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1. Introduction

Game theory is a mathematical theory that studies interactions between decision makers. The
n-person noncooperative game is an important part of game theory [1–3]. As we all know,
Von Neumann [4] and Nash [5, 6] established the models of matrix games and n-person finite
noncooperative games respectively, and Nash proposed the core equilibrium concept in noncooperative
games, called Nash equilibrium, and proved that this kind game has at least one mixed strategies
equilibrium point. At present, the n-person noncooperative game and its related researches have
been widely used in mathematics, economics, operations research, biology, textile industry and other
fields [7–11]. In these researches and applications, the key point is how to find Nash equilibrium points
effectively, which largely depends on the good mathematical description of the problem. Therefore, it
is very important to find a suitable mathematical model when solving games.

At present, there are many mathematical methods to solve the Nash equilibria, mainly by equating
finding Nash equilibria to a fixed point problem, an optimization problem or a tensor complementarity
problem. The finding Nash equilibria is equivalent to the fixed point problem, which is mainly
handled by the Brouwer fixed point theorem, the Kakutani fixed point theorem and the KyFan point
theorem. Many scholars have made a lot of researches in this field [12–15]. Furthermore, the research
that finding Nash equilibria is equivalent to the optimization problem is springing up. Because the
equilibrium points are natural actions of self interested behavior in competitive situations. In other
words, at an equilibrium point, each competitor is maximizing his payoff against all other competitive
actions in the situation. Therefore, finding a Nash equilibrium is generally as a nonconvex optimization
problem, which has been sufficiently studied in [16–20]. Further, some scholars also have equated
the finding Nash equilibria to the tensor complementarity problem [21–24], and the player’s payoff

function is given by a homogeneous polynomial defined by this player’s payoff tensor. In addition to
the above usual methods for finding Nash equilibria, in recent years, with the extensive research of
multi-agent systems in social science and engineering systems, using distributed algorithms seeking
Nash equilibria has become an emerging research topic. This method provides solutions for complex
engineering games [25–31], such as generalized games with coupled constraints, aggregative games
with non-smooth objective functions and uncertain games, etc.

Although the above research methods and calculation methods have solved a large number of
games. With the complexity of real problems and the diversification of games, the above methods have
some disadvantages in the computing process, such as high computational complexity, cumbersome
derivation process and complex algorithm design. Therefore, we propose a new equivalent method
of finding Nash equilibria in this paper, which directly applies the definition of Nash equilibrium
to establish an equivalent relationship with the system of equations, and transform the problem of
finding the Nash equilibria into solving the system of equations. So that it can be calculated using
the developed method of solving the system of equations. Therefore, compared with finding the Nash
equilibria equivalent to the fixed point problem and nonconvex optimization problem, the proposed
method does not need to define complex set valued mapping, no have tedious theoretical derivation
and proof. Compared with find the Nash equilibria equivalent to the tensor complementarity problem,
the proposed method does not need to consider the nonlinear complementarity and nonsmooth of the
payoff function. This method provides a new idea for find the Nash equilibria, which can be easily
understood and applied by readers with weak mathematical foundation. On the one hand, this method
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broadens the expression form of Nash equilibria and provides a new method for finding Nash equilibria.
It reduces the difficulty of seeking Nash equilibria, and only needs to consider the calculation methods
of the equivalent equations. On the other hand, this equivalent method also has certain significance
for the realization of Nash equilibrium: since the equations are derived from the definition of Nash
equilibrium, each equation essentially represents the rational behavior of the player. In each equation,
the probability of each component of the Nash equilibrium is greater than 0 is meaning that the
corresponding pure strategy is in the direction of increasing the profit, that is, the direction of Nash
equilibrium realization. Therefore, this method has certain research significance.

This paper is organized as follows: In Section 2, we give the basic definitions of the game and an
equivalence theorem between the Nash equilibria of n-person noncooperative game and the solutions
of equations. In Section 3, we propose the ADECA algorithm and prove its convergence theoretically
through the finite state Markov chain. This algorithm applies the DE algorithm to the population space
of the CA algorithm, and uses the belief space of the CA to extract hidden evolutionary knowledge and
guides the evolution of the population space. Additionally, the DE algorithm is adaptively improved to
enhance the performance of the ADECA algorithm. The equivalence theorem of the Nash equilibria
and the superiority of the ADECA algorithm proposed in this paper are verified by examples in
Section 4.

2. The basic definitions and equivalence theorem of n-person noncooperative game

2.1. The n-person noncooperative game

Definition 2.1. [32] We consider a n-person noncooperative game Γ = {(N, S i, Pi, Xi,U i), i =

1, . . . , n}
where
(1) N = {1, . . . , n} is the set of players and n is the number of players;
(2) S i = {si

1, . . . , s
i
mi
}, ∀i ∈ N is the pure strategy set of player i, mi represents the number of

strategies available to player i , S =
∏n

i=1 S i;
(3) Pi : S → R, ∀i ∈ N represents the payoff function of player i;
(4) Xi = {xi = (xi

1, . . . , x
i
K , . . . , xi

mi
) : xi

K ≥ 0,
∑mi

K =1 xi
K = 1}, ∀i ∈ N is the set of mixed strategies.

X =
∏n

i=1 Xi , and each mixed strategy profile meets x = (x1, x2, . . . , xn) ∈ X;
(5) U i : X → R, ∀i ∈ N represents the expected payoff function of player i.

ui(x) =

m1∑
K1=1

. . .

mn∑
Kn=1

pi(s1
K1
, . . . , sn

Kn
)

n∏
i=1

xi
Ki
,

where ui(x) represents the expected payoff value of player i when he chooses a mixed strategy xi =

(xi
1, . . . , x

i
mi

) ∈ Xi. pi(si
Ki
, . . . , sn

Kn
) represents the payoff value of player i when each player chooses

pure strategy si
Ki
∈ S i, i = 1, . . . , n.

Denote by

ui(x‖si
Ki

) , ui(x1, . . . , xi−1, si
Ki
, xi+1, . . . , xn) ,

m1∑
K1=1

. . .

mi−1∑
Ki−1=1

mi+1∑
Ki+1=1

. . .

mn∑
Kn=1

pi(s1
K1
, . . . , sn

Kn
)x1

K1
. . . xi−1

Ki−1
xi+1
Ki+1

. . . xn
Kn
,
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where si
Ki

(1 ≤ Ki ≤ mi) is pure strategy of player i. (x‖si
Ki

) represents si
Ki

instead of xi of player i, and
the other players do not change their own mixed strategy.

Definition 2.2. If x∗ = (x∗1, . . . , x
∗
n), such that ui(x∗i , x

∗
i∧) = max

yi∈Xi
ui(yi, x∗i∧), ∀i ∈ N, then x∗ is a Nash

equilibrium point of n-person noncooperative game, where i∧ = N\{i}, ∀i ∈ N.

Conclusion 2.1. [20] Mixed strategy x∗ = (x∗1, . . . , x
∗
n) ∈ X is a Nash equilibrium point of a game Γ if

and only if ui(x∗) ≥ ui(x∗‖si
Ki

), where, Ki = m1, . . . ,mn, i = 1, . . . , n.

2.2. Equivalence theorem of the Nash equilibria and solutions of the system of equations

Theorem 2.1. For any n-person finite noncooperative game, the mixed strategy profile,

x =
(
x1, x2, . . . , xn

)
∈ X, xi =

(
xi

1, . . . , x
i
Ei
, . . . , xi

mi

)
, ∀i ∈ N

is a Nash equilibrium if and only if there is a set of real numbers

λi
EiKi
≥ 0, i = 1, 2, . . . , n, Ei , Ki, Ei,Ki ∈ {1, 2, . . . ,mi}

such that λi
EiKi

and x =
(
x1, x2, . . . , xn

)
satisfy the following equations:

λ1
E1K1

+ x1
E1

 m2∑
E2=1

. . .

mn∑
En=1

p1

(
s1
K1
, s2
E2
, . . . , sn

En

)
· x2
E2
· . . . · xn

En

−

m2∑
E2=1

. . .

mn∑
En=1

p1

(
s1
E1
, s2
E2
, . . . , sn

En

)
· x2
E2
· . . . · xn

En

 = 0 (2.1)

λ1
E1K1
≥ 0, E1 , K1, E1,K1 ∈ {1, 2, . . . ,m1}

...

λi
EiKi

+ xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

−

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

 = 0

λi
EiKi
≥ 0, Ei , Ki, Ei,Ki ∈ {1, 2, . . . ,mi}

...

λn
EnKn

+ xn
En

 m1∑
E1=1

. . .

mn−1∑
En−1=1

pn

(
s1
E1
, . . . , sn−1

En−1
, sn

Kn

)
· x1
E1
· . . . · xn−1

En−1

−

m1∑
E1=1

. . .

mn−1∑
En−1=1

pn

(
s1
E1
, . . . , sn−1

En−1
, sn
En

)
· x1
E1
· . . . · xn−1

En−1

 = 0

λn
EnKn
≥ 0, En , Kn, En,Kn ∈ {1, 2, . . . ,mn} .
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Proof. Necessity: Assume that x =
(
x1, x2, . . . , xn

)
∈ X, xi =

(
xi

1, . . . , x
i
Ei
, . . . , xi

mi

)
,∀i ∈ N is a Nash

equilibrium. Then the expected payoff of player i under this equilibrium is

ui(x) =

m1∑
E1=1

. . .

mn∑
En=1

pi

(
s1
E1
, s2
E2
, . . . , sn

En

)
· x1
E1
· x2
E2
· . . . · xn

En

=

mi∑
Ei=1

xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


= xi

1

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

1, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

 (2.2)

+ xi
2

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

2, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


+

mi∑
Ei=3

xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

 ,
if xi

Eh1
, . . . , xi

Ehl
> 0, xi

Ehl+1
, . . . , xi

Ehmi
= 0, then for each Ei ∈ {Eh1 , . . . ,Ehl}, Ki ∈ {1, . . . ,mi}, and

Ki , Ei, we have

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

≥

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
.

(2.3)

(Contradiction): Assuming that the above formula (2.3) does not hold, then there is a certain Ei ∈

{Eh1 , . . . ,Ehl}, Ki , Ei, where Ki ∈ {1, . . . ,mi}, such that

m1∑
E1=1

. . .

mi−1∑
Ei−1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

<

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
.

For the convenience of writing, let Ei = 1, Ki = 2, that is,

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

1, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

<

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

2, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
.

(2.4)
Taking y =

(
x1, . . . , xi−1, yi, xi+1, . . . , xn

)
, yi =

(
0, xi

1 + xi
2, x

i
3, . . . , x

i
Ei
, . . . , xi

mi

)
, and combining

inequality (2.4) with the formula (2.2), we obtain
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ui(y) =

m1∑
E1=1

. . .

mn∑
En=1

pi

(
s1
E1
, s2
E2
, . . . , sn

En

)
· y1
E1
· y2
E2
· . . . · yn

En

=

mi∑
Ei=1

yi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


=

(
xi

1 + xi
2

)  m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

2, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


+

mi∑
Ei=3

xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


=xi

1

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

2, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


+xi

2

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

2, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


+

mi∑
Ei=3

xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


>xi

1

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

1, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


+xi

2

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

2, . . . , s
n
En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


+

mi∑
Ei=3

xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


=ui(x),

it contradicts that x is a Nash equilibrium. So we get that for each Nash equilibrium xi
Ei
> 0, and

∀Ki ∈ {1, . . . ,mi},

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

≥

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
.

In particular, if Ei,Ki ∈ {Eh1 , . . . ,Ehl}, xi
Ei
, xi

Ki
> 0, then

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

=

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
.
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The following proof shows that the Nash equilibrium x =
(
x1, x2, . . . , xn

)
∈ X satisfies the system

of equations in Theorem 2.1.
(i) For every i ∈ N, if xi

Ei
= 0, then for each Ki ∈ {1, . . . ,mi},Ki , Ei, and take λi

EiKi
= 0, we have

λi
EiKi

+xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

−

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

 = 0.

(2.5)

(ii) If xi
Ei
> 0, then for each Ki ∈ {1, . . . ,mi},Ki , Ei, that is formula (2.3),

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

≥

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
.

(2.6)

(ii-1) If the equality sign of formula (2.6) holds, take λi
EiKi

= 0, then formula (2.5) holds.
(ii-2) If the equality sign of formula (2.6) does not hold, that is

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

>

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
,

then take

λi
EiKi

=xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

−

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

 ,
therefore

λi
EiKi

+xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

−

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

 = 0.

The necessity has been proved. Next, we show the sufficiency of Theorem 2.1.
Sufficiency: If there is a set of real numbers λi

EiKi
≥ 0, i = 1, 2, . . . , n,Ei , Ki,Ei,Ki ∈ {1, 2, . . . ,mi}

and mixed strategy profile x =
(
x1, x2, . . . , xn

)
∈ X, xi =

(
xi

1, . . . , x
i
Ei
, . . . , xi

mi

)
, i ∈ N, satisfying the
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system of equations in Theorem 2.1, The following proof shows that x is a Nash equilibrium. Let

xi =

(
xi

1, . . . , x
i
Eik
, xi
Eik+1

, . . . , xi
mi

)
, where xi

1, . . . , x
i
Eik
> 0, xi

Eik+1
, . . . , xi

mi
= 0. Since x satisfies the system

of equations in Theorem 2.1, then for any Ei ∈ {1, . . . ,Eik}, we get

λi
EiKi

+ xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

−

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

 = 0.

Because xi
1, . . . , x

i
Eik
> 0, for ∀Ki ∈ {1, 2, . . . ,mi}, we have

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

≥

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
,

and because for any player i, the expected payoff for pure strategy is

ui

(
x‖si

Ki

)
=

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En
,

therefore

ui(x) =

m1∑
E1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· x2
E2
· . . . · xn

En

=

mi∑
Ei=1

xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


=

Eik∑
Ei=1

xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ei
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


≥

Eik∑
Ei=1

xi
Ei

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En


=

 m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

 · Eik∑
Ei=1

xi
Ei

=

m1∑
E1=1

. . .

mi−1∑
Ei−1=1

mi+1∑
Ei+1=1

. . .

mn∑
En=1

pi

(
s1
E1
, . . . , si

Ki
, . . . , sn

En

)
· x1
E1
· . . . · xi−1

Ei−1
· xi+1
Ei+1
· . . . · xn

En

= ui

(
x‖si

Ki

)
.

Judging by Conclusion 2.1 that x = (x1, x2, . . . , xn) is a Nash equilibrium. �
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2.3. Solving the Nash equilibria of bimatrix game based on the system of equations

According to the preparatory knowledge of n-person finite noncooperative game and Theorem 2.1,
we can get the equivalence theorem of the bimatrix game.

Corollary 2.1. Suppose the mixed strategy of the two-player finite noncooperative game is x = (x1, x2),
where x1 = (x1

1, x
1
2, . . . , x

1
m1

), x1 = (x2
1, x

2
2, . . . , x

2
m2

), and
∑m1

i=1 x1
i = 1,

∑m2
i=1 x2

i = 1. The payoff matrices
are A and B respectively:

A =


a11 . . . a1m2
...

...
...

am11 . . . am1m2

 , B =


b11 . . . b1m2
...

...
...

bm11 . . . bm1m2

 ,
then, x is a Nash equilibrium if and only if there is a set of real numbers λi

EiKi
≥ 0, i = 1, 2,Ei ,

Ki,Ei,Ki ∈ {1, 2, . . . ,mi}, such that λi
EiKi

and x = (x1, x2) satisfy the following equations:λ1
K1K2

+ x1
K1

(AK2 − AK1)[x2]′ = 0,

λ2
E1E2

+ x2
E1

x1(BE2 − BE1) = 0,
(2.7)

where AKt(t = 1, 2) is the Ktth row of matrix A, BEt(t = 1, 2) is the Etth column of matrix B, x1 =

(x1
1, . . . , x

1
m1

), x2 = (x2
1, . . . , x

2
m2

), and K1 , K2 ∈ {1, . . . ,m1},E1 , E2 ∈ {1, . . . ,m2}.

For the convenience of writing, formula (2.1) can be simplified as:

f1(λ1, x1, . . . , xK ) = 0,
f2(λ2, x1, . . . , xK ) = 0,
...

fm(λm, x1, . . . , xK ) = 0,

(2.8)

where m =
∑n

i=1 mi(mi − 1), K =
∑n

i=1 mi, λi ≥ 0, i = 1, 2, . . . ,m, and 0 ≤ xi ≤ 1, i = 1, 2, . . . ,K ,∑m1
i=1 xi = 1,

∑m1+m2
i=m1+1 xi = 1, . . . ,

∑mn−1+mn
i=mn−1+1 xi = 1.

According to the equivalent methods of solving the equations, the solution of the Eq (2.8) is usually
equivalent to the following optimization problem, and the optimal value is 0:

min F(λ1, . . . , λm, x1, . . . , xK ) =

m∑
i=1

| fi(λi, x1, . . . , xK )|. (2.9)

An algorithm for finding the Nash equilibria based on the system of equations is given below.

3. Adaptive differential evolution algorithm based on cultural algorithm (ADECA)

3.1. The cultural algorithm

In 1994, Reynolds [33] simulated the evolution of human society and proposed a bionic intelligent
computing method with a bilevel evolutionary mechanism, cultural algorithm (CA). This algorithm is
composed of independently evolved population space and belief space. The population space simulates
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the evolution process of individuals according to certain behavioral criteria from the microscopic
perspective, while the belief space simulates the evolution process of culture formation, transmission
and comparison from the macroscopic perspective. Population space and belief space are two relatively
independent evolutionary processes, and the two spaces are connected according to special protocols
(acceptance function and influence function). Those interactions are depicted in Figure 1.

Figure 1. Cultural algorithm framework.

The population space is used to implement any population evolutionary algorithm. On the one hand,
it evaluates the fitness value of individuals, and implements evolutionary operations such as selection,
crossover and mutation for population; On the other hand, excellent individuals are provided to the
belief space as samples. The belief space selects the sample individuals from the evaluated populations
in the population space through the acceptance function. Under the function of knowledge updating,
the hidden information carried by the sample individuals is processed and summarized, described and
stored in the form of knowledge. Finally, all kinds of knowledge react on the population space through
the influence function to guide the evolution of the population space, so as to accelerate the evolutionary
convergence and improve the adaptability of the algorithm. The details on the interaction and influence
between belief space and population space will be given below. (The following discussions are based
on the assumption of solving the minimum optimization problem).

3.2. The population space

The CA algorithm provides a computational model of a multi evolutionary processes. Therefore,
from the perspective of computational model, an evolutionary algorithm that meets the requirements
of CA algorithm can be regarded as an evolutionary process of population space. In this paper, the
proposed algorithm uses DE algorithm with simple operation in the population space of CA algorithm.
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3.2.1. Basic DE algorithm

The DE algorithm is a new simple and robust evolutionary algorithm. It is first introduced by Storm
and Price [34]. There are three main operations: mutation, crossover and selection operation.

(1) Mutation
The mutation operation is mainly executed to distinguish DE from other evolutionary algorithms.

The mutation individual V = (vi1, . . . , vi j, . . . , viD), i = 1, . . . ,N, j = 1, . . . ,D is generated by the
following equation:

vt+1
i = xt

r1 + F · (xt
r2 − xt

r3), (3.1)

where N and D denote population size and space dimension respectively, r1, r2 and r3 are randomly
generated integers within [1,N], and r1 , r2 , r3 , i, F is a constriction factor to control the size of
difference of two individuals and t is the current generation.

(2) Crossover
We use the crossover between the parent and offspring with the given probability for generating

new individual U = (ui1, . . . , ui j, . . . , uiD):

ut+1
i j =

vt+1
i j , i f (rand( j) ≤ CR) or ( j = rnbr(i)),

xi j, otherwise,
(3.2)

where rand( j) ∈ [0, 1] is random values, CR ∈ [0, 1] is crossover operator, rnbr(i) is a randomly
selected integer on [1,D], which ensure that a new individual gets at least one component value from
the mutation vector.

(3) Selection
The offspring Xt+1

i j is generated by selecting the individual and parent according to the following
formula:

Xt+1
i j =

U t+1
i j , i f ( f (U t+1

i j ) < f (U t
i j)),

Xt
i j, otherwise,

(3.3)

where f (·) is the fitness function.
Although the DE algorithm is widely used in optimization problems, with the increase of the

complexity of solving problems, the DE algorithm also has some disadvantages, such as slow
convergence, low accuracy and weak stability. Therefore, in order to better apply to CA algorithm,
the DE algorithm is improved.

3.2.2. Adaptive differential evolution (ADE) algorithm

Many scholars have verified that the performance of the DE algorithm mainly depends on the
selection of mutation operation and related parameters. Furthermore, the mutation factor F and
crossover operator CR directly affect the searching capability and solving efficiency of the DE
algorithm [35]. According to formula (3.1), the mutation factor F is used to control the influence of the
difference vector on the mutation individual vi. When F is large, the difference vector (xr2 − xr3) has
a great influence on vi and causes a large disturbance, which is beneficial for maintaining population
diversity and global search of the algorithm, but at the same time it will reduce the convergence speed;
On the contrary, when F is small, the disturbance is small, that is, the diversity of the population
is small, which is conducive to local search of the algorithm and makes the convergence speed
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faster. However, the algorithm is easy to fall into the local optimal and the “premature”. According
to formula (3.2), when CR is larger, the more contribution vi makes to ui, which is beneficial to
expanding new spaces and accelerating the convergence of the algorithm. However, in the later
period, the mutation individuals tend to be the same, which is detrimental for maintaining population
diversity, making the algorithm prone to “premature” phenomenon; Conversely, CR is smaller, the
more contribution xi makes, which is beneficial for maintaining population diversity. However, in this
way, the ability of the algorithm to explore new spaces is weakened, and the convergence speed is
relatively slow.

In order to make the algorithm have better global search capability and convergence speed, adaptive
mutation and crossover operator are adopted:

λ = e1− T
T+1−t ,

F = F0 · 2λ,
CR = CR0 · 2λ,

(3.4)

where t is the current iterate time, T is the maximum number of iteration, F0 and CR0 respectively are
the initial mutation factor and crossover operator. The adaptive mutation factor and crossover operator
are proposed, which can adaptively determine the mutation rate and crossover rate according to the
search progress of the algorithm. According to formula (3.4), since t ∈ [1,T ], then λ ∈ [e1−T , 1] ∈
(0, 1], so, F = F0 · 2λ ∈ (F0, 2F0], that is, 2F0 is taken when t = 1, which has a larger value to avoid
the algorithm “premature”; With the progress of the algorithm, the value of F gradually decreases,
until later close to F0, which retains good information, avoids the destruction of the optimal solution,
and increases the possibility of searching for the global optimal solution. The CR = CR0 · 2λ ∈
(CR0, 2CR0] is similar: CR has a large value in the early stage, which increases the exploration ability
of the algorithm and avoids the algorithm falling into local optimal. In the later stage, the crossover
rate is gradually reduced to retain good individuals. Therefore, the probability of finding the global
optimal solution is increased.

There are two main ways of traditional mutation operations in the DE algorithm [36]:

(i) DE/rand/1/bin : vt+1
i = xt

r1 + F · (xt
r2 − xt

r3),
(ii) DE/best/1/bin : vt+1

i = xt
best + F · (xt

r2 − xt
r3),

where xt
best represents the best individual in the current generation, that is, the optimal position searched

by this individual so far. The first mutation method has a strong global search capability but slow
convergence speed. The second method has a fast convergence speed, but it is easy to fall into local
optimum values. In order to overcome these shortcomings, a new mutation operation is proposed,

vt+1
i = λxt

r1 + (1 − λ)xt
best + F · (xt

r2 − xt
r3). (3.5)

In the population space of this paper, in order to jump out of the local optimum and accelerate the
convergence of the algorithm. Formulas (3.4) and (3.5) will be used to improve the DE algorithm.

3.3. The belief space

Belief space adopts the 〈S ,N〉 structure proposed in the literature [33]. Where S =

{st
1, s

t
2, . . . , s

t
i, . . . , s

t
m} is the set of optimal individuals, st

i represents the ith optimal individual in the
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tth generation, and m represents the size of the set. N = 〈X1, X2, . . . , X j, . . . , Xn〉 is the normative
knowledge, representing the feasible search area of the problems, where X j = 〈I j, L j,U j〉 and n is the
number of variables. I j = [l j, u j] = {x| l j ≤ x j ≤ u j}, l j and u j respectively are the upper and lower
bound of variable x j; L j represents the fitness value corresponding to the variable l j; U j represents the
fitness value of the variable u j.

In order to simplify the operation process of the algorithm, only the current optimal individual st is
used to update the S in belief space, and update it according to the following formula:

st =

xt
best, f (xt

best) < f (st),
st, otherwise,

(3.6)

where xt
best is the optimal individual of the tth generation.

With the process of evolution, the search space gradually gathers in the dominant region. Therefore,
when the individuals exceed the current search space, the normative knowledge N is updated according
to the following formula:

lt+1
j =

xt
i j, xt

i j < lt
j or f (xt

i j) < Lt
j,

lt
j, otherwise,

(3.7)

Lt+1
j =

 f (xt
j), xt

i j < lt
j or f (xt

i j) < Lt
j,

Lt
j, otherwise,

(3.8)

ut+1
j =

xt
i j, xt

i j > ut
j or f (xt

i j) < U t
j,

ut
j, otherwise,

(3.9)

U t+1
j =

 f (xt
j), xt

i j > ut
j or f (xt

i j) < U t
j,

U t
j, otherwise.

(3.10)

Formulas (3.7) and (3.9) are the updating process of upper and lower bound of variable x j,
formulas (3.8) and (3.10) are the updating process of fitness value of corresponding variable x j.

3.4. Acceptance function and influence function

Acceptance function and influence function are the links between belief space and population space.
The acceptance function selects better individuals from the population space and submits them to the
belief space for knowledge updating, and the core of its research is to select better individuals. In the
early stage of evolution, the better individuals have more valuable information, so more individuals can
be selected for the belief space. In the later period of evolution, the algorithm gradually converges, and
the dominant individuals and their implied information are similar. In order to maintain the diversity of
knowledge, the number of accepting individuals should be reduced. Therefore, the dynamic acceptance
function proposed by Saleem [37] is used, the number of accepted individuals decreases while the
number of generations increases. We get the number of accepted individuals with the following
expression:

accept() = P% · N + (P% · N)/t, (3.11)
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where N is the population size, t is the current iterate moment, in this paper, we take P% = 20%, and
the number of an interval to execute the accept function is usually preset (according to the maximum
number of iterations, we take the number of the interval as 5).

The main purpose of the influence function is to guide the population evolution by using knowledge
of the belief space. According to the ADE model (Formula (3.5), (3.2), (3.3)), if the parent individuals
are within the interval given by the normative knowledge, the particles will be updated according to the
ADE algorithm. If it is outside the given interval, the offspring generation rule (formula (3.3)) becomes
the following form:

Xt+1
i j =

rand(0, 1) · (u j − l j) + l j, i f xt
i j < l j or xt

i j > u j,

Xt
i j, otherwise.

(3.12)

3.5. The ADECA algorithm design and experimental processes

The pseudo code of the ADECA algorithm is shown in Algorithm 1, and the specific implementation
processes are described in detail as follows:

Step 1. Set the parameters of the ADECA algorithm, such as N, D, CR0, F0, l, u, P, T and accuracy ε.

Step 2. Initializing population space and belief space. Randomly generate N initial individuals P(0)
in population space, and each individual satisfies

∑mi
Ki=1 xi

Ki
= 1, xi

Ki
≥ 0, xi

Ki
∈ Xi, i =

1, . . . ,N; Ki = 1, . . . ,mi. The search range defined by the corresponding normative knowledge
in the belief space and as the whole search space.

Step 3. Using the acceptance function (formula (3.11)) to accept better individuals and update the
belief space.

Step 4. Calculating the fitness function value f (·) of each individual in population P(t) and determining
the xt

pbest.

Step 5. The next generation population P(t + 1) is generated by mutation operation (formula (3.5)),
crossover operation (formula (3.2)), selection operation (formula (3.3)).

Step 6. Updating the normative knowledge of belief space by formulas (3.7), (3.8), (3.9), (3.10).

Step 7. Determining whether to end according to the accuracy and the maximum number of iteration,
and output the optimal value, otherwise, turn to step 3.

AIMS Mathematics Volume 8, Issue 6, 13984–14007.



13998

Algorithm 1 ADECA
Input: Parameters N, D, CR0, F0, l, u, P, T , ε
Output: The best vector (Solution) . . . ∆

1: t ← 0 (Initializing population space and
belief space)

2: xt
i j = rand(0, 1) · (u j − l j) + l j

3: L = min(accept f (·))
4: U = max(accept f (·))
5: l = min(accept xi j)
6: u = max(accept xi j)
7: while | f (∆)| ≥ ε or t ≤ T do
8: for i = 1 to N do
9: (Mutation and Crossover)

10: for j = 1 to D do
11: vt

i j = Mutation (xt
i j) (formula (3.5))

12: ut
i j = Crossover (vt

i j, x
t
i j)

13: end for
14: (Selection)

15: if f (ut
i j) < f (xt

i j) then
16: xt

i j ← ut
i j

17: else { f (xt
i j) < f (∆)}

18: ∆← xt
i j

19: end if
20: end for
21: (Updating the normative knowledge)
22: if xt

i j < lt
j or f (xt

i j) < Lt
j) then

23: lt
j ← xt

i j

24: Lt
j ← f (xt

i j)
25: else
26: lt

j ← lt
j

27: Lt
j ← Lt

j

28: end if
29: t = t + 1
30: end while

3.6. Convergence analysis of the ADECA algorithm

As a random optimization algorithm based on population, the evolution process of the adaptive
differential evolution algorithm in the population space can be described by a random process. For
the convenience of discussion, considering mutation and crossover operations as a difference operator
(DO), the selection operation is regarded as a selection operator (SO). The following uses the finite
state Markov chain to analyze the search process of the ADECA algorithm, and use the axiomatic
model [38] to study the probability distribution of the adaptive difference population in the decision
space. Then, it is proved that the ADECA algorithm weakly converges to the global optimal solution
in probability.

Definition 3.1. The DO operation randomly selects three different individuals from the population to
execute formula (3.5) to generate the mutation vector V, and then performs crossover operation with
the original target individual X according to formula (3.2) to generate the middle vector U. This
process can be regarded as a random mapping ψD : Ω × S → S 2, that is

ψD(ω, Xi) = ψD(〈X,V〉) = U, (3.13)

where Ω is a nonempty abstract set, its element ω is a basic event and the S is the solution space.

Definition 3.2. The SO operation is a process of selecting the individual with better fitness from the
middle vector Ui and the target vector Xi according to the greedy selection method, which is recorded
as a mapping ψS : S 2 → S ,

ψS (〈Xi,Ui〉) = min{ f (Xi), f (Ui)}. (3.14)
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According to the above two definitions, one iteration of ADECA’s population space can be seen as
a mapping ψ = (ψS ◦ ψD) : Ω × S → S .

Definition 3.3. [39] Let X = (Xn, n = 0, 1, 2, · · · ) is a random process, and its state space S is a finite
set. If X has Markov property defined by the following formula, that is, for any n ≥ 0 and any state
i0, i1, · · · , in+1 ∈ S , and P{X0 = i0, X1 = i1, · · · , Xn = in} > 0, if

P{Xn+1 = in+1|X0 = i0, X1 = i1, · · · , Xn = in} = P{Xn+1 = in+1|Xn = in} (3.15)

is established, X is called finite Markov chain.

Here, S represents the range of random variables Xn, n = 0, 1, 2, · · · , that is, the set of all possible
values. According to the above definition, the finite Markov chain is expressed as: in a finite state, the
state of the next moment is only related to the state of the current moment.

In the ADECA algorithm, X is the population space, S is the solution space, Xi and X j are the ith
and jth generation of evolutionary individuals, respectively. Knowledge-guided differential operation
and selection operation can be regarded as a random transformation from state Xi ∈ S to state X j ∈ S .
In the process of state transition, state X(t + 1) is only related to state X(t), therefore, according to the
definition of finite Markov chain, the evolution process of ADECA algorithm is a finite Markov chain.
Assume that the state transition matrix of the difference operation guided by knowledge is PD, and the
state transition matrix of the selection operation is PS . Since the knowledge that guides the difference
operation and selection operation in each generation contains different information, the state transition
matrix P(t) = PD(t)PS (t) is different, that is, P is related to the evolutionary generation t. Therefore,
the evolutionary process of ADECA algorithm is a non-homogeneous Markov chain (process). The
following uses the axiomatic model to analyze the random search process of the ADECA algorithm.

Definition 3.4. [40] Random variable sequence {X(t)} weakly converges to the global optimal
solution set S ∗ in probability, if it satisfies

lim
t→∞

P{X(t) ∩ S ∗ , ∅} = 1, (3.16)

where S ∗ = {X|∀Y ∈ S , f (X) ≤ f (Y)} is the global optimal solution set of the fitness function f (·).

Definition 3.5. [40] If for any X ∈ B,Y < B, there is f (X) < f (Y), then B ⊂ S is called the satisfactory
solution set.

According to the definition, the fitness value of each individual in the satisfactory solution set is
smaller than the fitness value of the individual outside the satisfactory solution set. Obviously, the
global optimal solution set S ∗ is the satisfactory solution set, and is the minimum satisfactory solution
set.

Theorem 3.1. [40] If for any satisfactory solution set B ⊂ S , there is

P{X(t + 1) ∩ B = ∅|X(t) = X} ≤ a(t), X ∩ B , ∅, (3.17)
P{X(t + 1) ∩ B = ∅|X(t) = X} ≤ b(t), X ∩ B = ∅, (3.18)

and satisfy: (1)
∑∞

t=1(1 − b(t)) = ∞,(2) a(t)
1−b(t) → 0, then {X(t)} weakly converges to the global optimal

solution set S ∗ in probability.
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Corollary 3.1. [40] If the transition probability of {X(t)} satisfies the condition:

P{X(t + 1) ∩ B , ∅|X(t) = X} =

1, X ∩ B , ∅,

≥ δ, X ∩ B = ∅.
(3.19)

Then {X(t)} weakly converges to the global optimal solution set S ∗ in probability.

Theorem 3.2. The ADECA algorithm weakly converges to the global optimal solution set S ∗ in
probability.

Proof. In the iteration of the ADECA algorithm, assuming the current state is X(t) = Xi, after the
differential operation and selection operation, the next generation state is X(t + 1) = X j.

In the ADECA algorithm, the normative knowledge Knor represents the change of the feasible
search space. With the evolution, the search range should be concentrated in the dominant area. In
each iteration, the current optimal individual recorded by the normative knowledge is retained in the
next generation population, and the optimal individual will no longer participate in the next difference
operation and selection operation.

(1) When Xi∩B , ∅, it means that the current optimal individual must be included in the satisfactory
set B. From the optimal retention strategy, it can be seen that no matter which generation t is, there is

P{X(t + 1) ∩ B , ∅|X(t) = Xi} = 1, Xi ∩ B , ∅. (3.20)

(2) When Xi ∩ B = ∅, it indicates that the current population X(t) = Xi does not contain individuals
of satisfactory set B. Then we consider each population X j after Xi, if X j ∩ B = ∅, it is obviously
meaningless. Therefore, the next generation population X j ∩ B , ∅ is further discussed below.

When the state X j satisfies X j ∩ B , ∅, that is, X j contains the better individuals of the satisfactory
set B. The transition probability generated by the difference operation under the guidance of normative
knowledge is

pD
i j = PD{X(t + 1) = X j|X(t) = Xi}

=

n∏
k=1

PD{(Xk(t + 1) = x jk|Xk(t) = xik)|(Nork)}P(Nork)

=

n∏
k=1

PD{(Xk(t + 1) = x jk|Xk(t) = xik)|(Nork)}(accept(Nor)), (3.21)

where Nork represents that the kth individual is affected by the normative knowledge, and P(Nork) is
the probability of the next generation of differential operation, accept(Nor) represents the population
acceptance proportion under the guidance of normative knowledge.

According to the meaning of the normative knowledge, each dimension of the individual after the
difference operation does not exceed the feasible region. Therefore

PD{(Xk(t + 1) = x jk|Xk(t) = xik)|(Nork)} > 0, (3.22)

and because of accpet(Nor) > 0, so pD
i j > 0.

AIMS Mathematics Volume 8, Issue 6, 13984–14007.



14001

Considering that the selection mechanism of survival of the fittest is used in the ADECA algorithm
to obtain the next generation population, the transition probability pS

i j > 0, so we can get

P{X(t + 1) ∩ B , ∅|X(t) = Xi} = pD
i j p

S
i j > 0, Xi ∩ B = ∅. (3.23)

It can be seen from Eqs (3.20) and (3.23) that the transition probability of the population evolution
process of ADECA algorithm meets the condition of Corollary 3.1. It can be obtained that the state
vector {X(t)} of the ADECA algorithm weakly converges to the global optimal solution set S ∗ in
probability. �

4. Experimental design and results

In this section, some matrix games are calculated to demonstrate the effectiveness of the proposed
method. Taking the classic prisoner’s dilemma game, the husband and wife game and the rock-paper-
scissors game as examples. The algorithm ADECA, DECA and DE are used to find the Nash equilibria
based on the system of equations, and the simulation comparison figures of them are given. The
parameters of the algorithm are set as: N = 100, T = 300, F0 = 0.4, CR0 = 0.9, P = 0.2, ε = 10−8, etc.
The following is the process of computing these games:

Example 4.1. Prisoner’s dilemma game Γ1(S 1, S 2, X1, X2, A, B), where S 1 = {s1
1, s

1
2} =

{con f ess, not con f ess}, S 2 = {s2
1, s

2
2} = {con f ess, not con f ess}, X1 = {x1

1, x
1
2}, X2 = {x2

1, x
2
2}, and x1

1, x
2
1

respectively represent the probability of player 1, 2 choosing to confess, x1
2, x

2
2 respectively represent

the probability of player 1, 2 choosing not to confess, A and B are payoff matrices of the player in this
game:

A =

[
−5 0
−8 −1

]
, B =

[
−5 −8
0 −1

]
.

According to formula (2.7), the above game can be transformed into the following equations:
λ1

12 + x1
1(−3x2

1 − x2
2) = 0,

λ1
21 + x1

2(3x2
1 + x2

2) = 0,
λ2

12 + x2
1(−3x1

1 − x1
2) = 0,

λ2
21 + x2

2(3x1
1 + x1

2) = 0.

(4.1)

Denote each equation of the above equations by fi, i = 1, 2, 3, 4. According to the formula (2.9), the
Eq (4.1) is equivalent to the following optimization problem:

min F = | f1(λ1
12, x

1
1, x

2
1, x

2
2)| + | f2(λ1

21, x
1
2, x

2
1, x

2
2)| + | f3(λ2

12, x
2
1, x

1
1, x

1
2)| + | f4(λ2

21, x
2
2, x

1
1, x

1
2)|,

x1
1 + x1

2 = 1, (4.2)
x2

1 + x2
2 = 1.

Making use of the ADECA algorithm, the DECA algorithm and the DE algorithm, we show that the
solution of this problem is x1 = {1, 0}, x2 = {1, 0}, λ1

12 = λ2
12 = 3, λ1

21 = λ2
21 = 0, that is, the prisoner’s

dilemma game has only one pure strategy Nash equilibrium (con f ess, con f ess).
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Example 4.2. Husband and wife game Γ2(S 1, S 2, X1, X2, A, B), where S 1 = {s1
1, s

1
2} =

{ f ootball match, f ashion show}, S 2 = {s2
1, s

2
2} = { f ootball match, f ashion show}, X1 = {x1

1, x
1
2},

X2 = {x2
1, x

2
2}, and A and B are the payoff matrices of player 1, 2 respectively, as shown below:

A =

[
1 0
0 2

]
, B =

[
2 0
0 1

]
.

According to the above payoff matrices and the calculation steps of Example 1, it is found that
this problem has two pure strategy Nash equilibria and one mixed strategy Nash equilibrium: x1 =

(1, 0), x2 = (1, 0); x1 = (0, 1), x2 = (0, 1); x1 = (1/3, 2/3), x2 = (2/3, 1/3).

Example 4.3. Rock-paper-scissors game Γ3(S 1, S 2, X1, X2, A, B), where S 1 = {s1
1, s

1
2, s

1
3} =

{rock, paper, scissors}, S 2 = {s2
1, s

2
2, s

2
3} = {rock, paper, scissors}, X1 = {x1

1, x
1
2, x

1
3}, X2 = {x2

1, x
2
2, x

2
3}

and A, B are the payoff matrices of player 1, 2 respectively, as shown below:

A =


0 1 −1
−1 0 1
1 −1 0

 , B =


0 −1 1
1 0 −1
−1 1 0

 .
Calculating this example by using the ADECA, DECA and DE algorithms, we find there is only one

mixed strategy Nash equilibrium: x1 = (1/3, 1/3, 1/3), x2 = (1/3, 1/3, 1/3).

The following Figures 2–4 are comparison figures of solving the above games with the ADECA,
DECA and DE algorithms.

Figure 2. Comparison of solving the prisoner’s dilemma game.
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Figure 3. Comparison of solving the husband and wife game.

Figure 4. Comparison of solving the rock-paper-scissors game.

It can be clearly seen from Figures 2–4 that the ADECA algorithm has the best performance in the
calculation process, followed by DECA algorithm, and DE algorithm is the worst, especially Figure 4
is the most obvious, where the ADECA algorithm finds the global optimal solution in the first 25
iterations, while the DECA and DE algorithms reach the optimal solution after 200 iterations. On the
one hand, we found that the DECA algorithm and the DE algorithm have similar performance. This
seems rational because the DECA algorithm only adds one more belief space in the implementation
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process, which increases the operation of extracting individual hidden information, so it is only a little
faster than DE algorithm in convergence speed. On the other hand, with the increase of the number
of iterations, the diversity of individuals decreases and the algorithm easily falls into a local optimum.
Therefore, neither the DE algorithm nor the DECA algorithm avoids this result. However, the adaptive
parameters and improved mutation operations of the ADECA algorithm have played a role, which not
only maintaining the diversity of the population in the early stage of iteration, but also avoiding the
destruction of the optimal solution in the later stage of iteration, and speeding up the search for the
global optimal solution.

By analyzing the results obtained above, it can be seen that the ADECA algorithm proposed in
this paper can well find the equilibrium solutions of matrix games based on the system of equations.
Further, comparing this algorithm with the DECA and DE algorithms, we find that this algorithm has
a faster convergence speed and avoids falling into the local optimum. It provides a reference for future
studies on related issues.

5. Conclusions

In this paper, we study the Nash equilibria based on the system of equations. First, we give the
equivalence theorem between the Nash equilibria and the solutions of the system of equations, that is,
the Nash equilibria of the n-person finite noncooperative game are equivalent to the solutions of the
system of algebraic equations with a series of relaxation parameters. This method is a new method
for solving Nash equilibria except that the finding Nash equilibria is equivalent to solving optimization
problems and fixed point problems. It not only builds a bridge between these two types of problems
so that people can use the theories and methods of studying one problem to study another problem,
broadens the methods for finding the Nash equilibria and lays a mathematical foundation for finding the
Nash equilibria based on equations in the future. However, the equivalence form is also derived from
the definition of Nash equilibrium, which implies the rational behavior of players. Second, we provide
an equivalent form of solving matrix games and propose the ADECA algorithm. This algorithm uses a
simple DE algorithm as the population space of CA algorithm, and in order to improve the convergence
ability of the algorithm and global search capability, the mutation factor and crossover operator of the
DE algorithm are adaptively improved, and a more globally convergent mutation operation is also
proposed. Then, its convergence is proved theoretically by using finite Markov chain. Finally, the
superiority of the ADECA algorithm is verified through three classic matrix game examples, and we
also show that this algorithm can be used to find the Nash equilibria based on the equations, which lays
the foundation for future research.

Although the method proposed in this paper can solve n-person noncooperative games theoretically,
and provides specific steps for solving matrix games. It has certain research significance. However,
when calculating specific multiplayer games or more complex games, the fitness function becomes
increasingly complex due to the increase of the number of participants and the number of strategies,
which may lead to the result falling into the local optimal solution and ending the computing in
advance. Therefore, in order to overcome the limitations of the algorithm in solving multiplayer games
or more complex games, the algorithm needs to be further improved in the future.
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