 1 (mg = Q||o||) such that
H;(W(0), W(0)) < mgllo- — &|| foreach o,0 € C([a1,b1],R).

Let 0,0 € C([a;,b1],R) and @w; € W(o). Then, there exists v{(z) € H(z, o(z)) such that, for each
Z € [ab b1]9

0.7 e i L@@y () g (a7 (&
o) = LT LGy { f P (s
V1 ¢

+ Zﬂii‘”w({])— f RO vl(s)ds}.

By (B;), we have
H;(H(z, 0),H(z,0)) < 0(2)lo(z) — 7(2)|.

So, there exists z € H(z, w(z)) such that
vi(2) — 2zl < 0(@)lo(2) — (), z € [ar, b1l
Let us define V: [a;, b;] — P(R) by
V(@) ={zeR:|vi(2) -2 < 0(@)o(2) — T (2}

Since the multivalued operator V(z) N H(z, 6(z)) is measurable by Proposition I11.4 in [29], there
exists a function v,(z) which is a measurable selection of V. Thus, v,(z) € H(z, 5(z)), and for each
z € |ay, bq], we have

vi(2) = v2(2)| < 0(2)lo(2) — O (2)].
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Therefore, for each z € [ay, b;], we get

L G- (g (Y — 1
ID'Z(Z) = I[‘lei W VZ(Z) + ¢ Lﬁy(ll_pflsz() )lﬁ*(al))y {Z f L[/*(S)]Ila)lzi W, VQ(S)dS
4 ¢

+Zeﬂﬁfi‘”vz<g>— f A v2<s>ds}.

In consequence, we obtain

lwi1(z) — @22

o
< ]Ipli W _ (w*(bl) - w*(al))y { l f I[ i L _ d
@ - @1+ TS Z gi | WAL a(s) = vi(s)lds

+ Zeﬂa.ﬁ”wz@] ~ i)l - f w*(sﬂal;”|vZ<s>—v1(s)|ds}

. [w*(bl) —d(@)y @) =g @)
L e+ D L9~ T (1)

n @) - eyt - @LE) - v @)y
X { : il P T +2)

=1
& W) — @)y @ b)) - gL (a))yt! _
+ 1) FTorD T #Tesy) }]ngnna -l

which yields
l@1 — @l < Qllollllo = al.

On switching the roles of o and &, we have
H;(W (o), W(0)) < Qllollllo — ],

which verifies that W is a contraction. Hence, it follows by Covitz-Nadler’s fixed point theorem [27]
that the operator W has a fixed point o, which is indeed a solution of the nonlocal integro-multistrip-
multipoint ,-Hilfer fractional proportional inclusion boundary value problem (4.1). O

4.2. Illustrative examples: the multi-valued case

Let us consider the y,-Hilfer fractional proportional inclusion boundary value problem:
331z
D" () e Hz o), z€ 43,
8
1
—|=0,
{9
5 9
ioo(s) () L2 (o (4.2)
§=— S+ —= s
! (s +2)? 66 J3 (s +2)? 77 J7 (s +2)?

SN 203 Lo 2
55°\a) 7 777\8) " 997 {3/
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(i) Let H: [1/8,5/4] X R — P(R) be defined by

1 1 (c™+1\ 1 [cP2+3) 1
o o 1 RN AT 43
&) [’2@z+4Y{16(0”2+2)+14QUW1+4)+15” D

Obviously, the multifunction H is L!-Carathéodory. Moreover, we have

1 1 1 1
H(z, ollp < = [ —0? + — o]+ —|.
B Dl < 55 ap (160 t gt 15)
Choosing
a(z) = 1/(2(8z + 4)*)

and
(o) = (1/16)0” + (1/14)|o| + (1/15),

there exists a constant
M € (0.350343537,3.044630641)

which satisfies the condition (A3) of Theorem 4.1. Thus, we deduce that the nonlocal
integro-multistrip-multipoint ¢, -Hilfer fractional proportional inclusion boundary value problem (4.2)
with multifunction H defined by (4.3) has at least one solution on [1/8,5/4].

(if) Let the multifunction H(z, o) be given by

B 1 o?+2l0] 3
Hz 0) = [O’ 5(82+5) (2(1 o Z)] ‘ @4

It is obvious that H is measurable. Also, we have

H;H(z, 0), H(z, oo — &,

1
e L
7)< 55 15y
for almost all z € [1/8,5/4] and o, & € R. Letting
0(z) = 1/(5(8z + 5)%),

we have
lloll = 1/180

and
d(0,H(z,0)) = (3/4)0(z) < 0(z)

for almost all z € [1/8,5/4]. Hence, we have that
Qllol| = 0.9794203728 < 1.

Therefore, by Theorem 4.2, the nonlocal inclusion boundary value problem (4.2) with multifunction
H defined by (4.4) has at least one solution on [1/8,5/4].
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5. Conclusions

In this paper, we have presented the criteria ensuring the existence and uniqueness of solutions for
a ,-Hilfer fractional proportional differential equation complemented with nonlocal
integro-multistrip-multipoint boundary conditions. The desired results for the given problem are
derived by applying the fixed point theorems due to Banach, Krasnosel’skii, Schaefer and
Leray-Schauder alternative. Also, two existence results for the y,-Hilfer fractional proportional
differential inclusion problem with nonlocal nonlocal integro-multistrip-multipoint boundary
conditions are proved when the multivalued map takes convex as well as non-convex values.
Examples are constructed for illustrating all the abstract results presented in this paper. We emphasize
that our results are new and contribute to the literature on the nonlocal integro-multistrip-multipoint
boundary value problems involving ,-Hilfer fractional proportional differential equations and
inclusions.

Fixing the parameters involved in the given problems, some new results follow as special cases. For
example, our results correspond to the ones for

(i) integral multi-strip nonlocal y,-Hilfer fractional proportional boundary value problems of order
in(1,2]if0; =0,j=1,2,...,m;

(i) integral multi-point nonlocal , -Hilfer fractional proportional boundary value problems of order
in(1,2]if; =0,i=1,2,...,m;

(ii1) integral multi-strip nonlocal Hilfer fractional proportional boundary value problems of order in
(1,2]if g, (2) = 2

(iv) nonlocal integro-multistrip-multipoint i, -Hilfer fractional boundary value problems of order in
(1,2]if 9, = 1.

In the future, we plan to investigate the systems of y,-Hilfer fractional proportional differential
equations and inclusions equipped with nonlocal integro-multistrip-multipoint boundary conditions.
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