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Abstract: In this paper, we study a kind of mosquito population suppression model incorporating
the growth stage as well as the sex structure of mosquitoes. For the general non-autonomous case, a
threshold m∗ for the number of sexually active sterile mosquitoes in the field is defined, and sufficient
conditions for successful suppression and partial suppression of wild mosquito population are obtained.
For the first special case when the release period of the sterile mosquito is equal to its sexual lifespan,
we determined the initial population size under which the mosquito population can be suppressed
finally for different release intensities. For the latter special case when sterile mosquitoes are released
with a constant rate, we give a threshold u∗ for the release rate, and investigate the dynamic behavior
of the system based on this threshold. Finally, some numerical examples are presented to confirm the
theoretical results.
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1. Introduction

As the vector of many diseases, mosquitoes are listed as one of the most lethal animals to humans in
the world. With the development of people’s understanding and research on mosquito-borne diseases,
mosquito control is considered to be the key to suppress the spread of such diseases. In addition to
the traditional physical and chemical means of mosquito control, in recent years, biological control
methods have also received a lot of attention. For example, using the sterile insect technique or
the Wolbachia driven mosquito control technique to release sterile mosquitoes or Wolbachia-infected
mosquitoes into the field are common means of biological control [4–8, 23, 30].

Mathematical models are widely used to study the transmission and control of mosquito-borne
diseases. On the one hand, mathematical models are used to study the interaction between people and
mosquitoes in the transmission process of different types of mosquito-borne diseases [10, 11, 21, 28],
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and on the other hand, they are also used to explore the interaction between wild mosquitoes and the
released sterile mosquitoes or Wolbachia-infected mosquitoes [1, 9, 13–15, 18, 19, 29]. In recent years,
some researchers have focused on the release strategy of sterile mosquitoes and Wolbachia-infected
mosquitoes, considering the suppression effect of the release behavior on the wild mosquito population
in different situations [12, 16, 17, 20, 22, 24–27, 31–35]. Some of the mosquito population suppression
models currently studied [25, 26, 31, 32] are based on an interaction model of two types of mosquitoes
(wild mosquitoes and sterile mosquitoes) constructed by Cai et al. in [9] as follows


dw(t)

dt
= w(t)

(
aw(t)

w(t) + g(t)
− µ1 − ξ1(w(t) + g(t))

)
,

dg
dt

= B(·) − (µ2 + ξ2(w(t) + g(t))) ,
(1.1)

where w(t) and g(t) are the number of the wild and sterile mosquitoes in the field at time t, respectively.
a is the birth rate per wild mosquito and it follows logistic growth. ξi and µi, i = 1, 2 are the density
dependent and independent death rate, respectively. Further, B(·) is the release rate of the sterile
mosquitoes.

It is noted that model (1.1) did not distinguish different stages of the mosquito’s life cycle, and the
growth of wild and sterile mosquitoes are both affected by intraspecific competition. However, we
know that the intraspecific competition of mosquitoes mainly exists in the aquatic stage, while adult
mosquitoes are little affected. Then, a revised model was developed in [19]


dw(t)

dt
=

aw(t)
w(t) + g(t)

(1 − ξ1w(t))w(t) − µ1w(t),

dg
dt

= B(·) − µ2g(t),
(1.2)

where 1 − ξ1w(t) describes the density dependent survival probability of wild mosquitoes. Based on
model (1.2), a series of mosquito population suppression models were proposed and studied [20, 35].

It is widely known that a mosquito’s life cycle consists of several stages which include egg, larva,
pupa in an aquatic phase and adult in an aerial phase. In addition, the released mosquitoes are mainly
sterile males or Wolbachia-infected males and they compete with wild male mosquitoes and occupying
the opportunity to mate with wild female mosquitoes [16]. Therefore, in mathematical modelling, it is
better to consider different growth stages of mosquitoes and distinguish male and female groups.

In this work, we attempt to give and study a kind of mosquito population suppression model with
sex and stage structure. The rest of this paper is arranged as follows: in Section 2, based on previous
research, we give several mosquito population suppression models with life stage and sex structure. In
Section 3, we study the dynamic behavior of the established models, and establish sufficient conditions
for successful suppression and partial suppression of wild mosquito population. Then, in Section 4, a
series of numerical examples are presented to illustrate the theoretical results we obtained. Finally, a
brief conclusion is given in Section 5.
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2. Model formulation

According to the life cycle of mosquitoes, the following compartmental model was considered
in [2]. 

dE
dt

= βEF(1 −
E
K

) − (νE + δE)E,

dM
dt

= (1 − ν)νEE − δM M,

dF
dt

= ννEE
M

M + γsMs
− δF F,

dMs

dt
= u(·) − δsMs,

(2.1)

where E(t),M(t), F(t) and Ms(t) denote the density of mosquito in aquatic phase, the fertile adult males,
the fertile adult females and the sterilized adult males at time t, respectively. u(·) stands for a releasing
function. Model parameters are all positive constants, and their biological meaning can be referred to
Table 1.

Table 1. Biological meaning of model parameter.

βE the oviposition rate γs the mating competitiveness
νE the transition rate to the adult phase δE the death rate of eggs
δF the death rate of adult females δM the death rate of adult males
δs the death rate of sterile mosquitoes ν the female proportion
K the environmental capacity for eggs

To reduce the dimension of the model, the authors of [2] assumed that the time dynamics of the
mosquitoes in aquatic phase and the adult males compartments are fast, so the equations of E(·) and
M(·) are at equilibrium. That is, E =

βE F
βE F

K +νE+δE
, M =

(1−ν)νE
δM

E. Then, they deduced the following

simplified version [2]

dF(t)
dt

=
ν(1 − ν)β2

Eν
2
EF2

(βE F
K + νE + δE)[(1 − ν)νEβEF + δMγsMs(

βE F
K + νE + δE)]

− δF F

, f (F(t),Ms(t)),

dMs

dt
= u(·) − δsMs.

(2.2)

The authors in [2] have demonstrated the reliability of the above simplified model through numerical
analysis by comparing the dynamics of adult female mosquitoes in the original and simplified systems.
The numerical solutions of fertile adult female mosquitoes were found to be very close, indicating that
the simplified model is reliable.

In the work [2], in addition to using the optimization method to study the release strategy, the
authors studied the dynamical behavior of system (2.2) for the case u(·) = 0, that is, sterile mosquitoes
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are released only once and no longer replenished. However, we know that the suppression of mosquito
population requires a large number of sterile mosquitoes to be released several times, which is a
relatively long-term continuous release behavior. In this paper, we will study a mosquito population
suppression model incorporating stage and sex structure based on model (2.2). In addition, by
employing the modeling ideas in [24], we consider Ms(t) ≥ 0 as the density of sterile mosquitoes
which are sexually active in the field at time t, then a non-autonomous mosquito population suppression
model is obtained as follows

dF(t)
dt

= f (F(t),Ms(t)). (2.3)

A special case of model (2.3) is Ms(t) ≡ m. Yu et al. proposed the concept of the sexual lifespan of
sterile mosquitoes in [25], [26], [31] and [32]. When the release period of sterile mosquitoes is equal
to its sexual lifespan, the number of sexually active sterile mosquitoes in the field Ms(t) is a constant
value m if its natural death is ignored. Then, the mosquito population suppression model (2.3) reduces
to

dF(t)
dt

= f (F(t),m)

=
ν(1 − ν)β2

Eν
2
EF2

(βE F
K + νE + δE)[(1 − ν)νEβEF + δMγsm(βE F

K + νE + δE)]
− δF F,

(2.4)

which is a autonomous equation.
In addition, based on the work [2], we further investigate the suppression effect of long-term

constant release of sterile mosquitoes on the wild mosquito population. Therefore, we let u(·) ≡ u,
here u is a positive constant, then system (2.2) becomes another special case of model (2.3) as follows

dF(t)
dt

= f (F(t),Ms(t)),

dMs

dt
= u − δsMs(t) = g(Ms(t)).

(2.5)

In this paper, we will study dynamic behaviors of the non-autonomous mosquito population
suppression model (2.3) and its two special cases (2.4) and (2.5), and mainly discuss the threshold
conditions for successful suppression of mosquito population and the conditions for sustainable
survival of mosquitoes.

3. Main results

3.1. Preliminaries

As in [16], to simplify the expression of the model, we let

A = ν(1 − ν)β2
Eν

2
E, B =

βE

K
, C = νE + δE, D = (1 − ν)νEβE, H = δMγs,

then model (2.3) becomes

dF(t)
dt

=
AF2(t)

(BF(t) + C)[DF(t) + HMs(t)(BF(t) + C)]
− δF F(t). (3.1)
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If no biological control measure is introduced and there are only wild mosquitoes in the field, that
is Ms(t) = 0, then system (2.3) can be written as

dF(t)
dt

=
AF

D(BF + C)
− δF F =

BDδF F
D(BF + C)

[
C
B

(
A

CDδF
− 1) − F

]
. (3.2)

Obviously, when A ≤ CDδF , system (3.2) has no positive equilibrium and the extinction equilibrium
F = 0 is globally asymptotically stable.

In this work we assume that
A > CDδF ,

then system (3.2) has a unique positive equilibrium F∗ = C
B ( A

CDδF
− 1) which is globally asymptotically

stable.
For the case Ms(t) ≡ m > 0, (2.4) is a autonomous equation, and we can also discuss its equilibria.

To get positive equilibria of (2.4), we need to consider the following algebraic equation

AF
(BF + C)[DF + mH(BF + C)]

− δF = 0,

which is equivalent to

−δF B(D + mHB)(F + C
B )2 + (A + δFCD)(F + C

B ) − AC
B

B(F + C
B )[D(F + C

B ) + mHB(F + C
B ) − CD

B ]
= 0.

Thus, the existence and the number of positive equilibria of model (2.4) are equivalent to that of the
following quadratic equation

G(F,m) , A1(m)(F +
C
B

)2 − A2(F +
C
B

) + A3 = 0, (3.3)

where A1(m) = δF B(D + mHB), A2 = A + δFCD, A3 = AC
B .

Using the discriminant 4(m) = A2
2 − 4A1(m)A3, we introduce a threshold of the release amount

m∗ =
(A −CDδF)2

4ACDδF

D
HB

,

which satisfies 4(m∗) = 0.
According to [16], we have the following conclusions.

Lemma 1. When A > CDδF , the nonnegative equilibria of model (2.4) can be classified as follows:

(i) If 0 < m < m∗, then model (2.4) has three equilibria: F = 0,

F1(m) =
A2

2A1(m)

[
1 −

√
1 −

A1(m)
A1(m∗)

]
−

C
B
,

F2(m) =
A2

2A1(m)

[
1 +

√
1 −

A1(m)
A1(m∗)

]
−

C
B
.
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(ii) If m = m∗, then model (2.4) has two equilibria: F = 0 and

F∗(m∗) =
A2

2A1(m∗)
−

C
B

=
A −CDδF

A + CDδF

K(νE + δE)
βE

.

(iii) If m > m∗, then the extinction equilibrium F = 0 is the unique equilibrium of model (2.4).

Remark 1. Since A1(m) is strictly monotonically increasing with respect to m, while F2(m) is strictly
monotonically decreasing with respect to m in (0,m∗), we have

F2(m) < F2(0) = F∗, and 0 < F1(m) < F2(m) < F∗,m ∈ (0,m∗).

3.2. General non-autonomous case

We first study the dynamics of (2.3) for the case when the number of sexual active sterile mosquitoes
in the field, Ms(t), is a given nonnegative continuous function.

Let F(t,Ms, t0, F0) be a solution of (2.3) through (t0, F0), then F(t,Ms, t0, F0) ∈ C1([t0,∞), [0,∞))
satisfies (2.3) on [t0,∞) and F(t0) = F0.

According to equation (2.3), it is clear that dF(t)
dt |F=0 = 0, and

dF(t)
dt
≤

AF
D(BF + C)

− δF F =
BDδF F

D(BF + C)
(F∗ − F),

then we get the following conclusion.

Lemma 2. For any t0 ≥ 0 and F0 > 0, the solution F(t,Ms, t0, F0) of (2.3) is positive and
lim supt→∞ F(t) ≤ F∗.

In the following, we investigate the stability of the extinction equilibrium F = 0. For convenience,
let

m0 = inf
t∈(0,∞)

Ms(t).

Theorem 1. If A > CDδF , m0 > 0 and Ms(t) ≤ m∗, t ≥ 0, then the extinction equilibrium F = 0 of
model (2.3) is locally asymptotically stable, and limt→∞ F(t,Ms, t0, F0) = 0 if 0 < F0 < F1(m0). In
addition, F(t) = F(t,Ms, t0, F0) ≥ F∗(m∗), t ≥ t0 if F0 ≥ F∗(m∗).

Proof. We first prove that the extinction equilibrium F = 0 of model (2.3) is locally stable. Since m0 >

0, according to Lemma 1 and the properties of G(F,m) defined in (3.3), we know that G(F,m0) > 0 for
all F ∈ (0, F1(m0)). Then, for any δ ∈ (0, F1(m0)), the following inequality

AF
(BF + C)[DF + m0H(BF + C)]

− δF < 0, 0 < F ≤ δ (3.4)

holds.
We claim that

0 < F(t0) < δ⇒ F(t) = F(t,Ms, t0, F0) < δ, t ≥ t0. (3.5)
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If it does not hold, then there must exist t1 > t0 such that F(t1) = δ and 0 < F(t) < δ, t0 ≤ t < t1, thus
F′(t1) ≥ 0. However, according to (2.3) and (3.4), we have

0 ≤ F′(t1) ≤ F(t1)
[

AF(t1)
(BF(t1) + C)[DF(t1) + m0H(BF(t1) + C)]

− δF

]

= δ

[
Aδ

(Bδ + C)[Dδ + m0H(Bδ + C)]
− δF

]
< 0.

A contradiction occurs. Therefore, F = 0 is locally stable.
We further prove the attractivity of F = 0. From (3.5), we have that for any 0 < F(t0) < δ,

F = lim supt→∞ F(t,Ms, t0, F0) ≤ δ. By the fluctuation lemma, there exists a time sequence {ωk} such
that limk→∞ F(ωk) = F, limk→∞ F′(ωk) = 0. Taking the limit in (2.3) along {ωk} gives

AF
2

(BF + C)[DF + H(lim supt→∞ Ms(ωk))(BF + C)]
= δF F, (3.6)

and consequently

0 ≤ F
 AF

(BF + C)[DF + m0H(BF + C)]
− δF

 ,
which leads to F = 0 or AF

(BF+C)[DF+m0H(BF+C)]
≥ δF . According to (3.4), the second case cannot occur,

then F = 0 and limt→∞ F(t,Ms, t0, F0) = 0. Thus, F = 0 is locally asymptotically stable. Noting the
arbitrariness of δ, which can be sufficiently close to F1(m0), we can get limt→∞ F(t,Ms, t0, F0) = 0 if
0 < F0 < F1(m0).

Next, we prove that: F0 ≥ F∗(m∗) ⇒ F(t) = F(t,Ms, t0, F0) ≥ F∗(m∗), t ≥ t0. If it does not hold,
then there must exist t̃ > t0 and t̄ ∈ (t0, t̃) such that F(t̃,Ms, t0, F0) < F∗(m∗) and F(t̄,Ms, t0, F0) =

F∗(m∗). We consider the following comparison equation of (2.3)
dF(t)

dt
=

AF2(t)
(BF(t) + C)[DF(t) + m∗H(BF(t) + C)]

− δF F(t)

= f (F(t),m∗) − δF F,
F(t̄) = F∗(m∗).

(3.7)

Since 0 < m0 ≤ Ms(t) ≤ m∗, t ≥ 0, we have f (F(t),Ms(t)) − δF F ≥ f (F(t),m∗) − δF F. We also
know that F∗(m∗) is an equilibrium of (3.7), so the solution of (3.7) passing through (t̄, F∗(m∗)) is
F̃(t,m∗, t̄, F∗(m∗)) = F∗(m∗). According to the comparison principle, we obtain that the solution of
(2.3) passing through (t̄, F∗(m∗)) satisfies

F(t,Ms, t0, F0) = F(t,Ms, t̄, F∗(m∗)) ≥ F̃(t,m∗, t̄, F∗(m∗)) = F∗(m∗), t ≥ t̄,

which contradicts to F(t̃,Ms, t0, F0) < F∗(m∗) and t̄ ∈ (t0, t̃). The proof is completed. �

Remark 2. Theorem 1 shows that when the initial population size of wild mosquitoes is not large
(F0 < F1(m0)), even if the release intensity of sterile mosquitoes is not strong (Ms(t) ≤ m∗), the
mosquito population can be successfully suppressed. However, if the initial size of mosquito population
is large (F0 ≥ F∗(m∗)), the same release intensity will lead to the failure of mosquito population
suppression.
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In the following, we try to determine a release intensity to ensure successful suppression of mosquito
population for large initial population size. Let

Ms = lim sup
t→∞

Ms(t), Ms = lim inf
t→∞

Ms(t).

Theorem 2. If A > CDδF , m0 > 0 and Ms > m∗, then the extinction equilibrium F = 0 of model (2.3)
is globally asymptotically stable.

Proof. Since m0 > 0, the extinction equilibrium F = 0 of model (2.3) is locally asymptotically stable
from the proof of Theorem 1. We only need to show that F = 0 is globally attractive. According to
Lemma 1, for any t0 ≥ 0 and F0 > 0, F = lim supt→∞ F(t,Ms, t0, F0) exists.

We now show that F = 0. If it does not hold, then F > 0. By the fluctuation lemma, there exists
a time sequence {τk} such that limk→∞ F(τk) = F, limk→∞ F′(τk) = 0. In addition, since m0 > 0 and
MS > m∗, there must be a subsequence {τ̄k} ⊆ {τk} such that limk→∞ Ms(τ̄k) > m∗. Taking the limit in
(2.3) along {τ̄k} gives

F
 AF

(BF + C)[DF + m∗H(BF + C)]
− δF

 > 0,

which leads to G(F,m∗) < 0. However, from Lemma 1 and the properties of G(F,m) defined in (3.3),
we know that G(F,m∗) ≥ 0 for F ∈ (0,∞), then a contradiction occurs. Therefore, F = 0, and for any
t0 ≥ 0 and F0 > 0, limt→∞ F(t,Ms, t0, F0) = 0 holds. The proof is completed. �

Remark 3. Theorem 2 shows that when we increase the release intensity of sterile mosquitoes so that
m0 > 0 and Ms > m∗, the mosquito population can always be successfully suppressed. This result can
be conveniently applied in practice.

3.3. Autonomous special cases

In this subsection, we investigate two special cases of the autonomous models (2.4) and (2.5), and
mainly study the dynamic behavior.

3.3.1. Dynamics of model (2.4)

For model (2.4), the release period of the sterile mosquito is equal to its sexual lifespan, and the
number of sexually active sterile mosquitoes in the field remains unchanged, that is, Ms(t) ≡ m. We
have the following results for (2.4).

Theorem 3. If A > CDδF and 0 < m < m∗, then the dynamics of model (2.4) has the following
conclusions:

(i) F = 0 is uniformly stable and limt→∞ F(t,m, t0, F0) = 0 if 0 < F0 < F1(m).
(ii) F = F1(m) is unstable.

(iii) F = F2(m) is uniformly stable, and limt→∞ F(t,m, t0, F0) = F2(m) if F0 > F1(m).

Proof. From Lemma 1, when 0 < m < m∗, model (2.4) has three equilibria: F = 0, F = F1(m) and
F = F2(m).
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(i) This conclusion can be verified by slightly modifying the proof of the same result in Theorem 1.
In fact, if we replace m0 and MS by m, then we can deduce the conclusion (i).

(ii) The instability of F1(m) follows directly from the attractivity of F0 = 0.
(iii) We first show that for any t0 ≥ 0 and δ ∈ (0, F2(m) − F1(m)), if |F2(m) − F0| < δ, then

|F(t,m, t0, F0) − F2(m)| < δ, t ≥ t0. (3.8)

If it does not hold, then there must exist t1 > t0 such that |F(t1,m, t0, F0) − F2(m)| = δ and
|F(t,m, t0, F0) − F2(m)| < δ for t0 ≤ t < t1. There are two possible cases: F(t1) = F2(m) + δ and
F(t1) = F2(m) − δ. If F(t1) = F2(m) + δ, then we have F′(t1) ≥ 0 and F(t) < F2(m) + δ for t0 ≤ t < t1.
Substitute t1 into (2.4), and we can obtain

AF2(t1)
(BF(t1) + C)[DF(t1) + mH(BF(t1) + C)]

≥ δF(F2(m) + δ), (3.9)

and consequently

A(F2(m) + δ)2

(B(F2(m) + δ) + C)[D(F2(m) + δ) + mH(B(F2(m) + δ) + C)]
≥ δF(F2(m) + δ),

which can be further reduced to G(F2(m) + δ,m) ≤ 0. However, G(F,m) > 0 for all F > F2(m), which
is a contradiction. For the second case, if F(t1) = F2(m)−δ and F(t) > F2(m)−δ for t0 ≤ t < t1, through
similar discussions, we can get G(F2(m)−δ,m) ≥ 0. However, G(F,m) < 0 for all F1(m) < F < F2(m),
which is also a contradiction. Thus, F2(m) is uniformly stable.

Now we further prove its attractivity. To this end, we only need to show

lim
t→∞

F(t,m, t0, F0) = F2(m) for any t0 ≥ 0, F0 ∈ (F1(m),∞). (3.10)

In fact, by (3.8), for any δ ∈ (0, F2(m) − F1(m)) and F0 > F1(m) + δ, we can get F(t,m, t0, F0) >
F1(m) + δ, t ≥ t0. Then, F = lim inft→∞ F(t, 0, t0, F0) ≥ F1(m) + δ, and there must be a monotonic time
sequence {tk} satisfying limk→∞ tk = ∞, such that limk→∞ F(tk) = F and limk→∞ F′(tk) = 0. Taking limit
on both sides of (2.4) along {tk}, and we can get

AF2

(BF + C)[DF + mH(BF + C)]
= δF F,

which can be further reduced to G(F,m) = 0. Since F ≥ F1(m) + δ > F1(m), and G(F,m) = 0 if
and only if F = F2(m) for F > F1(m), we can deduce F = F2(m). In addition, according to Lemma
2, we know F = lim supt→∞ F(t,m, t0, F0) exists and is finite. By similar discussion, we can derive
F = F2(m). Then, we have F = F = F2(m) which verifies (3.10). The proof is completed. �

As m increases to m∗, these two positive equilibria F = F1(m) and F = F2(m) coincide as the unique
positive equilibrium F∗(m∗). When m > m∗, the extinction equilibrium F = 0 is the only equilibrium
of (2.4). By discussions similar to the above, we can obtain the following conclusions.

Theorem 4. (1) If A > CDδF and m = m∗, then the extinction equilibrium F = 0 of (2.4) is
uniformly stable, and limt→∞ F(t,m∗, t0, F0) = 0 if 0 < F0 < F∗(m∗), t0 ≥ 0. In addition, the
unique positive equilibrium F = F∗(m∗) is globally asymptotically stable from the right-side, and
limt→∞ F(t,m∗, t0, F0) = F∗(m∗) if F0 > F∗(m∗), t0 ≥ 0.

(2) If m > m∗, then the unique equilibrium F = 0 of (2.4) is globally asymptotically stable.
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Remark 4. According to Theorem 3 and 4, as the value of m changes, the attraction domain of the
stable extinction equilibrium F = 0 is different. This indicates that under a specific release intensity,
the initial size of mosquito population determines whether the mosquito population can be finally
suppressed. The larger the m, the larger the corresponding attraction area of F = 0, and the more
likely the mosquito population will be suppressed.

3.3.2. Dynamics of model (2.5)

Next, we investigate the effect of long-term constant releases of sterile mosquitoes on the
suppression of wild mosquito population based on system (2.5).

Clearly, for any t0 ≥ 0, if F(t0) > 0,Ms(t0) > 0, then F(t) > 0,Ms(t) > 0 for all t ≥ t0. In addition,
F(t) ≤ max{F(t0), F∗},MS (t) ≤ max{Ms(t0), u

δs
} hold for t ≥ t0.

By choosing the Dulac function B(F,Ms) = 1
F2 , we can deduce

∂( f B)
∂F

+
∂(gB)
∂Ms

=
−A[2BDF + CD + 2BHMs(BF + C)][

DF(BF + C) + HMs(BF + C)2]2 +
δF − δs

F
, (3.11)

where f and g are the functions at the right end of equations in system (2.5).
Noting that if δF < δs ( this assumption is consistent with the actual situation), then ∂( f B)

∂F +
∂(gB)
∂Ms

< 0
for (F,Ms) ∈ R+

2 , thus system (2.5) has no closed orbits in R+
2 .

It is easy to know that system (2.5) has a boundary equilibrium E0(0,M∗
s ), where M∗

s = u
δs

. To study
positive equilibria of (2.4), we consider the algebraic equation

AF
(BF + C)[DF + u

δs
H(BF + C)]

− δF = 0,

which is equivalent to

−δF B(D + u
δs

HB)(F + C
B )2 + (A + δFCD)(F + C

B ) − AC
B

B(F + C
B )[D(F + C

B ) + u
δs

HB(F + C
B ) − CD

B ]
= 0.

Therefore, the existence and number of positive equilibria of model (2.5) are equivalent to the existence
and number of positive roots of the following quadratic equation

G1(F, u) , Ã1(u)(F +
C
B

)2 − A2(F +
C
B

) + A3 = 0, (3.12)

where Ã1(u) = δF B(D + u
δs

HB), and A2, A3 are the same as in Lemma 1.
By introducing a threshold for the release rate

u∗ =
(A −CDδF)2

4ACDδF

Dδs

HB
= δsm∗,

we can get the following conclusion by similar discussion in Lemma 1.

Lemma 3. When A > CDδF , the nonnegative equilibria of system (2.5) can be classified as follows:

(i) If 0 < u < u∗, then system (2.5) has three equilibria: E0(0,M∗
s ), E1(F1(u),M∗

s ) and E2(F2(u),M∗
s ),

where
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F1(u) =
A2

2Ã1(u)

[
1 −

√
1 −

Ã1(u)
Ã1(u∗)

]
−

C
B
, F2(u) =

A2

2Ã1(u)

[
1 +

√
1 −

Ã1(u)
Ã1(u∗)

]
−

C
B
.

(ii) If u = u∗, then system (2.5) has two equilibria: E0(0,M∗
s ) and E∗(F∗(u∗),M∗

s ), where

F∗(u∗) =
A2

2Ã1(u∗)
−

C
B

=
A −CDδF

A + CDδF

K(νE + δE)
βE

.

(iii) If u > u∗, then the boundary equilibrium E0(0,M∗
s ) is the unique equilibrium of system (2.5).

We now investigate the stability of these equilibria. The Jacobian matrix of system (2.5) has the
form

JE =

(
J11 J12

0 −δs

)
,

where

J11 =
ACF[

DF(BF + C) + HMs(BF + C)2]2 (DF + 2HMs(BF + C)) − δF ,

J12 = −
AHF2(BF + C)2[

DF(BF + C) + HMs(BF + C)2]2 .

Obviously, J11(E0) = −δF , thus the boundary equilibrium E0(0,M∗
s ) of system (2.5) is a node which

is locally asymptotically stable. In particular, If u > u∗, then the unique equilibrium E0(0,M∗
s ) is

globally asymptotically stable.
When 0 < u < u∗, we have AFi

[DFi(BFi+C)+HM∗s (BFi+C)2] = δF , i = 1, 2, where Fi = Fi(u). It is clear that
J12(Ei) < 0. Let

Θi = DFi(BFi + C) + HM∗
s (BFi + C)2,

then

J11(Ei) =
ACFi

Θ2
i

[
DFi + 2HM∗

s (BFi + C)
]
−

AFi

Θi

=
AFi

Θ2
i

{
C[DFi + 2HM∗

s (BFi + C)] − (BFi + C)[DFi + HM∗
s (BFi + C)]

}
=

AFi

Θ2
i

{[CD(Fi +
C
B

) + 2CHBM∗
s (Fi +

C
B

) −
C2D

B
]

− B(Fi +
C
B

)[D(Fi +
C
B

) + BHM∗
s (Fi +

C
B

) −
CD
B

]}

=
AFi

δFΘ2
i

{−Ã1(u)(Fi +
C
B

)2 +
2C
B

Ã1(u)(Fi +
C
B

) −
C2DδF

B
}

=
AFi

δFΘ2
i

{A3 − A2(Fi +
C
B

) +
2C
B

Ã1(u)(Fi +
C
B

) −
C2DδF

B
}

=
AFi

δFΘ2
i

{A3 −
C2DδF

B
− (A2 −

2C
B

Ã1(u))(Fi +
C
B

)}.

(3.13)
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Since Fi + C
B = A2

2Ã1(u)

[
1 ∓

√
1 − Ã1(u)

Ã1(u∗)

]
, A2 = A + δFCD < 2A, A3 = AC

B , Ã1(u∗) =
A2

2

4A3
=

A2
2B

4AC
and

Ã1(u) < Ã1(u∗), we can further get

J11(Ei) =
AFi

δFΘ2
i

2AC
B
−

A2
2

2Ã1(u)
± (

A2
2

2Ã1(u)
−

A2C
B

)

√
1 −

Ã1(u)
Ã1(u∗)


=

AFi

δFΘ2
i

×
A2

2B − 2A2CÃ1(u)

2Ã1(u)B

 4ACÃ1(u) − A2
2B

A2
2B − 2A2CÃ1(u)

±

√
1 −

Ã1(u)
Ã1(u∗)


=

AFi[A2
2B − 2A2CÃ1(u)]

2Ã1(u)BδFΘ2
i

 −4ACÃ1(u∗)
A2

2B − 2A2CÃ1(u)
(1 −

Ã1(u)
Ã1(u∗)

) ±

√
1 −

Ã1(u)
Ã1(u∗)

 .
(3.14)

Noting that

A2
2B − 2A2CÃ1(u) > B{A2

2 −
2A2C

B
Ã1(u∗)} > B{A2

2 − 4A3Ã1(u∗)} = 0,

then we can easily get J11(E2) < 0, and the positive equilibrium E2(F2(u),M∗
s ) is a locally

asymptotically stable node.
Let

TE1(u) =
−4ACÃ1(u∗)

A2
2B − 2A2CÃ1(u)

(
1 −

Ã1(u)
Ã1(u∗)

)
+

√
1 −

Ã1(u)
Ã1(u∗)

,

thus

J11(E1) =
AF1[A2

2B − 2A2CÃ1(u)]

2Ã1(u)BδFΘ2
1

TE1(u). (3.15)

In addition, by Ã1(u∗) =
A2

2
4A3

=
A2

2B
4AC , we get

TE1(u) =

√
1 −

Ã1(u)
Ã1(u∗)

−
4AC

4AC − 2A2C
Ã1(u)
Ã1(u∗)

(
1 −

Ã1(u)
Ã1(u∗)

)

=

√
1 −

Ã1(u)
Ã1(u∗)

−
2A

2A − A2
Ã1(u)
Ã1(u∗)

(
1 −

Ã1(u)
Ã1(u∗)

)
.

(3.16)

Because Ã1(u) = δF B(D+ u
δs

HB) < Ã1(u∗) for 0 < u < u∗, we have Ã1(u)
Ã1(u∗) ∈ (0, 1). Let y =

√
1 − Ã1(u)

Ã1(u∗)

and N = A
δFCD , then N > 1,

0 < y <

√
1 −

δF BD
A2

2B
4AC

=

√
1 −

4N
(N + 1)2 =

N − 1
N + 1

<

√
N − 1
N + 1

and

TE1(u) = y −
2A

2A + A2(y2 − 1)
y2 = y

[
1 −

2Ny
N − 1 + (N + 1)y2

]
.
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Consider w(y) =
2Ny

N−1+(N+1)y2 , and by direct calculation, we can get that w′(y) =
2N(N−1)−2N(N+1)y2

[N−1+(N+1)y2]2 =

0 has only one positive root y =

√
N−1
N+1 , and w(y) is strictly monotonically increasing on (0, N−1

N+1 ]

with w( N−1
N+1 ) = 1. Then, w(y) < 1 for any 0 < y < N−1

N+1 and TE1(u) > 0. The positive equilibrium
E1(F1(u),M∗

s ) is an unstable saddle.
When u increases to u = u∗, these two positive equilibria E1(F1(u),M∗

s ) and E2(F2(u),M∗
s ) coincide

as the unique positive equilibrium E∗(F∗(u∗),M∗
s ), which is a saddle node.

In summary, we have the following results.

Theorem 5. If A > CDδF and δF < δs, then we have the following conclusions for model (2.5).

(i) If 0 < u < u∗, then the boundary equilibrium E0(0,M∗
s ) is a locally asymptotically stable node,

E1(F1(u),M∗
s ) is an unstable saddle, while E2(F2(u),M∗

s ) is a locally asymptotically stable node.
(ii) If u = u∗, then the unique positive equilibrium E∗(F∗(u∗),M∗

s ) is an unstable saddle node.
(iii) If u > u∗, then the unique equilibrium E0(0,M∗

s ) is globally asymptotically stable.

4. Numerical simulation

In this section, some numerical examples are presented to confirm the theoretical results we obtained
in last section. Most parameter values are taken from [2], [3] and [23] (see Table 2).

Table 2. Model parameter values from [2], [3] and [23].

Parameters Value Unit Parameters Value Unit
βE 10 day−1 γs 1 -
νE 0.05 - δE 0.03 day−1

δF 0.04 day−1 δM 0.1 day−1

δs 0.12 day−1 ν 0.49 -

We apply the calculation method in [2] and [3] for the environmental capacity of eggs K, where
an island of 74 ha (hectares) was considered. The male population was estimated to be 69 ha−1,
then they assumed that the number of adult wild males was M∗ = F∗ = 69 × 74 = 5106 when the
population reaches a stable state. By direct calculation, they got the eggs number at the stable state
was E∗ = δM M∗

(1−ν)νE
≈ 2.0023 × 104. Because F∗ = ννE E∗

δF
=

(νE+δE)E∗

βE(1−E∗/K) holds, the approximate value of
environmental capacity can be deduced as

K =
E∗

1 − (νE+δE)δF
βEννE

≈ 2.0289 × 104.

It is easy to verify that A = 0.0625 > δFCD ≈ 0.0008 and m∗ =
(A−CDδF )2

4ACDδF

D
HB ≈ 9.5123×104. Without

releasing sterile mosquitoes, the number of wild adult female ones will stabilize at F∗ = C
B ( A

CDδF
− 1) ≈

1.2094 × 104.
For the general non-autonomous case, we first take Ms(t) = 4×104×(1.3+sin(πt/8)) for model (2.3).

By direct calculation, we get m0 = inft∈(0,∞) Ms(t) = 1.2 × 104 and Ms(t) ≤ 9.2 × 104 < m∗, t ≥ 0. From
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Figure 1(a), we can see that the extinction equilibrium F = 0 is locally asymptotically stable (which is
consistent with the conclusion of Theorem 1), and there is also a positive periodic solution that is locally
stable. That is, the model presents bistability phenomenon. When increasing the release intensity of
sterile mosquitoes to Ms(t) = 3.2×105×(1.3+sin(πt/8)), we have MS = lim inft→∞ MS (t) = 9.6×104 >

m∗, t ≥ 0. According to Theorem 2, the extinction equilibrium F = 0 is globally asymptotically stable
(see Figure 1(b)).

0 50 100 150 200 250 300 350 400

Time

0

500

1000

1500

A
d
u
lt 

F
e
m

a
le

 M
o
sq

u
ito

 P
o
p
u
la

tio
n
 F

(t
) 

(a) M
s
(t)=4  104 (1.3+sin( t/8))

0 20 40 60 80 100 120 140 160 180 200

Time

0

200

400

600

800

1000

1200

1400

A
d
u
lt 

F
e
m

a
le

 M
o
sq

u
ito

 P
o
p
u
la

tio
n
 F

(t
) 

(b) M
s
(t)=3.2  105 (1.3+sin( t/8))

Figure 1. Profiles produced by model (2.3) with Ms(t) ≤ m∗ or MS > m∗. (a) Bistability
phenomenon with Ms(t) = 4 × 104 × (1.3 + sin(πt/8)); (b) Global stability of the extinction
equilibrium F = 0.

Comparing the constraints for the function Ms(t) in Theorem 1 (Ms(t) ≤ m∗) and Theorem 2 (MS >

m∗), we note that there are other cases of Ms(t). To this end, we consider special forms for Ms(t)
such that its function values distributed on both sides of the threshold m∗. We choose two forms:
Ms(t) = 1.2 × 105 × (1.3 + sin(πt/8)) and Ms(t) = 6 × 104 × (1.3 + sin(πt/8)), which both satisfy
MS < m∗ < MS . From Figure 2, we can see that for the former one, F = 0 is globally asymptotically
stable (see Figure 2(a)), while bistability phenomenon is present for the latter form (see Figure 2(b)).
This also shows that the conditions in Theorem 1 and 2 are sufficient but not necessary.

For the autonomous cases, we first verify the results we get for model (2.4). Select 0 < m =

6× 104 < m∗ ≈ 9.5123× 104, from Figure 3(a), we find that the extinction equilibrium F = 0 is locally
asymptotically stable. In addition, there are also two positive equilibria and the larger one is locally
stable. As the release intensity increases to m = 10 × 104 > m∗, the extinction equilibrium F = 0
becomes globally asymptotically stable (see Figure 3(b)). These are consistent with the conclusions in
Theorem 3 and 4.

Then for system (2.5), we get the threshold for the release rate u∗ = m∗
δs
≈ 1.1415 × 104. By taking

u = 1×104 < u∗, Figure 4(a) also shows bistability phenomenon, and both the wild mosquito-extinction
equilibrium E0(0,M∗

s ) and the larger positive equilibrium E2(F2,M∗
s ) are locally stable. The wild

mosquito-extinction equilibrium E0(0,M∗
s ) becomes globally asymptotically stable when the release

rate increases to u = 1.2 × 104 > u∗ (see Figure 4(b)).
In addition to the two modes described by models (2.4) and (2.5), there is another common release

mode of sterile mosquitoes in practice, namely, impulsive release, which means that the release
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Figure 2. Profiles produced by model (2.3) with MS < m∗ < MS . (a) Global stability of the
extinction equilibrium F = 0; (b) Bistability phenomenon.
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Figure 3. Profiles produced by model (2.4). (a) Bistability phenomenon with m = 6 × 104;
(b) Global stability of the extinction equilibrium F = 0.
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(a) u=10000<u*
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Figure 4. Profiles produced by system (2.5). (a) Bistability phenomenon with u = 10 × 104;
(b) Global stability of the wild mosquito-extinction equilibrium E0(0,M∗

s ).
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function u(·) in (2.2) is a sum of Dirac deltas. Now let’s study this situation numerically. We assume
that sterile mosquitoes are released with amount of σ at discrete times t = kT, k = 0, 1, 2, · · · , where T
is the release period, then the number of sterile mosquitoes in the environment satisfies

dMs(t)
dt

= −δsMs(t), for t , kT,

Ms(kT +) = Ms(kT ) + σ, k = 0, 1, 2, · · · .
(4.1)

Obviously, system (4.1) has a unique positive periodic solution M̃s(t) which is globally
asymptotically stable, where

M̃s(t) =
σ exp(−δs(t−kT ))

1−exp(−δsT ) , t ∈ (kT, (k + 1)T ], k = 0, 1, 2, · · · ,
M̃s(kT +) = σ

1−exp(−δsT ) .

In addition, the expression for the solution of system (4.1) is Ms(t) = (Ms(0+) − M̃s(0+)) exp(−δst) +

M̃s(t), then we can deduce lim
t→∞

Ms(t) = M̃s(t). Since what we want to study is the asymptotic behavior

of the population development system of wild mosquitoes, we let Ms(t) = M̃s(t).
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Figure 5. Profiles produced by systems (2.3) and (4.1). (a) Global stability of the extinction
equilibrium with σ = 8 × 104; (b) Bistability phenomenon with σ = 4.2 × 104.

Fix a release period T = 5. When we select σ = 8 × 104, by simple calculating, we can get
M̃s(t) > m∗, t ≥ 0. Then we can see that the extinction equilibrium is globally asymptotically stable
(see Figure 5(a)). When choose σ = 4.2 × 104, then we can get lim inft→∞ M̃s(t) < m∗, and we find
that in addition to the extinction equilibrium, there is also a locally stable positive periodic solution(see
Figure 5(b)).

5. Conclusions

In this paper, we studied a kind of mosquito population suppression model, taking into account
the stage structure of mosquito growth as well as the sex structure. First, we constructed a non-
autonomous mosquito population suppression model (2.3) by taking the number of sexually active
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sterile mosquitoes released into the field as a given function Ms(t). Then we considered a special case,
that is, the release period of the sterile mosquito is equal to its sexual lifespan. The non-autonomous
model (2.3) is transformed into a one-dimensional ordinary differential equation model (2.4). Finally,
continuing the work in [2], we considered another special case and investigated a two-dimensional
mosquito population suppression system (2.5).

For the non-autonomous mosquito population suppression model (2.3), we determined a critical
value m∗ for Ms(t). If m0 > 0 and Ms(t) ≤ m∗, t ≥ 0, then the extinction equilibrium F = 0 is
locally but not globally asymptotically stable (Theorem 1). While when m0 > 0 and MS > m∗, then
the extinction equilibrium F = 0 becomes globally asymptotically stable (Theorem 2). For the one-
dimensional ordinary differential equation model (2.4), if 0 < m < m∗, both the extinction equilibrium
F = 0 and the larger positive equilibrium F2(m) are locally stable (Theorem 3). If m = m∗, the unique
positive equilibrium F = F∗(m∗) is semi-stable. While if m > m∗, then the unique equilibrium F = 0
becomes globally asymptotically stable (Theorem 4). For the two-dimensional mosquito population
suppression system (2.5), we also found a critical value u∗ of the release rate u. Through dynamic
analysis, we finally obtained conclusions similar to model (2.4) (Theorem 5). Finally, we provided a
series of numerical examples to verify our theoretical results.

In this work, we just gave sufficient conditions for successful suppression and persistence of
mosquito population for the non-autonomous model (2.3). In the numerical example, we also found
that mosquito populations can be eliminated with a relatively weak release function Ms(t). In the future
research, we will try new research methods to obtain sufficient and necessary conditions for mosquito
population suppression.

In addition, to reduce the difficulty of mathematical analysis, when constructing model (5), we
omitted the equations for the aquatic stage population and the adult male mosquito population under
specific assumptions, and only used the model parameters to characterize the stage and sex structure
of the wild mosquito population. This may make the characterization of these structures less precise.
Therefore, in future research, we will use high-dimensional models to accurately depict the stage and
gender structures of mosquitoes and study various release strategies.
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