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1. Introduction and statement of main results

It is well known that the commutators of a great variety of operators appearing in Harmonic Analysis
are intimately related to the regularity properties of the solutions of certain partial differential equations,
see for example [5,6,9,10,13,32]. A first result in this direction was established by Coifman, Rochberg
and Weiss in [11], where the authors studied the commutator [b, T'] generated by the classical singular
integral operator 7" and a suitable function b is given by

(D, T1(f) = bT(f) = T(bf). (1.1)

They gave a characterization of BMO(RY) in virtue of the L7-boundedness of the above commutator.
In [22] the author extended the results in [11] to functions belonging to a Lipschitz functional space
and gave a characterization in terms of the boundedness of the commutators of singular integral
operators with symbols in this class. Milman and Schonbek [27] established a commutator result by
real interpolation techniques. As an application, they obtained the L?-boundedness of the commutators
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of maximal function [b, M] when b € BMO(R?) and b > 0. This operator can be used in studying the
product of a function in H' and a function in BMO (see [7] for instance). Bastero, Milman and Ruiz [4]
studied the necessary and sufficient conditions for the boundedness of the commutators of maximal
function [b, M] and sharp maximal function [b, M*] on L4(RY) spaces when 1 < g < oco. Recently,
Guliyev et al. [17] gave the characterization of fractional maximal operator and its commutators on
Orlicz spaces in the Dunkl setting. For more information about the characterization of the commutator
of maximal operator, see also [2, 3, 12,43-45] and the references therein.

Motivated by [3,4] and [19], we will study the characterization of BMO functions in the context of
p-adic field spaces. For a prime number p, let Q, be the field of p-adic numbers. It is defined as the
completion of the field of rational numbers Q with respect to the non-Archimedean p-adic norm | - |,.
This norm is defined as follows: |0], = 0. If any non-zero rational number x is represented as x = p”™,
where m and n are integers which are not divisible by p, and vy is an integer, then |x|, = p™. It is not
difficult to show that the norm satisfies the following properties:

|xy|p = |x|p|Y|p’ |x + ylp < maX“xlp’ |y|p}

It follows from the second property that when [x|, # [y|,, then |x + y|, = max{|x|,,|yl,}. From the
standard p-adic analysis [40], we see that any non-zero p-adic number x € Q, can be uniquely
represented in the canonical series

x=p' Y ap), Y=y e, (1.2)
=0

where a; are integers, 0 < a; < p -1, ap # 0. The series (1.2) converges in the p-adic norm
because |a;p’|, = p7.

The space Qﬁ consists of points X = (x, x2,...,X4), where x; € Q,, j = 1,2,...,d. The p-adic
norm on Q is [X|, := max<j<q |x;|, for x € Q4. Denote by B,(a) = {x € Q} : [x — al, < p”}, the ball
with center at a € Qf, and radius p”, and by S,(a) := {x € Qf, : |x —al|, = p”} the sphere with center
ata e QZ and radius p”, y € Z. It clear that S, (a) = B,(a)\B,_(a), and B,(a) = <, S(a).

Since Q;’, is a locally compact commutative group under addition, it follows from the standard
analysis that there exists a unique Harr measure dx on Qf, (up to positive constant multiple) which is
translation invariant. We normalize the measure dx so that

f dx = |Bo(0)|z =1,
By(0)

where |E|y denotes the Harr measure of a measurable subset E of QZ. From this integral theory, it is
easy to obtain that |By(a)|y = p’* and |S(a)ly = p**(1 — p™) for any a € Q¢

In what follows, we say that a (real-valued) measurable function f defined on Qf, is in L4 (QZ), 1<
q < oo, if it satisfies

1/q
aoly \= x)ldx| <oo, 1<g<oo,
11 zocqty [‘ng |f(x) J q (1.3)

Ifllpqq) = inflar = lfx € Q) 2 [f(X)] > a}ly = 0} < co.
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Here the integral in (1.3) is defined as

lf®)'dx = lim [f(®)|"dx = lim Z f |f(®)|"dx,
andd y—00

Q% By(0) —oo<k<y Sk(0)
if the limit exists. We now mention some of the previous works on harmonic analysis on the p-adic
field, see [18,26,33-35] and the references therein.

For a function f € L} (Q%), we defined the Hardy-Littlewood maximal function of f on Q% by

1
MP = dy.
(D) = sup fB rway

In [24, 25], Kim proved L7 boundedness of the version of maximal function M” and gave some
properties similar to the Euclidean setting.
The maximal commutator of M? with a locally integrable function b is defined by

M (f)(x) = sup

YEL |By(X)|H

f Ib(x) — b)ILFW)Idy.
B, (x)

The first part of this paper is to study the boundedness of M when the symbol belongs to a BMO
space (see in Section 2). Some characterizations of the BMO space via such commutator are given.
Our first result can be stated as follows.

Theorem 1.1. Let b be a locally integrable function on QZ. The following statements are equivalent:
(H)be BMO(Qi);

(2) M} is bounded on LY(Q%) for all g with 1 < q < co;

(3) M} is bounded on LY(QS) for some q with 1 < q < co.

We remark that the boundedenss of the commutators of maximal function unknown until the author
made some progress in [19] for a partial case on the p-adic vector space. In an attempt to close the gap
in his work, we came up with some new results.

On the other hand, similar to (1.1), we can define the commutator of the p-adic version of maximal
function M? with a locally integrable function b by

[D, MPI(/H(X) = bEOMP(f)(x) = MP(bf)(X).

In this paper we show that a slightly extended form of positivity is a necessary and suffcient
condition to characterize the boundedness of [b, M”]. To see what this condition should be we observe
that if MP? were a linear operator, given that everything we do is modulo bounded operators, the correct
requirement would appear to be that b € BMO(QZ) with its negative part b~ bounded. Indeed, the
suffciency of the condition b € BMO(QZ) with b~ bounded formally follows from Theorem 1.1, the
fact that b € BMO(Q?) and the estimate

|16, MPICH < T1BI, MPI(H)] + 25~ ()M (f)(x) < M ()(X) + 2" ()M (f)(x), (1.4)
where b~ = —min{0, b}. We summarize the previous discussion with the following
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Theorem 1.2. Ifb € BMO(QZ) and b~ is bounded, then the commutator [b, MP] is bounded on L‘I(QZ)
forall g € (1, c0].

The purpose of this paper is to prove the converse of Theorem 1.2 and to show that a similar
characterization also holds for the sharp maximal operator.
Our main result for [b, M?] can be now stated as follows.

Theorem 1.3. Let b be a locally integrable function on Qf,. The following statements are equivalent:
(Hobe BMO(QZ) and b~ € LW(QZ);

(2) [b, MP] is bounded on LY (Q%) for all g with 1 < q < oo;

(3) [b, M?] is bounded on L"(Q;’,)for some q with 1 < g < oo;

(4) There exists g € [1, o) such that

sup sup
XGQE{ yEZ |By(X)|H

f 1b(y) = M (D)WY < o0, (1.5)
By(x)
where ng(x) denote the maximal operator with respect to a p-adic ball which is defined by

1
My (D) = sup  ——— f f(2)ldz;
By, ()

B,x2B,,y) [Byo(¥)lH

Here, the supremum is take over all the p-adic B, (y) with B, (y) € B,(X) for a fixed p-adic ball B, (x).
(5) For all g € [1, ) such that

sup su Ib(y) — M, (b)(y)l?dy < co.
XGQI:; yeg |By(X)|H fl;y(x) y B, (x) y y
Recall that the p-adic version of sharp function is given by

£ix) = ME(H®) = sup \ﬂﬂmrmmw
By (x

vez |By(X)|u

where fz (x) denotes the average of f over B,(x), i.e., fz,x) = m fo ® f(y)dy.
Next we consider commutators with the p-adic version of sharp function. The results are similar to
those in Theorem 1.3.

Theorem 1.4. Let b be a locally integrable function on Qz and 1 < 6 < oo. The following statements
are equivalent:

(Hbe BMO(QZ) and b~ € Lw(QZ);
(2) [b, M,u,] is bounded on Lq(Qi)for all gwith 1 < g < oo;

3) [b, Mf,] is bounded on Lq(Q;’,)for some q with 1 < g < oo;
(4) There exists g € [1, o) such that

1 P’
sup su b(y) - bys,x)(¥)| dy < oo; 1.6
xéﬁ%&wmﬁm W)= 30, Graw) )| &y (1.6)

(5) For all g € [1, 00) such that

1 f p2 q
sup su b(y) - (bxs,0)h ()| dy < 0.
vt 22 1B, i 2p—1) X
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It is well-known that the Morrey space introduced by Morrey in [28] in order to study regularity
questions which appear in the Calculus of Variations, and the p-adic version of Morrey spaces defined
as follows: for 1 < g <ocand 0 <A <d,

LIAQY) = {f € LL(@)) : Ifllpeags) < oo},
where

1
s = s0p S;lig[lBy(X)l " fB .

Note that L#9(Q%) = L(Q%) and L*(Q}) = L*(Q?).

These spaces These spaces describe local regularity more precisely than Lebesgue spaces and
appeared to be quite useful in the study of the local behavior of solutions to partial differential
equations, a priori estimates and other topics in PDE, such as applications to the Navier-Stokes
equations, the Schrodinger equations, the elliptic equations with discontinuous coeflicients and the
potential analysis, see [1,8, 14,23, 38].

The following theorems we investigate boundedness of maximal commutator and commutator of
maximal function on the p-adic version of Morrey spaces.

l/q
lf (X)I"dXJ :

Theorem 1.5. Let 1 < g < 00 and 0 < A < d. The following statements are equivalent:
(1) b € BMO(QY);
2) MZ is bounded on Lq’”(QZ).

Theorem 1.6. Let 1 < g < 0o and 0 < A < d. The following statements are equivalent:
(1) b € BMO(Q%) and b~ € L™(Q%);
(2) [b, M?] is bounded on L‘“(Qﬁ).

The rest of the present paper is organized as follows: In Section 2, we will give some definitions
and lemmas. The proof of Theorems 1.1-1.4 are presented in Section 3. In Secction 4, we will give
the proof of Theorems 1.5 and 1.6. By A < B we mean that A < CB with some positive constant C
independent of appropriate quantities. The positive constants C varies from one occurrence to another.
For a real number ¢, 1 < g < o0, ¢’ is the conjugate number of ¢, thatis, 1/g+ 1/q" = 1.

2. Preliminary definitions and lemmas

To prove our main results, we need the following definitions and lemmas.

Definition 2.1. Let f € L! (QZ) be given. If || f¥| =@y < 0, then we say that f is a function of bounded

loc

mean oscillation on Q‘;. We denote the space of such function by BMO(Q‘;); that is say,

BMO(Q)) = {f € L},,(Q)) : f* € L™(@))).

For f € BMO(Qz), we write

f @) — fi oldy.
B, (x)

I lemocaty = I llzsd) = sup sup
@) @ xeQd Y€z |B,(X)|
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In [24], Kim gave the following property of BMO functions whcih is similar to Euclidean setting.

Lemma 2.1. Ifl <g<ooand f € BMO(Qﬁ) is given, then we have the following properties;
(a) The norm || f ||BM0(Q;§) is equivalent to the norm ||f IIBMOq(Qf,), where the norm || f ||BM0°7(QZ) defined
by

1 1/q
1 lemor(Q%) = sup S“p(my(x)m fB " If(y)—f37<x>lqd3’) :

erjﬁ YEZ

(b) For any A with0 < A < C2/||f||BM0(Q;f,)’ where ¢, is the constant given by Theorem 5.16 in [24],

Sup sup
erﬁ YEL |B7(X)|H

f exp(A|f(¥) — f,xdy < co.
By(x)
Let
Fp = (B,(X): y €Z, x € Q)
denote the family of all the p-adic balls, which differ from those of the Euclidean case, see [25].

Lemma 2.2. The family F, has the following properties:
(@) If y < ¥/, then either B,(x) N B,/ (y) = 0 or B,(X) C B, (y).
(b) B,(x) = B,(y) if and only if y € B,(x).

A continuously increasing function on [0, co], say ¥ : [0, co] — [0, oo] such that ¥(0) = 0, ¥(1) = 1
and W(c0) = oo, will be referred to as an Orlicz function. If W is a Orlicz function, then

@(r) = sup{ts — Y(s) : s € [0, c0]}

is the complementary Orlicz function to ‘P
The Orlicz space denoted by LLP(QZ) consists of all measurable function g : QZ — R such that

f \I,(Ig(X)I)dX c o
Q @
for some a > 0.

Let us define the W-average of g over a p-adic ball B,(x) of Qi by

1
lglhv.s, o = inf {a 0 f ‘P(lg(x)l)dx . 1},
1B,z Js,x) o

4

When VY is a Young function, that is, a convex Orlicz function, the quantity

Iflle = inf{a >0 f ‘P(lg(x)l)dx < 1}
Q4 a

is well known Luxemburg norm is the space L*(Q¢) which can be found in [31].
A Young function Y is said to satisfy the V,-condition, denoted ¥ € V,, if for some K > 1

1
Y(r) < R‘I’(Kt) for all ¢ > 0.
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It should be noted that W(¢) = ¢ fails the V,-condition.
If fe L‘P(Qg), the maximal function of f with respect to ¥ is defined by setting

MEF)(X) = sup || fllw.5,00-

yeZ

The following generalized Holder’s inequality (see [31])

lF(WsWIdy < Ifllo,s,mllgllw,5,w- (2.1)
IB,(X)ly fB,(x) PEOTETE
holds for any the complementary Young function ¥ associated to ®.

The main example that we will consider to use the Young function ®(¢) = #(1+log" r) with maximal

function defined by Mi(log - The complementary Young function is given by ¥(r) ~ e’ with the
P

corresponding maximal function denoted by Mexp Iz

Let ‘JJE(Q;Z,) denote the set of all measurable functions on QZ. The Zygmund class L(log* L)(QZ) is
the set of all f € M(Q3) such that

| 1rooiaog” pa < .

where log™ t = max{log#,0} and 7 > 0. Generally, this is not a linear set. Nevertheless, considering the
class

L(1 +log" L)(Q9) = {f € MQ) = I Nps10g ey = f I +log" [f(x)Ddx < oo},
Q
we obtain a linear set, the Zygmund space.

The size of MP(MP) is given by the following.

Lemma 2.3. Let f € sJJI(Q;’,). Then there exist two constants ¢ and ¢’ such that for any X € QZ
M 10 L (DX < MPMP()(X) < M, (). (2.2)

This lemma, in the same form but in the context of R and spaces of homogeneous type which can
be found in [29, 30]. A similar estimate is also given in both [15, 16, 20,42]. The idea of deducing
Llog L behavior of a function from integrability of its maximal function goes back to E. Stein in [39].

In order to prove Lemma 2.3, we need the following lemma.

Lemma 2.4. Let [ € EUI(QZ) and a > 0. Then we have the following estimatetes for wy(a) = |{X €
QY+ MP(f)(X) > allu:

c’f lf(X)|dx < awp(a) < cf |f(x)|dx (2.3)
{x€Q: 1f®)1>a) {x€Q: 1f>a/2)

with constants ¢ and ¢’ which do not depend on f or a.
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Proof. Firstly, we give the proof of the right hand side inequality in (2.3). Write f = f| + f,, where

f&), if|f®]<a/2,

0 otherwise.

Hx) = {f(x), if |[f(x)| > a/2,

0 otherwise

and  fo(x) = {

Since |f>(x)| < /2 implies that M?(f,)(x) < a/2. Then we have MP(f)(x) < MP(f))(xX)+ MP(f2)(x) <
MP(f1)(x) + a/2. Thus, by the weak (1, 1) boundedness of maximal function M”, we have

on(@) <lIx € G2 MU > af2lly < f fioldx = & f F)ldx

(xeQd: |f(®)l>a/2})

which gives the right hand of inequality (2.3).

On the other hand, we may assume that f € Ll(Qﬁ) (otherwise we truncate and apply a
limiting process). Then we use the p-adic version of Calderén-Zygmund decomposition (see [24,
Corollary 3.4]) for f and a. we have non-overlapping p-adic balls B; € ¥,, such that

QB < f Fldx < plalB)ln
B;

for any j, and |f(x)| < a for a.e. x ¢ U B;. Now, since x € B; implies that M”(f)(x) > a, we can
J

wn(@) > Z Bl > f ook~ | f(ldx
(xeQp: If®I>a)

and (2.3) is proved with ¢’ = p~. O

write

Proof of Lemma 2.3. Firstly, we give the proof of the left hand side inequality in (2.2). By the definition
of the Luxemburg norm, the left hand side of inequality (2.2) will follow from showing that for some
constant ¢y > 1, ¢y independent of f,

1 |f()’)|(1 1 +(|f(Y)|))d ! 54
|By(X)|HL 0 AB,x) Toe AB,x) y== 9

Y

where we denote A, = (co/|Byr1(®l) J; o MP(HI¥y.
Let i = |f|/Ap,x. Recall that hp () = m fB ® h(y)dy so that 0 < hp ,x) < 1/co by the p-

adic version of Lebesgue differentiation theorem (see [24, Corollary 2.11]) and the definition of Ap (x).
Using the formula

| otwary = [~ ey e nw >

P

which holds for any Young function @ and Harr mearsure v (see [31, p. 406]), we have

h 1 +log" |h d
1B, ()l f%' I+ log™ |A(y)Ddy
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)
< min| 1, — | A{y € B,(x) : |h(y)| > A})dA
1B, (0l Jo )ty s Y
1 fhgy”m (1 1)h{ x): Iyl > d
= min|1,=]A({y € B,(X) : > ADdA
1B, Jo ) sy
)., ()
+ min|(1, = A({y € B,(X) : |h(y)| > 4})dA
|By(X)| e A Yy € by y
= 1+1I,
where we use the nonation h(E) = fEh(x)dx for any measurable set E on QZ. Recalling that

hs,. x < 1/co, we have

1 min((y)l. iz, | x) 1 ,
I'= h in(1,=|dady < ph <
|By(X)|H j;y(x) | (y)l \fOV mln( /1) Y=»p By+1(x)

For the second term /7, by using Lemma 2.4, we have

U

<'>|"B

[«N S}

1 f“ . ( 1)
< —— Amin(1, = |[{y € B,1(x) : MP(h)(y) > A}|gdA
c’|B,(X)|u a0 A y y+1 y H

1
¢1B,™)ls

1
= MP(h)(y)dy

c'|By(X®)u I, %)

[ amin(l, %) y € By (0 : M) > Dlada
0

1 1 d
= | M(OWdy— =+

|B,(X)u I, x) B,x) C'Co

by using the definition of Ap (). Therefore, we conclude that

U

d
p p
<t
CO C'Cp

I+11< <1
if ¢¢ 1s large enough.

On the other hand, let x € Q¢ and fix a p-adic ball B,(x) C Q}. Let f = fi + fo, where fi = fxs,.,x-
Then

1

MP d
|By(X)|H 50 (Hy)dy
1
= MP d Mp d
= 1B, fo(x) WA+ fB My
= Di(X) + Dy (X).

Now, D,(x) is comparable to inf,cp x) MP(f)(z) (see [24, p. 1298] for instance) and hence D, (x) <
CM?P(f)(x). To estimate D;(x) we claim that

1
|By(x)|H B, (x)

M@y < ClifllLiog .8,x) (2.5

AIMS Mathematics Volume 8, Issue 6, 14064—-14085.
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for all f such that supp f C B,(x). By homogeneity we can take f with || f]|.10g2.5,x = 1 which implies

1 +log* d 1
1B, )l L(X) @I+ log" [fw)dy <

Hence, it is enough to prove

1
|By(x)|H By(x)

MP(f)(y)dy < C (1 + f N |f(WIlog™ | f(y)ldy (2.6)
B., X

|By(X)|1
for all f with supp f C B,(x). Indeed, by using Lemma 2.4, we have

M (F))dy = fo v € B, : MP(HY) > alluda

By(x)

= 2f Iy € B,(x) : MP(f)(y) > 2a}lnda
0

1 oo
<2 (f |B,(X)|nda + f a)H(Za)da)
0 1

|
< 2B, (%)l + 2 f 1 f F()ldyda
1 ¥ JiyeB,x):|fyI>a)

O oy
= 2B,y +2¢ f o) f X gy
B, (%) 1 a

= 2,00+ 2¢ [ 1f¥)llog” fw)dy.

By(x)
This imlies that (2.6) holds. Hence, by using generalized Holder’s inequality and using (2.5) with B, (x)
replaced by B,.(x), we have

pd

1Byt Js,x)
< C“f”L]og L,B,(x) + CMilogL(f)(X)
<CM (D).

This completes the proof of Lemma 2.3. O

D (x) + Dy(x) <

M(fOy)dy + CMP(f)(x)

The following p-adic version of Kolmogorov’s inequality will be used in the proof Lemma 2.6.

Lemma 2.5. Let B,(X) be any p-adic ball and 0 < qy < q < co. Then we have

1 1/q0
(IBY(X)IH fs ®) |f(y>|%dy) S Moo, 00,5118, 000
Y

Proof. Let t be some positive real number which will be determined later. Then, by using Lemma 2.4
in [25], we have

f F@I*dy = go f 17y € B,x) : [f3)] > Alludd
B,(x) 0

AIMS Mathematics Volume 8, Issue 6, 14064—-14085.
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t 00
< qolBy(X)le A7 A+ qu A7y € B,(x) : |f(¥)] > A}|udA
0

t
< Qtho|By(X)|H + qotqo_q||f||‘L]1q,oo(37(x)’dy/|37(x)|H)|B7(X)|H'

Taking 7 = l|f||L"’°°(By(x),dy/\By(x)|H), we conclude that

1 1/q0
|<W%) < s, 0.y 18, 0000
(lBy(X)|H fmx) Ity Sllzass, x).dy/18, 001

This completes the proof of the lemma. O

For¢o > 0and f € LIIOC(QZ), the p-adic version of maximal function is defined by

1 1/6
M = f °d ) )
s(Hx) SUP(IBY(X)IH " |y’ dy

yeZ
The following lemma is true which play key role in the proof of our results.

Lemma 2.6. Let0 <5< 1landb € BMO(QZ). then there exists a constant C > O such that
MEM(NX) < Clibligpogsn M (MP()(X)

forall f € LIIOC(QZ).

This lemma has been studied in [2,3] for the Euclidean setting which improves the known inequality
MECH M) $ lbllpvoga M2 (1), 2.7

where Mg, C, and M denote the sharp maximal function, commutator of maximal function and
maximal function in Euclidean case, respectively. Inequality (2.7) is key tool to prove the boundedness
of commutator of maximal function and it has attracted much more attention, see [21,36,37,41].

Proof. Actually, the method stem from Agcayazi et al. [2], they have investigated the corresponding
theorem in Euclidean case. Following their method, it is easy to give this lemma on p-adic vector
spaces as well. For completeness, we give the deails.

Let x € Q¢ and fix p-adic ball B,(x), it is enough to show that,

1/6
f IM(HWIPAY) < Iblivoa MPMP()(X).
|By(X)| By(x) !
Now, we split f = fi + fo, where fi = fxp,,,x- Since forany y € Qi

M) = M((b = a0 + biyuico = YD)
< 1b(y) = g, M) + MP(B = b, ) fOY) + MP((b — g, ) [2)(Y),

it follows that

1 1/6
M )
ﬁ&®mﬁmlﬁﬂ®|y
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1 1/6
< b(y) - b, M” %ﬁ
<(|BV(X)|H fB PO

1 1/6
MP((b - bp, ., (x S
+(|By(x)|H fo(X)l (b= bg,..x) D) y)
1/6
P((b-Db X 6d
+(|By(x)|H L(X) IME((D = bg,., ) )Y y)

=: A1(X) + Ar(X) + A3(X).

For the first term A;(x), by using Holder’s inequality and Lemma 2.1, we obtain

1 CoNT( O
A < b(y) — bp «x|™d MP d
< (g [ bl ) e PR 7
< [Bllporop MM (N)X). 8)

For the second term A,(x). Combining Lemma 2.5 and the weak-(1, 1) boundedness of M? gives that
1
Ay(x) S |IMP((b = bp,, ) fllLioB, . 0dy/1B, 0 S T f b —bp,, wllf(Y)dy.
1Byt Js,,100

By using generalized Holder’s inequality (2.1), we obtain

As(X) S 11D = bp,, wllexp LB, 0|l fllL10g LB, .1 0+

Since by (b) of Lemma 2.1, there is a constant C > 0 such that for any p-adic ball B, (x),

b — b xllexp .8, < C||b||BMO(Q;§),

we arrive at
A>(%) % bllemoety M} 1og L. (2.9)

For the third term A3(x). This case is easy, since A3(x) is comparable to infyep ) MP((b—Dbg,,,x))(Y)
(see [24, p. 1298] for instance), then

A3(X) < MP((b = b, x)f)(X)
Again by using generalized Holder’s inequality (2.1) and (b) of Lemma 2.1, we conclude that

A3(x) S sup 16 — bp,, wllexp L8, 011 fllL10g 28,100 S IPllgnogaiy MY 1og 1 (). (2.10)
yeZ

Finally, combining (2.8)—(2.10) together with Lemma 2.3, we conclude that

MM < Ibllgmogs M MP(FH(X).

This finishes the proof of the lemma. O
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Lemma 2.7. Let b € BMO(QId,). Then there exists a positive constant C such that
My (HX) < Clibligpogn M (MP())(x)
forall f € L (Q9).
Proof. By using the p-adic version of Lebesgue differentiation theorem (see [24, Corollary 2.11])
ML (F)(x) < MEME () (),
the statement follows from Lemma 2.6. O

Considering the characteristic function y g (x), we have the following property (see [19]).

Lemma 2.8. Let 1 < g < 00 and 0 < A < d, then there exist a constant C > 0 such that

d=1

e, 0lliaagy = 1Byl -

3. Proof of Theorems 1.1-1.4
Proof of Theeorem 1.1. Combining Lemma 2.7 and b € BMO(Q?,) together with the stong (g, g)-type
boundedness of M? (1 < g < o) (see [25, Theorem 1.1]) gives that (2) and (3) hold.

(3) = (1): Assume that Mz is bounded from Lq(QZ) to Lq(fo,) for some 1 < g < co. For any
p-adic ball B,(x) C QZ, by using Holder’s inequality implies that

1
|b(y) — bp xld
|By(X)|x jz;y(x) 3) = b5, 0ldy

1 1
b(y) — b(z)\dz | d
) 1By (Xl j; (x)(|3y(X)|H fo(X)I ) - b(@)l Z) y

fB - b(z)my(x)(z)dz) dy

T o7
" 1B, S0 \ 1Byl

1
M o)(¥)d
1B,(X)|z JB,x) p(X5,00) ()Y

1 1/q 1/q
< e +pid (f |M§(XBy(X))(Y)|qu) (f )(By(x)(Y)dY)
1B, (X)|, B,(x) B,(x)
C
< |By(m||/\/(£||Lq(Qg)—>Lq(Q;1,)|I/‘(By(x)||LC/(Q;1,)||XBy(x)||Lq’(Q;1,)

<

< C||M£||Lq(Qg)_>Lq(Qg)-

This together with Lemma 2.1 implies that b € BMO(QZ).
The proof of Theorem 1.1 is completed since (2) = (1) follows from (3) = (1). |

Proof of Theorem 1.2. Combining (1.4) and f < MP(f) together with Lemma 2.7 follows sthat

|16, MPI(HN < (1bllemocgs) + 16711y )M (M () (). (3.1
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Thus, by using stong (g, g)-type boumdedness of M (see [25, Theorem 1.1]) implies that

16, MPY Dllzaty < Ubllssaocesy + 167 o) llacesy-

We conclude that Theorem 1.2 is proven. O

Proof of Theorem 1.3. Since the implications (2) = (3) and (5) = (4) follow readily, we only need
to prove (1) = (2), 3) = (4), (4) = (1) and (2) = (5).

(1) = (2): The conclusion follows from Theorem 1.2.

(3) = (4): By using Lemma 2.2, it is easy to obtain that

M (x5,0)(¥) = X5,0(y)  and - M”(bxs,x)(y) = My (B)(Y)
for any fixed p-adic ball B,(x) C ¥, and all y € B,(x). Thus, we have

1
|By(X)|1

f b = M GXrdy
By(x

- b(y)M? X - MP(b X £%)
1B, (Xl fm' WM O, 0)¥) = M7 by, ) DIy

3 1
Byl

<

f 16 MP 15, 00) )1y
B, (x)

P q
|By(X)| 2. MENOes, 00l

C

<
|By(X)|r

q
eyl ) < o

which gives that (4) since the p-adic ball B, (x) C Qf, is arbitrary.
(4) = (1): To prove b € BMO(QZ), it suffices to verify that there is a constant C > 0 such that for
any p-adic ball B,(x) C Q¢,

1b(y) — bp,xldy < C. (3.2)
1B, (%)|u jt;y(x) ¥~ Omewiy

For any fixed p-adic ball B,(x), let E = {y € B,(X) : b(y) < b v} and B,(x), let F = {y € B,(x) :
b(y) > bp x}. The following equality is trivially true:

f 1b(Y) = bp,wldy = f 1b(y) = bg,xldy.
E F

P

Since for any y € E we have b(y) < bp () < MBy(X)

(b)(y), then for any y € E,

1b(Y) = b, 0l < 1Y) = MG, (DY)
Thus, we can conclude that

1 f 1
Ib(y) — b wld :—f Ib(y) — b, ld
B, Jso O T B Jpys O
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f IbY) — ba wldy
E

~B,®x
2
b(y) - M. (b d
< T fE Ib(y) = MS, o (B)(Y Iy
b(y) — M. (b dy.
= |BV(X)|H Ly(x)l » MBY(X)( oy

On the other hand, it follows from Holder’s inequality and (1.5) that

fB ILCRANC

|B,(X)|x
1 ) , 1/q »
< |B,(X)|1 fB ( )Ib(y) — M oO@Idy| 1By X)Iy
! : " . 1/q
=18, fB ) = My (DXldy
<C.

Combining the above ineuality with (3.3) it follows that b € BMO(Qﬁ).

In order to prove b~ € L* (Qf,), it suffices to show b~ = 0, where b~ = —min{b, 0}. Let b*

then b = b™ — b™. For any fixed p-adic ball B,(x), observe that
0 < b*(y) < )| < M}, (YY)
fory € B,(x) and therefore we have that fory € B, (x),
0 < b™(y) < My ()Y) = b*(¥) +b(¥) = M}, (YY) - b(y).

Then, it follows from (1.5) that for any p-adic ball y € B, (x),

1
b (y)d
IB,(®)li fm )y

1
= 1B,® fB M5O = Iy
1 y ) . 1/q
= IB,(X)|y fB ( )lMBy(x)(b)(y) — b(y)|’dy
Y L (x
<C.

(3.3)

bl - b7,

Thus, b~ € Lw(Qi) follows from the p-adic version of Lebesgue differentiation theorem (see [24,

Corollary 2.11]).

(2) = (5): This proof is similar to (3) = (4), we omit the details. Hence, the proof of Theorem 1.4

is completed.

O

Proof of Theorem 1.4. Similar to prove Theorem 1.3, we only need to give the proof of (1) = (2), (3)

= (4)and 4) = (1).
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(1) = (2): Note that for any x € Q;’,, we have

Itb, ME1£(x) = 1Bl MEIGH(OL < 200" OME()(X) + ME (D™ (X)) (3.4)

For any p-adic ball B,(x) C Qi, by using triangle inequality, we conclude that

2M(H(X) > sup

Y€EZ |By(X)|H

fB N 1161 = 16D (Y) = 16N f3,x) — (f1bD) 5, ldY

f LGNS (Y) = fB,00| = 1B (¥) = (f16D 5, lldy
|By(x)|H B, (%)
> I[IbI,Mf,](f)(X)I- (3.5

> sup
YEZ

Comining (3.4) and (3.5) together with Mf,( ) <2MP(f) gives that
(b, Mf,](f )X < 4™ M (f)X) + MP(D™ (X)) + 2M, (/)(X).

Since b € BMO(QY) = |b| € BMO(Q?), then by using Theorem 1.1, b~ € L™(QY) and the stong
(g, 9)-type boumdedness of M? (see [25, Theorem 1.1]), we have

16, MEY oy S (IBllgmogy + 167N apl o

(3) = (4): The proof of this case follows the procedure in [4]. Let B,(x) be a fixed p-adic ball as
before. For another p-adic ball B, (y), this gives that

1 2B, (y)\B,(®)lulBy (¥) N B,(X)ln
X - X , dz = .
By Nl Js,0) by 0(®) = Gt 12 By (V)

Without loss of generality, we may assume that y < y’. Then by using Lemma 2.2, we have that
B,(x) N B, (y) = 0 or B,(x) C B, (y). If B,(x) N B,,(y) = 0, then we obtain

1
|By’ (Y)lH B,/ (y)

IXBY(X)(Z) — (XBY(X))BY/(y)|dZ = 0

If B,(x) C B, (y), then we have

1 2WpYd — prdyprd  o(p-vd _ | 2p— 1
8,:0(2) — (XB,x)B,(y|dZ = w 261 i = L 77 ) < w 2 )
1By (Y)|u B,(y) i p* P p

b

where the last inequality is due to ¥, € Z and 1 <y’ —y € Z. On the other hand, for y € B,(x), we
consider a p-adic ball B, (y) always containing B, (x) such that |B,/(y)|z = p|B,(X)|n. This implies that
(XBy(x))i(y) = 2(p — 1)/p* for any y € B,(x). Hence, we have

p

1
|By (%) fz;y(x) 2p-1)

B pZ q 1 . B ﬁ
—[z(p_l)] B fB PO, ) = Ben ey

q

dy

2

b(y) - (bxs,x)5(¥)
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P "1 ﬁ
- b, M . a4
[2(1?—1)] IBy(X)|Hf 16, M, 10x s, )Yy

By(x)

Pt ﬁ
b, x
< [Z(p— 1)] B,(x )|H||[ M1,

———|lys,wll?

L1(Qf)

|By( X)|u rocgh) <

(4) = (1): We proceed as in the corresponding portion of the proof of Theorem 1.3, but some extra
diffculties appear.

First, our claim is to prove that

1bp, x| < (bg (x)) (¥), ye€BX). (3.6)

2( -1
Picking a p-adic ball B,/ (y) containing B, (xX) such that |B,.(y)|z = p|B,(X)|x. Then, we have

(b,)h(¥) >

f D@8, 00(2) — (b 5,005, 2
y)

|By (¥)|u
1 (f b(@) — b 0| dz + L1B, (y)\B, (0)lb |)
= Z) — —bg v|dz + =|B, X .
PIBy(X)|u By(x) p B0 p YOSl
| f | -1
= b(z) — —bp | dz + bl (3.7
PIB,(®)lu Jp,x D e 2 T
On the other hand
1 1 1 1
|b X|S—f b(z) — —b Xdz+—f —bp x| dz
e 1By(X)|t JB,x) 4 B9 1B,(X)|u g, | P e
1 f 1 1
= b(z) — —bp x| dz + —|bp. x|,
1Byl Js,x) p p %
and so | .
2
|b ol < —f b(z) — —bp x| dz. (3.8)
B |By( NH B, (x) 14 B

Therefore, (3.7) and (3.8) lead us to (3.6).

We can now achieve that b € BMO(QZ). In fact, let E = {y € B,(X) : b(y) < bp,x}. Then, by
using (3.6) and (1.6) gives that

1 f 2
Ib(y) — b, oldy = f(b o - b(y)d
B, Joo O T Byl Sy TPV

L2 f ( L. <x>)”<y>—b<y>)dy
S IB, (M)l Je\20p— 1)
2 2

P #
b X — b d
= |B,(X)|a Je|2(p — )( 8,9)p(¥) (Y)‘ y
2 2
h b X f b d C.
= |BV(X)|H fy(x) 2(p )( By( )) (y) (Y)| y <
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In order to prove that b~ € L“(Q;’,) we also use (3.6). We start from the following fact

p2
2(p-1)

Averaging on B, (X), we have

1 2
>
|By(X)|Hf(x) 2(p-1)
1

. b(y)|d
> IBy(X)IHf(X)(Z(p )( By( >) (y) - (y)) y

f (Ibg, | = b™(y) + b~ (y)dy
B,(x)

(bB,0)5(¥) = b(Y) = Ibg 0| = b*(¥) + DY), ¥ € By(X).

———(bg,x)¥) - b(y)‘ dy

>
|By(X)|

1 1
=1b xl——f b+()d+ f b~ (y)dy.
BB O Jow . Y T B Jaw VY

Y Y

Letting ¥ — —oo with y € B,(x), the p-adic version of Lebesgue differentiation theorem assures that

C > |b(y)|l - b (y) + b (y) =2b"(y)

and the desired result follows. This finishes the proof of Theorem 1.4. O
4. Proof of Theorems 1.5-1.6

Proof of Theorem 1.5. Applying the similar agrument as in the proof of Theorem 1.1 in [25], we have
that for any p-adic ball B, (x)

f IMP(H)(PIdy < f lf(y)l“dy. 4.1)
(x) (x)

By By

Assume that b € BMO(QZ). By using (4.1) and Lemma 2.7, we have

i Bllasios
f M@y — 2 f IMPAMP(P))ldy

1B, Js,00 1B, I,
Ibllsmocad)
S —— lf(y)ldy.
1B, (), f ®

Thus, we conclude that
IME(Dllzancasy S el Flloas-

Conversely, if M} is bounded from L#*(Q¢) to L**(Q4), then for any p-adic ball B,(x) c Q¢

1 1/q
Ib(y) - b x|qd)
(|By(x>|H fw ¥ Oheldy
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! 1 q 1/q
- b(y) - o(@)dz| d
: |BY(X)|H L}/(X) |:|B7(X)|H Ly(x) | (y) (Z)I/YBy( )(Z) Z] y)
= 1 f MY 194 Uq
- \IBy®w I, »(B,00)(Y) Y)

_ |By(X)|ﬁ1/d & 1 ) 1/q
LB ) 18,0l fmx) IM; O, )Ny

~1/g+1/(dq)
< |By(x)|H / ! ||MZ||Lq,A(QZ)—>LM(QZ)“XBy(x)”Lqﬂ(Qg)

< C||MZ||LM(Q;§)_>LM(Q;{),

where in the last step we have used Lemma 2.8.
It follows from Lemma 2.1 that b € BMO(Q‘;). This finishes the proof of Theorem 1.5. |

Proof of Theorem 1.6. (1) = (2): Assume that b~ € L”(Qz) and b € BMO(Q;’,), then by using (1.4)
and Theorem 1.5, we show that [b, M”] is bounded from L#*(Q¢) to L#*(QY).

(2) = (1): Assume that [b, M?] is bounded from L**(Q4%) to L**(Q¢). Similar to estimate for (3.3),
we have that for any p-adic ball B,(x) c Q4,

! 1/q
(|By<x)|H fB o= MZY(X)(b)(Y)de)
1 1/q
= (|B X)|u j;( )lb(y)Mp()(By(x))(y) - Mp(bXBy(x))(y)lqdy)
Y (x

1 l/q
- b, MP x aq
(lBy(X)lH Ly(x) |[ ](XBV( ))(Y)| y)

/(dq)
1B, (%)
i) S P

< |B (X)|1/q ||[b,M ](/\/By(x))”Lq.A(Q;f,)
yX)ly
/(dq)
1B, (X)[;
<C Wlb{By(X)”L‘M(Qz) <C,
Y Xy

where inn the last step we have used Lemma 2.8. Thus, by using Theorem 1.3, we give that b €
BMO(Q9) and b~ € L*(Q%). This finish the proof of Theorem 1.6. O
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