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Abstract: Low-rank and sparse structures have been frequently exploited in matrix recovery and
robust PCA problems. In this paper, we develop an alternating directional method and its variant
equipped with the non-monotone search procedure for solving a non-convex optimization model
of low-rank and sparse matrix recovery problems, where the concerned matrix with incomplete
data is separable into a low-rank part and a sparse part. The main idea is to use the alternating
minimization method for the low-rank matrix part, and to use the non-monotone line search technique
for the sparse matrix part to iteratively update, respectively. To some extent, the non-monotone
strategy relaxes the single-step descent into a multi-step descent and then greatly improves the
performance of the alternating directional method. Theoretically, we prove the global convergence
of the two proposed algorithms under some mild conditions. Finally, the comparison of numerical
experiments shows that the alternate directional method with non-monotone technique is more effective
than the original monotone method and the previous method. The efficiency and effectiveness of
the proposed algorithms are demonstrated by solving some instances of random incomplete matrix
recovery problems and some problems of the background modeling in video processing.
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1. Introduction

The problem of recovering low-rank and sparse matrices or tensors from small sets of linear
measurements occurs in many areas, such as the foreground in video surveillance [1], hyperspectral
compressive sensing [2] and image denoising [3]. Mathematically, the optimization model of a matrix
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recovery is described as follows:

min
A,E

∥A∥∗ + λ∥E∥1

s.t. D = PQ(A + E),
(1.1)

where ∥A∥∗ = Σr
k=1σk(A) , σk(A) denotes the kth largest singular value of A ∈ Rn1×n2 of rank r. ∥E∥1

denotes the sum of the absolute values of the matrix entries and λ is a positive weighting parameter.
Q ⊆ Rn1×n2 is a linear subspace, and PQ denotes the projection onto Q. Since the matrix recovery
problem is closely connected to the robust principal component analysis (RPCA) problem, then it can
be formulated in the same way as RPCA. Further, many theoretical results and algorithmic methods for
recovering a low-rank and sparse matrix or tensor have been obtained; for example, see [1, 2, 4–12],
and the references therein.

Wright et al. [6], Li [13], Chen and Xu [14] studied the robust matrix completion problem that we
call matrix compressive recovery namely, PQ = PΩ, where Ω is a random subset of indices for the
known entries. Further, (1.1) is formulated as follows:

min
A,E

∥A∥∗ + λ∥E∥1

s.t. D = PΩ(A + E).
(1.2)

In [1], Candès et al. have proved that both A and E can be recovered by solving (1.2) with high
probability. Meanwhile, an algorithm and some applications in the area of video surveillance were
discussed in detail. Li [13] also gave some new theorems and models for solving (1.2). Then Chen
and Xu [14] discussed (1.2) via the augmented Lagrange multiplier (ALM) method and studied its
application in image restoration. Meng et al. proposed the following problem in [3]:

min
A,E

∥A∥∗ + λ∥PΩ(E)∥1

s.t. A + E = D.
(1.3)

They also used the ALM algorithm for solving (1.3), but they did not discuss the convergence.
Li et al. [15] proved that the ALM algorithm was convergent for the optimization (1.3). Further, they
stated that (1.3) was equivalent to (1.2). Chen et al. [16] provided a new unified performance guarantee
that an exact recovery can be obtained when minimizing the nuclear norm plus l1 norm.

Then the robust formulation has been improved to deal with Gaussian noise [17], leading to the
following convex optimization problem (convex robust matrix completion):

min
A,E1,E2

λ∥A∥∗ + γ∥E1∥1 +
1
2∥E2∥

2
2

s.t. D = PΩ(A + E1 + E2).
(1.4)

He et al. [18, 19] developed a robust version of the Grassmannian rank-one update subspace
estimation (GROUSE) [20] algorithm named the Grassmannian robust adaptive subspace tracking
algorithm (GRASTA), which aims at solving the problem of robust subspace tracking. Their algorithm
can be cast to solve problems formulated as

min ∥PΩ(E)∥1
s.t. PΩ(UV + E) = PΩ(M)

U ∈ Gr(m, r)
V ∈ Rr×n,

(1.5)
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where Gr(m, r) is the Grassman manifold. The advantage of their algorithm is that it is designed to
tackle the problem of online subspace estimation from incomplete data; hence it can also be cast to
solve online low-rank matrix completion where we observe one column of the matrix M at a time.

In 2018, Chiang et al. [21] proposed a general model

min
A,E

∥A∥∗ + λ∥E∥1,

s.t. xT
i Ay j + Ei j = Mi j, ∀(i, j) ∈ Ω,

(1.6)

which exploits side information to better learn low-rank matrices from missing and corrupted
observations, and show that the proposed model can be further applied to several popular scenarios
such as matrix completion and RPCA.

On the other hand, for a given low-rank r and sparse level |S |0, some non-convex models and
algorithms were proposed.

In 2014, a non-convex algorithm based on alternating projections, namely AltProj, was presented
in [22] which solves the following problem:

min
L,S

∥D − L − S ∥F

s.t. rank(L) ≤ r∗, ∥S ∥0 ≤ |Ω|,
(1.7)

where r∗ is the rank of the underlying low rank matrix, Ω denotes the support set of the underlying
sparse matrix and |Ω| is the cardinality of Ω. AltProj iteratively updates L by projecting the matrix
D − S onto the space of rank-r matrices (denoted by Lr,) which can be done via the singular value
decomposition, followed by truncating out small singular values, and then updating S by projecting
the matrix D − L onto the space of sparse matrices (denoted by S,) which can be done by the hard
thresholding operator. In 2016, Gu et al. [23] factorized L into the product of two matrices, that is
L = UV , and performd alternating minimization over both matrices. Yi et al. [24] applied a similar
factorization and an alternating descent algorithm. Then, a method based on manifold optimization
which reduces the dependence on the condition number of the underlying low-rank matrix theoretically
was proposed by Zhang and Yang [25]. In 2019, an accelerated AltProj was proposed by Cai et al. [26]
and empirical performance evaluations showed the advantage of the accelerated AltProj over other
state-of-the-art algorithms for RPCA.

In 2015, Wang et al. [27] proposed a proximal alternating robust subspace minimization method for
solving the practical matrix completion problem under the prevalent case where the rank of A and the
cardinality of Ω are upper bounded by some known paremeters r and k via the following non-convex,
non-smooth optimization model:

min
A,E

1
2∥PΩ(D − L − S )∥2F +

ϵ
2∥PΩ̄(D)∥21

s.t. rank(L) ≤ r, L ∈ Rm×n

∥S ∥0 ≤ k, ∥S ∥F ≤ KS , S ∈ Rm×n
Ω
,

(1.8)

where Rm×n
Ω

denotes the set of m×n matrices whose supports are subsets ofΩ and KS is a finite constant
introduced to facilitate the convergence proof.

In this paper, we develop an alternating directional method and its variant equipped with the non-
monotone search procedure for solving low-rank and sparse structure matrix completion problems
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from incomplete data. By introducing a parameter α, we consider the following problem:

min ∥PΩ(D − L − S )∥2F ,
s.t. rank(L) ≤ r,

∥S ∥0 ≤ α|Ω|, (1.9)

where α represents the sparsity ratio of the sparse part. Based on the factorization L = UV with
U ∈ Rm×r and V ∈ Rr×n, (1.9) can be represented as

min f (U,V, S )
s.t. ∥S ∥0 ≤ α|Ω|, (1.10)

where f (U,V, S ) = 1
2∥PΩ(D − UV − S )∥2F .

The rest of this paper is organized as follows. In Section 2, we give the proposed algorithms in
details. Convergence analysis is discussed under mild condition in Section 3. In Section 4, we compare
Algorithm 1 with Algorithm 2 through numerical experiments to illustrate the efficiency of the non-
monotone technique, also compare the proposed algorithms with the previous algorithm to show the
effectiveness of the new algorithms. Finally, we conclude the paper in Section 5.

2. Proposed algorithms

In this section, we develop two alternating directional methods for solving (1.10), where one of U,V
and S is solved in the Gauss-Seidel manner while the other two variables are fixed until convergence.
In both algorithms, we apply a single step of the steepest gradient descent method with exact step-size
to solve the least square subproblems with respect to variable U or V . If f (U,V, S ) is denoted by
fV,S (U) when V and S are held constant while fU,S (V) when U and S are held constant. The steepest
descents about U and V are

▽ fV,S (U) = −
(
PΩ(D) − PΩ(UV + S )

)
VT

and
∇ fU,S (V) = −UT (PΩ(D) − PΩ(UV + S )

)
,

respectively. The associated exact step-sizes are denoted by tU and tV , and can be computed explicitly
by

tU =
||∇ fV,S (U)||2F

||PΩ
(
∇ fV,S (U)V

)
||2F

and tV =
||∇ fU,S (V)||2F

||PΩ
(
U∇ fU,S (V)

)
||2F

.

Based on the above discussion, the concrete algorithms can be formally described as Algorithm 1
and Algorithm 2, where Algorithm 1 updates S by minimizing f (U,V, S ) with the sparsity level
constraint while Algorithm 2 updates it by a non-monotone search approach.
Algorithm 1. Input: PΩ(D), U0 ∈ R

m×r, V0 ∈ R
r×n, sparsity parameter α, S 0 ∈ R

m×n with |S 0| ≤ α|Ω|;
Repeat

1) ∇ fVk ,S k(Uk) = −
(
PΩ(D) − PΩ(UkVk + S k)

)
VT

k

2) tUk =
||∇ fVk ,S k (Uk)||2F

||PΩ
(
∇ fVk ,S k (Uk)Vk

)
||2F
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3) Uk+1 = Uk − tUk∇ fVk ,S k(Uk)
4) ∇ fUk+1,S k(Vk) = −UT

k+1
(
PΩ(D) − PΩ(Uk+1Vk + S k)

)
5) tVk =

||∇ fUk+1 ,S k (Vk)||2F
||PΩ
(

Uk+1∇ fUk+1 ,S k (Vk)
)
||2F

6) Vk+1 = Vk − tVk∇ fUk+1,S k(Vk)
7) S k+1 = arg min

|S |≤α|Ω|
||PΩ(D − Uk+1Vk+1 − S )||2F .

Until termination criteria is reached.
Algorithm 2. Input: PΩ(D), U0 ∈ R

m×r, V0 ∈ R
r×n, integer l ≥ 0, sparsity parameter α, S 0 ∈ R

m×n with
|S 0| ≤ α|Ω|;
Repeat

1) ∇ fVk ,S k(Uk) = −
(
PΩ(D) − PΩ(UkVk + S k)

)
VT

k

2) tUk =
||∇ fVk ,S k (Uk)||2F

||PΩ
(
∇ fVk ,S k (Uk)Vk

)
||2F

3) Uk+1 = Uk − tUk∇ fVk ,S k(Uk)
4) ∇ fUk+1,S k(Vk) = −UT

k+1
(
PΩ(D) − PΩ(Uk+1Vk + S k)

)
5) tVk =

||∇ fUk+1 ,S k (Vk)||2F
||PΩ
(

Uk+1∇ fUk+1 ,S k (Vk)
)
||2F

6) Vk+1 = Vk − tVk∇ fUk+1,S k(Vk)
7) Set S̄ k = arg min

|S |≤α|Ω|
||PΩ(D − Uk+1Vk+1 − S )||2F and update

(S k+1)i j =


(S̄ k)i j + τk, if (S̄ k)i j < 0,
(S̄ k)i j − τk, if (S̄ k)i j > 0,
0, otherwise,

where τk satisfies the following non-monotone condition:

||PΩ(D − Uk+1Vk+1 − S k+1)||2F ≤ max{||Rk+ 1
2
||2F , · · · , ||Rk−l+ 1

2
||2F}.

Until termination criteria is reached.
Remark 1. In the above algorithms, |S | is the number of non-zero entries of S and the termination
criteria is ||PΩ(D−Uk+1Vk+1−S k+1)||2F

||PΩ(D)||2F
< ϵ.

Remark 2. By preserving the entries of PΩ(D − Uk+1Vk+1) with top α|Ω| large magnitudes and setting
the rest to zero, we obtain the sparse matrix S k+1 in Algorithm 1 and S̄ k in Algorithm 2.
Remark 3. Algorithm 2 is different from Algorithm 1 in that it employs the non-monotone search
procedure for updating S . The non-monotone line search technique relaxes the single-step descent into
a multi-step descent, which greatly improves the computational efficiency. The next section also gives
the convergence analysis of the proposed algorithms. In Section 4, many work verified numerically that
the non-monotone technique outperforms the traditional monotone strategies. Hence, we here utilize
the non-monotone search technique to improve the performance of the proposed algorithms.

3. Convergence analysis

In this section, we discuss the global convergence monotone Algorithm 1 and non-monotone
Algorithm 2. Theoretically, that is an equivalent verification of the robust PCA can reasonably express
the mutual encouragement between the low-rank and structured sparsity.
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Before that, we first list some notations and preliminaries for the coming main result. For the ease
of exposition, let {Uk,Vk, S k} be the sequence generated by Algorithm 1 or Algorithm 2, and

Rk = PΩ(D − UkVk − S k),
Rk+ 1

2
= PΩ(D − Uk+1Vk+1 − S k), (3.1)

Rk+1 = PΩ(D − Uk+1Vk+1 − S k+1),
R̄k = PΩ(D − Uk+1Vk − S k).

Two propositions are provided first before analysing the convergence, they are the conditions of
Lemma 3.6 in [26]:

• |H| ≥ 8
3βµ0γ(m + n) log n;

• the matrix L is µ0-relevant.

Lemma 1. The sequence {Uk,Vk, S k} generated by Algorithm 2 satisfies:

f (Uk+1,Vk, S k) = f (Uk,Vk, S k) −
1
2

∥∇Vk ,S k(Uk)∥4F
∥PΩ(∇Vk ,S k(Uk))Vk∥

2
F

, (3.2)

f (Uk+1,Vk+1, S k) = f (Uk+1,Vk, S k) −
1
2

∥∇Uk+1,S k(Vk)∥4F
∥PΩ(Uk+1∇Uk+1,S k(Vk))Vk∥

2
F

. (3.3)

Proof. By simple deduction

f (Uk+1,Vk+1, S k) =
1
2
∥PΩ(D − S k − Uk+1Vk)∥2F

=
1
2
∥PΩ(D − S k − (Uk + tUk∇Vk, S k(Uk))Vk∥

2
F

=
1
2
∥PΩ(D − S k − UkVk) − tUk PΩ(∇Vk, S k(Uk))Vk∥

2
F

=
1
2
∥Rk∥

2
F − tUk⟨PΩ(∇Vk, S k(Uk))Vk,Rk⟩ +

1
2
∥PΩ(∇Vk, S k(Uk))Vk∥

2
F

= f (Uk,Vk, S k) −
1
2

∥∇Vk ,S k(Uk)∥4F
∥PΩ(∇Vk ,S k(Uk))Vk∥

2
F

.

Similarly, we have

f (Uk+1,Vk+1, S k) = f (Uk+1,Vk, S k) −
1
2

∥∇Uk+1,S k(Vk)∥4F
∥PΩ(Uk+1∇Uk+1,S k(Vk))Vk∥

2
F

.

Theorem 1. Suppose that there exist (UT
i Ui)−1 and (VT

i Vi)−1 and they are bounded. Then, the sequence
{Uk,Vk, S k} generated by Algorithm 2 satisfies:

lim
k→∞
∇Vk ,S k(Uk) = 0,

and
lim
k→∞
∇Uk+1,S k(Vk) = 0.

AIMS Mathematics Volume 8, Issue 6, 14047–14063.



14053

Proof. According to S k+1 given by Algorithm 2, we obtain

f (Uk+1,Vk+1, S k+1) ≤ f (Uk,Vk, S k) + |Ω|τ2
k ,

together with Lemma 1, which implies that

f (Uk+1,Vk+1, S k+1) ≤ f (U0,V0, S 0) −
1
2

k∑
i=1

∥∇Vi,S i(Ui)∥4F
∥PΩ(∇Vi,S i(Ui))Vi∥

2
F

−
1
2

k∑
i=1

∥∇Ui+1,S i(Vi)∥4F
∥PΩ(Ui+1∇Ui+1,S i(Vi))∥2F

+ |Ω|

k∑
i=1

τ2
i .

Since

∥PΩ(∇Vk ,S k(Uk))Vk∥
2
F ≤ ∥∇Vk ,S k(Uk)Vk∥

2
F

= ∥RkVT
k Vk∥

2
F

= tr(RT
k Rk(VT

k Vk)2),

and
∥∇Ui+1,S i(Vi)∥2F = ∥RkVT

k ∥
2
F = tr(RT

k Rk(VT
k Vk)),

then

1
2

k∑
i=1

∥∇Vi,S i(Ui)∥4F
∥PΩ(∇Vi,S i(Ui))Vi∥

2
F

≥
tr2(RT

i Ri(VT
i Vi)2)

tr(RT
i Ri(VT

i Vi))

≥
1
2

k∑
i=1

σ2
ir∥∇Vi,S i(Ui)∥2F ,

where σir is the ith largest singular value of the matrix Vi.
Similarly, we have

1
2

k∑
i=1

∥∇Ui+1,S i(Vi)∥4F
∥PΩ(Ui+1∇Ui+1,S i(Vi))∥2F

≥
1
2

k∑
i=1

σ̃2
ir∥∇Ui+1,S i(Vi)∥2F ,

where σ̃ir is the ith largest singular value of the matrix Ui.

Consequently,
∞∑

i=1
(σ2

ir∥∇Vi,S i(Ui)∥2F + σ̃
2
ir∥∇Ui+1,S i(Vi)∥2F + |Ω|τ

2
i ) is convergent. Thus,

lim
k→∞
σ2

ir∥∇Vi,S i(Ui)∥F = 0,

and
lim
k→∞
σ̃2

ir∥∇Ui+1,S i(Vi)∥F = 0.

The theorem is true from the assumptions.
In addition, from the Lemma 3.6 of [28], there exists a scalar c (0 < c < 1), such that

∥PΩ(V̄k,S k(Vk)Vk∥∞ ≥ (1 − c)∥V̄k,S k(Vk)Vk∥∞.
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Hence,

tUk ≤
σ2

k1

1 − c1
,

where 0 < c1 < 1, σk1 is the top singular value of Vk. Therefore,

lim
k→∞

(Uk+1 − Uk) = 0.

Similarly,
lim
k→∞

(Vk+1 − Vk) = 0.

The proof is completed.
Theorem 2. Assume that the sequence {Uk,Vk} is bounded and there exist (UT

k Uk)−1 and (VT
k Vk)−1.

Then
lim
k→∞

Lk = L∗,

and
lim
k→∞

S k = S ∗.

Proof. The {Lk} is bounded from the sequence {Uk,Vk} is bounded. Then there exists a sub-sequence
{Lki} is closed to Lα∗ . It is noted that

lim
k→∞
∥Uk+1 − Uk∥ = 0 and lim

k→∞
∥Vk+1 − Vk∥ = 0.

Then

∥Lk+1 − Lk∥F = ∥Uk+lVk+l − UkVk∥F

= ∥(Uk + tUk∇Vk ,S k(Uk))(Vk + tVk∇Vk+1,S k(Vk)) − UkVk∥F

= ∥(Uk+1 − Uk)Vk + Uk(Vk+1 − Vk) + (Uk+1 − Uk)(Vk+1 − Vk)∥F
≤ ∥Uk+1 − Uk∥F∥Vk∥F + ∥Uk∥F∥Vk+1 − Vk∥F + ∥Uk+1 − Uk∥F∥Vk+1 − Vk∥F .

Thus,
lim
k→∞
∥Lk+1 − Lk∥F = 0.

That is to say,
lim
k→∞

Lk = L∗.

Let D − L∗ = S ∗. Then

∥(S k)i j − (S ∗)i j∥∞ = ∥(D − Lk)i j − (D − L∗)i j + τk∥∞

≤ ∥Lk − L∗∥∞ + τk, i, j ∈ αΩ,

which shows that
lim
k→∞

S k = S ∗.

The proof is completed.
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4. Numerical experiments

In this section, we apply the proposed algorithms to solve two problems: some matrix recovery
tasks with incomplete samples and some background modeling in video processing. We compare our
algorithms and the AM algorithm in [23] in the senses of the iteration step (denoted as IT) and the total
CPU time (denoted as CPU) in second. Moreover, R.error and Error represent the relative deviation
of the deserved matrices (or images) from the given matrices (or images), which are computed by the
following formulas:

R.error =
||PΩ(Xk) − PΩ(D)||F
||PΩ(D)||F

,

and
Error =

∥A + E − D∥F
∥D∥F

.

In our implementations, all the codes were written by Matlab R2019b and run on a PC with Intel
Xeon E5 processor 2.5GHz and 20GB memory.

4.1. Numerical experiments for recovering a random matrix

In the experiments, the dimension n of a square matrix X ∈ Rn×n is denoted as Size(X) in the list.
For each concerned X, the sampling density is denoted as Den(X) may be 60%, 70%, 75% and 80%,
the rank of the low-rank component is denoted by Rank(L) may be 50, 60, 90 and 100, and the sparsity
ratio of sparse part is denoted by Spa(S ) may be 5% and 10%. In total, we obtain some instances
for each dimension. In each instance, the test matrix is randomly generated. The numerical results
are provided in Tables 1–3. Here, the iteration is terminated once the current iterations obey R.error
< 10−4 or the criterion is not satisfied after 10000 iteration steps. The symbol “-” indicates that the
iteration is failing.

For Algorithm 2, we set l = 2 and the initial thresholding value in each iteration to be the p + 1-th
largest number of the absolute values of all elements of S k, where p is the required number of the
non-zero entries of S , i.e., p = α|Ω|. By the way, Alg 1 and Alg 2 represent the abbreviations of
Algorithm 1 and Algorithm 2, respectively.

The results recorded in Tables 1–3 show that the proposed algorithms are feasible and efficient for
solving some matrix recovery tasks with incomplete samples. It is worth mentioning that our proposed
algorithms are more effective than AM algorithm (see [23]) for large-size problems since both of the
algorithms can obtain a solution within reasonable time for the problems with size 10000 × 10000.

Moreover, the results recorded in Figures 1–2 illustrate the superiority of non-monotone decrease
in the iteration procedure of Algorithm 2. We observe Algorithm 2 outperforms Algorithm 1 since
the CPU times of Algorithm 2 are much shorter than those of Algorithm 1 and the relative error of
Algorithm 2 is smaller than those of Algorithm 1. The acceleration ratio of Algorithm 2 with 60%
samples is 13.3 (the left in Figure 1) and 26.8 (the right in Figure 1) respectively, that with 80%
samples is 8.0 (the left in Figure 1) and 18.1 (the right in Figure 2) respectively.
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Table 1. Computational results for small-size problems.

Size(X) Rank(L) Den(X)(%) Spar(S)(%) Algorithm R.error CPU(S) IT

AM 9.23e − 05 27.11 142
1000 50 70 5 Alg 1 9.96e − 05 104.79 308

Alg 2 8.74e − 05 4.06 14

AM 9.90e − 05 29.01 143
1000 50 80 10 Alg 1 9.99e − 05 119.50 319

Alg 2 9.74e − 05 4.23 13

AM 8.03e − 05 39.65 75
1000 100 60 5 Alg 1 9.94e − 05 23.01 68

Alg 2 9.98e − 05 7.75 24

AM 8.61e − 05 56.03 80
1000 100 60 10 Alg 1 9.49e − 05 22.21 67

Alg 2 9.09e − 05 8.21 26

AM 9.66e − 05 61.97 79
1000 100 70 5 Alg 1 9.99e − 05 27.19 76

Alg 2 9.92e − 05 7.17 21

AM 8.89e − 05 71.03 80
1000 100 70 10 Alg 1 9.92e − 05 39.27 105

Alg 2 9.72e − 05 7.97 23

AM 7.81e − 05 73.11 91
1000 100 75 10 Alg 1 9.02e − 05 44.25 111

Alg 2 9.42e − 05 6.99 27

AM 9.21e − 05 90.79 144
2000 50 70 5 Alg 1 9.99e − 05 226.39 154

Alg 2 8.70e − 05 12.50 10

AM 7.51e − 05 98.70 142
2000 50 70 10 Alg 1 9.99e − 05 514.65 339

Alg 2 6.64e − 05 13.97 11

AM 9.88e − 05 109.23 70
2000 50 80 5 Alg 1 9.78e − 05 164.68 106

Alg 2 9.91e − 05 11.50 9

AM 6.72e − 05 86.11 90
2000 50 80 10 Alg 1 9.99e − 05 323.54 205

Alg 2 7.85e − 05 13.88 10

AM 9.05e − 05 101.23 98
2000 100 60 5 Alg 1 9.99e − 05 278.48 190

Alg 2 8.90e − 05 17.65 14

AM 7.03e − 05 98.27 108
2000 100 75 10 Alg 1 9.01e − 05 511.54 329

Alg 2 8.21e − 05 16.89 12
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Table 2. Computational results for middle-size problems.

Size(X) Rank(L) Den(X)(%) Spar(S)(%) Algorithm R.error CPU(S) IT

AM 9.61e − 05 98.81 83
3000 50 70 5 Alg 1 9.94e − 05 429.42 141

Alg 2 9.72e − 05 22.58 9

AM 7.08e − 05 122.00 98
3000 50 70 10 Alg 1 9.97e − 05 891.26 288

Alg 2 6.04e − 05 25.56 10

AM 7.08e − 05 101.03 111
3000 60 75 5 Alg 1 9.33e − 05 668.20 269

Alg 2 9.41e − 05 24.44 8

AM 7.23e − 05 100.31 40
4000 50 70 10 Alg 1 9.97e − 05 1158.50 235

Alg 2 5.88e − 05 40.06 10

AM 6.28e − 05 85.02 35
4000 50 75 5 Alg 1 9.15e − 05 356.20 70

Alg 2 9.22e − 05 28.44 7

AM 8.28e − 05 88.22 36
4000 50 80 5 Alg 1 9.95e − 05 374.40 73

Alg 2 9.39e − 05 30.74 8

AM 7.23e − 05 85.33 38
4000 50 80 10 Alg 1 9.99e − 05 841.22 161

Alg 2 6.54e − 05 38.48 9

AM 9.23e − 05 90.21 41
4000 100 60 5 Alg 1 9.99e − 05 874.89 183

Alg 2 8.48e − 05 739.76 10

AM 6.44e − 05 104.27 39
5000 50 70 5 Alg 1 9.98e − 05 735.44 98

Alg 2 5.60e − 05 53.51 9

AM 7.05e − 05 99.45 38
5000 50 70 10 Alg 1 9.97e − 05 1585.46 206

Alg 2 9.08e − 05 56.45 9

AM 5.92e − 05 196.04 47
5000 50 80 5 Alg 1 9.98 e − 05 468.41 59

Alg 2 7.20e − 05 48.16 8

AM 7.73e − 05 395.47 69
5000 100 75 10 Alg 1 9.07e − 05 1011.22 124

Alg 2 5.88e − 05 57.94 9

AM 6.72e − 05 256.11 98
5000 50 80 10 Alg 1 9.99e − 05 322.04 201

Alg 2 8.05e − 05 13.11 9
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Table 3. Computational results for large-size problems.

Size(X) Rank(L) Den(X)(%) Spar(S)(%) Algorithm R.error CPU(S) IT

AM 7.02e − 05 950.03 70
10000 50 60 5 Alg 1 9.97e − 05 2527.91 98

Alg 2 5.54e − 05 191.48 9

AM 9.01e − 05 1417.34 151
10000 50 60 10 Alg 1 9.99e − 05 5125.45 194

Alg 2 8.67e − 05 191.29 9

AM 8.81e − 05 1022.03 41
10000 50 70 5 Alg 1 9.98e − 05 1683.68 59

Alg 2 7.83e − 05 173.10 8

AM 7.70e − 05 445.11 50
10000 50 75 10 Alg 1 9.95e − 05 3863.30 135

Alg 2 6.29e − 05 208.24 9

AM 6.27e − 05 566.03 48
10000 50 80 5 Alg 1 9.93e − 05 1249.34 41

Alg 2 5.46e − 05 189.02 8

AM 9.08e − 05 575.14 72
10000 50 80 10 Alg 1 9.96e − 05 2528.33 80

Alg 2 8.50e − 05 190.36 8

AM - - -
10000 100 60 5 Alg 1 9.99e − 05 2907.35 109

Alg 2 4.93e − 05 197.94 9

AM - - -
10000 100 60 10 Alg 1 9.99e − 05 6455.45 235

Alg 2 8.36e − 05 199.31 9

AM 6.72e − 05 551.20 61
10000 100 70 5 Alg 1 9.90e − 05 1820.84 63

Alg 2 6.97e − 05 178.44 8

AM 7.27e − 05 748.86 65
10000 100 70 10 Alg 1 9.99e − 05 4139.06 140

Alg 2 5.42e − 05 210.46 9

AM 8.21e − 05 605.16 76
10000 90 75 10 Alg 1 9.02e − 05 4009.77 128

Alg 2 6.72e − 05 200.01 8

AM 8.02e − 05 761.11 62
10000 100 80 5 Alg 1 9.88e − 05 1461.60 45

Alg 2 4.56e − 05 197.07 8

AM - - -
10000 100 80 10 Alg 1 9.93e − 05 2892.42 90

Alg 2 7.55 e − 05 197.00 8
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Figure 1. Compare the difference in CPU time between different parameters. Left: R=50,
Den(X)=60, Spa=0.05. Right: R=50, Den(X)=60, Spa=0.1.
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Figure 2. Compare the difference in CPU time between different parameters. Left: R=100,
Den(X)=80, Spa=0.05. Right: R=100, Den(X)=80, Spa=0.1.

4.2. Numerical experiments for recovering the real data

In order to verify the performance of the new algorithms in solving practical problems, we compare
Algorithm 2 and the AM algorithm for solving the background modeling in video processing. The
problem of the background modeling is to separate the foreground and the background in the video.
We use the AM algorithm and our Algorithm 2 to separate the foreground and the background for
four real videos from [29]. All videos meet the requirement of the low-rank sparse structure since the
background of all frames are relevant and the moving objects are sparse and independent. In our tests,
each data matrix consists of the first 200 frames of each video. For example, the first video consists of
the first 200 frames with a resolution of 144 × 176, the size of the matrix should be 25344 × 200 by
converting each frame into a vector. Here, the iteration is terminated once the current iterations obey
Error < 10−7 or the criterion is not satisfied after 3000 iteration steps.

The results recorded in Figures 3–6 are the separation of one frame of each video sequence under
D = A + E model. D is the original image, A denotes its background (the low-rank part) and E its
foreground (the sparse part).
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Figure 3. Separation results for the
hall: the upper is the result of AM and
the lower is one of Alg 2.

Figure 4. Separation results for the
shopping-mall: the upper is the result
of AM and the lower is one of Alg 2.

Figure 5. Separation results for the
bootstrap: the upper is the result of AM
and the lower is one of Alg 2.

Figure 6. Separation results for the
fountain: the upper is the result of AM
and the lower is one of Alg 2.

Table 4 lists the Error and the running time CPU(S) of the experiments. From Table 4, we can
see that the running time of the AM is about 2.8–5.4 times that of Algorithm 2, and the accuracy
of Algorithm 2 is also always higher than that of AM algorithm in Figures 3–6 and Table 4, so the
advantage of Algorithm 2 in the recovery of high-dimensional array is obvious.

Table 4. Experiment results of background-foreground separation.

Image Resolution AM Alg 2
Error CPU(S) Error CPU(S)

Fig 3 144×176 8.83e-08 334.35 6.42e-08 108.85
Fig 4 256×320 8.52e-08 1038.13 8.07e-08 191.09
Fig 5 120×160 9.17e-08 275.68 7.31e-08 98.57
Fig 6 128×160 8.58e-08 304.14 6.45e-08 99.30

5. Conclusions

In this paper, we focus on the problem of recovering a matrix that is the sum of a low-rank matrix and
a sparse matrix from a subset of its entries. This model can characterize many problems arising from
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the areas of signal and image processing, statistical inference, and machine learning. We propose an
alternating directional method for solving the low-rank matrix sparse structure model. The key idea of
the method is that each block variables are solved in the Gauss-Seidel manner while the others are fixed
until convergence. We further develop a version of our algorithm by introducing non-monotone search
technique to improve the performance of the new algorithm. Both versions are theoretically proved
to be globally convergent under some requirements. Based on computational records, we observe
that both algorithms are computationally inexpensive to find satisfactory results and the non-monotone
strategy performs much better than the monotone one from these instances.
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