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Abstract: In this paper, a new adaptive estimation approach is proposed for the spatially varying
coefficient models with unknown error distribution, unlike geographically weighted regression (GWR)
and local linear geographically weighted regression (LL), this method can adapt to different error
distributions. A generalized Modal EM algorithm is presented to implement the estimation, and the
asymptotic property of the estimator is established. Simulation and real data results show that the
gain of the new adaptive method over the GWR and LL estimation is considerable for the error of
non-Gaussian distributions.
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1. Introduction

In spatial data analysis, a common problem is determining the nature of the relationship between
variables. In many cases, a simple global model often fails to explain the relationships between certain
sets of variables, as the relationships between them may change with the change of position, which
is known as spatial heterogeneity. In order to deal with this heterogeneity, the model needs to reflect
the structure of spatial variation in the data. Suppose that the spatial data of n positions are randomly
selected in the spatial region D ⊆ R2, let ui = (ui1, ui2)⊤ ∈ D is the position of the point i, i = 1, · · · , n,
yi is the response variable, xi = (xi1, xi2, · · · , xip)⊤ is the explanatory variable and xi1 ≡ 1, allowing
a varying intercept in the model. {yi, xi, ui} satisfy the following spatially varying coefficient models
(SVCM) [1–3]:

yi = x⊤i β(ui) + εi =

p∑
k=1

xikβk(ui) + εi, i = 1, 2, · · · , n, (1.1)

where β(ui) = (β1(ui), β2(ui), · · · , βp(ui))⊤ is a vector of p-dimensional unknown space-varying
functional coefficients defined on D, εi is an independent and and identically distributed random noise,
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with E(εi) = 0, var(εi) = σ2, and are independent of xi. Over the past few decades, SVCM has been
widely used in geography [4], econometrics [5], meteorology [6], and environmental science [7]. When
βk(·) is a univariate function, the model (1.1) is a varying coefficient model and has been extensively
studied [8,9]. In this study, βk(·) is a bivariate function of the location-specific, and our main goal is to
estimate β = (β1, β2, · · · , βp) and explore the spatial heterogeneity of regression relations based on the
given observations {(yi, xi,ui)}ni=1.

In the rich literature on how to estimate the regression coefficients of SVCM, the Bayesian approach
and the smoothing approach are two competing methods. Firstly, the Bayesian approach is an important
spatial modeling method that assumes that the regression coefficients obey a certain prior distribution
and calculates their posterior distribution for estimation and inference. For example, Gelfand et al. [10]
developed a Bayesian hierarchical framework of spatial point reference data by formulating a Gaussian
process for spatially varying coefficients, and Assuncao [11] introduced the Bayesian space-varying
coefficient model (BVCM) for areal data. Recently, Kim and Lee [12] extended BVCM to handle
mixed data with point reference data and areal data. Luo et al. [13] built the Bayesian spatially
clustered coefficient (BSCC) model from the spanning trees of a graph. However, Bayesian methods
require careful selection of prior distributions and face the high computational cost issue. Secondly,
the smoothing method is a traditional framework for regression, divided into kernel smoothing and
smoothing splines. For example, Fotheringham et al. [1] adopted a locally weighted least squares
method of constructing weights by spatial kernel functions, namely geographically weighted regression
(GWR), which is essentially a local constant kernel smoother. Mu et al. [14] used binary splines over
triangulation to estimate regression coefficients, which solves the problem of inappropriate smoothness
of complex regional boundary features and processes large data sets quickly and effectively enough.
Yet, the kernel-based method needs to solve an optimization problem at each sample position which is
computationally intensive, and smoothing splines method inference for spatially varying coefficients
relies on a bootstrap method.

Currently, there are also numerous studies on variable selection in SVCM. Shin et al. [15] proposed
penalized quasi-likelihood methods with spatial dependence. Wang and Sun [16] represented the
space-varying coefficients as a combination of local polynomials at anchor points and applying the
least squares with an additive form of lasso and fused-lasso penalties. Li and Sang [17] proposed
a spanning tree graph fused lasso-based spatially clustered coefficient regression (SCC) model with
the assumption of spatial clusters, and the regularization term of the SCC model is generalized by a
chain graph guided fusion penalty plus a group lasso penalty [18]. However, each of these methods
estimated space-varying coefficients by the least squares criterion, corresponding to the likelihood
function when the error term is normally distributed. In practice, the error density was unknown, so
it is not appropriate to use the least squares method, which will lose some efficiency, but the adaptive
estimation method provides an alternative way.

The adaptive estimation method was first studied to consider the problem of estimating and inferring
an infinite dimensional parameter [19]. This method replaces the Gaussian density function with a
nonparametric estimate of the score function of the log-likelihood estimation and proves that efficiency
gain can be achieved in both varying coefficient models [20] and varying coefficient models with non-
stationary covariates [21]. In this study, we propose an adaptive estimation method to estimate spatially
varying coefficients, different from the least squares criterion, the logarithmic function of the new
adaptive estimation method is similar to the likelihood structure of the mixed density function, without
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an explicit solution, and we use the generalized Modal EM (GMEM) algorithm to achieve parameter
estimation [22]. Simulation results show that when the error distribution deviates from the normal
distribution, the new estimation is more effective than the existing GWR estimation based on least
squares. In addition, the new method is also comparable with existing GWR methods when the error is
completely normal. Finally, we illustrate the effectiveness of the proposed adaptive estimation method
through two real data examples.

The rest of this study is organized below. In Section 2, the adaptive estimation of spatial varying
coefficient models and the generalized Modal EM algorithm are introduced. In Section 3, through
simulation research, the proposed method is compared with the GWR method under five different
error densities. In Section 4, the new method is applied to two real-world data examples. This article is
briefly discussed in Section 5. All technical conditions and certifications are given in Section Appendix
A.

2. Adaptive kernel estimation method

For any given u0, approximating the spatially varying coefficients by Taylor’s expansion as

βk(ui) ≈ βk(u0) + β̇k(u0)(ui − u0) △= bk + ck(ui − u0), k = 0, · · · , p, (2.1)

where ui is in a neighborhood of u0, β̇k(u0) = {∂(βk(u)/∂u1, ∂(βk(u)/∂u2}u=u0 . Using the above
approximation, we have the following objective function for estimating (b1, · · · , bp) and (c1, · · · , cp)

n∑
i=1

yi −

p∑
k=1

{bk + ck(ui − u0)}xik

2

Kh(||ui − u0||), (2.2)

where Kh(·) = K(·/h)/h2, K(·) is a kernel function, h is a bandwidth, and ||s|| = (s⊤s)
1
2 for a vector s.

Throughout this study, a Gaussian kernel will be used for K(·). Due to the least squares in (2.2), the
resulting estimate may lose some efficiency when the error distribution is not normal. Therefore, we
develop an adaptive estimation procedure that can adapt to different error distributions.

Let f (ε) be the density function of ε. If f (ε) were known, it would be natural to estimate the
parameters in (2.1) by maximizing the following log-likelihood function

n∑
i=1

log f

yi −

p∑
k=1

{bk + ck(ui − u0)}xik

 Kh(||ui − u0||). (2.3)

However, in practice, f (ε) is generally unknown but can be replaced by a leave-one-out kernel density
estimator

f̃ε =
1
n

n∑
j,i

Kh0(εi − ε̃ j), (2.4)

where ε̃ j = y j−
∑p

k=0 x jkβ̃k(u j) is a preliminary estimation of ε j based on initial estimator β̃k, +and β̃k =

b̃k, which can be estimated by local linear regression estimator (2.2). Let θ = (b1, · · · , bp, c1, · · · , cp)⊤.
Then our proposed adaptive estimate for the parameter θ is

θ̂ = arg max
θ

Q(θ) (2.5)
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where

Q(θ) =
n∑

i=1

log

1
n

∑
j,i

Kh0[yi −

p∑
k=1

{bk + ck(ui − u0)}xik − ε̃ j]

 Kh(||ui − u0||). (2.6)

Since the logarithmic function of (2.6) has an internal sum, which is similar to the objective function
from a random sample of mixed density, so there is no explicit solution. In the following, we use the
generalized Modal EM algorithm proposed in Yao [22] to calculate the parameters.

Generalized Modal EM algorithm (GMEM): GMEM algorithm is the generalization of Modal
EM (MEM) algorithm [23] that finds the mode of the mixture density and does nonparametric
clustering. The MEM algorithm comprises two steps similar to the expectation and the maximization
steps in EM algorithm, which aims at maximizing the likelihood function for finite mixture models
when the model contains unobserved latent variables. Especially, suppose an m-component finite
mixture density be

f (x) =
m∑

j=1

π j f j(x),

where π j is the mixing proportions of mixture component j, and f j(x) is the density of component j.
Given any initial value x(0), in the (l + 1)th step of the MEM algorithm solves a local maximum of the
mixture by the following two steps:
1) let

p j =
π j f j(x(l))

f (x(l))
, j = 1, · · · ,m,

2) update

x(l+1) = arg max
x

m∑
j=1

p j log f j(x).

The first step is the “Expectation” step where the probability of each mixture component j, 1 ≤ j ≤ m,
at the current point x(r) is computed. The second step is the “Maximization” step, similar to EM
algorithm, which is usually much easier than the original objective function. Detailed properties of
MEM algorithms refer to Li et al. [23]. Yao [22] proves that the MEM algorithm can be applied to
maximize a general mixture-type objective function

f (x) =
m∑

j=1

w j

log{
K∑

k=1

a jk f jk(x)}

 (2.7)

where wk and akl are known positive constants, f jk(x) is positive known function, when j = 1, the
objective function (2.7) is simplified to

f (x) = w1 log{
K∑

k=1

a1k f1k(x)} ∝
K∑

k=1

a1k f1k(x),

Therefore, the MEM algorithm in Eq (2.7) is a special case of the generalized Modal EM algorithm
(GMEM) if

∑K
k=1 a1k = 1 and f1k(x) are density functions. Specifically, given the initial value x(0), in

AIMS Mathematics Volume 8, Issue 6, 13923–13942.



13927

the (l + 1)th step of the GMEM algorithm are following:
E-step: let

p(l+1)
jk =

a jk f jk(x(l))∑K
k=1 a jk f jk(x(l))

, j = 1, · · · ,m, k = 1, · · · ,K,

M-step: update

x(l+1) = arg max
x

m∑
j=1

K∑
k=1

{w j pl+1
jk log f jk(x)}.

In this study, we note that the objective function Q(θ) of (2.6) has the mixture form of (2.7).
Specially, Kh(ui − u0), 1

n ,Kh0[yi −
∑p

k=1{bk + ck(ui − u0)}xik − ε̃ j] in (2.6) corresponds to w j, a jk, f jk(x)
in (2.7), respectively. Therefore, GMEM could be directly applied to estimate the parameters of bk, ck

in (2.6). Let θ(0) be the initial estimator obtained by minimizing (2.2), θ(l) = (b(l)
1 , · · · , b

(l)
p , c(l)

1 , · · · , c
(l)
p )⊤

is the estimator of (l)th iteration, ε̃ j is a preliminary estimation of ε j and no need to update,
zi = {x⊤i , (xi ⊗ (ui − u0))⊤}⊤. At the (l + 1)th iteration, steps E and M are as follows:
E-step: calculate the classification probabilities p(k+1)

i j ,

p(l+1)
i j =

Kh0[yi −
∑p

k=1{b
(l)
k + c(l)

k (ui − u0)}xik − ε̃ j]∑
j,i Kh0[yi −

∑p
k=1{b

(l)
k + c(l)

k (ui − u0)}xik − ε̃ j]
. (2.8)

M-step: update θ(l+1)

θ(l+1) = arg max
θ

n∑
i=1

∑
j,i

{p(l+1)
i j Kh(||ui − u0||) log(Kh0[yi −

p∑
k=1

{bk + ck(ui − u0)}xik − ε̃ j])}

=

n∑
i=1

∑
j,i

arg min
θ
{p(l+1)

i j Kh(||ui − u0||)[yi − ε̃ j − z⊤i θ]2}

= (
n∑

i=1

∑
j,i

p(l+1)
i j Kh(||ui − u0||)zi z⊤i )−1

n∑
i=1

∑
j,i

p(l+1)
i j Kh(||ui − u0||)(yi − ε̃ j)zi

= (Z⊤WZ)−1Z⊤WY,

(2.9)

where Z = (Z1,n−1, · · · , Zn,n−1)⊤,

Zi,n−1 =



xi1 xi1 · · · xi1
...

...
... · · ·

xip xip · · · xip

(ui − u0)xi1 (ui − u0)xi1 · · · (ui − u0)xi1
...

...
... · · ·

(ui − u0)xip (ui − u0)xip · · · (ui − u0)xip


3p×(n−1)

,

W = diag(p(l+1)
12 Kh(||u1 − u0||), · · · , p

(l+1)
1n Kh(||u1 − u0||), · · · , p

(l+1)
n,n−1Kh(||un − u0||)), Y = (y1 − ε̃2, · · · , y1 −

ε̃n, · · · , yn− ε̃n−1)⊤, and the second equation follows the use of Gaussian kernel. If ||θ(l+1)− θ(l)|| ≤ 10−5,
the algorithm ends. Otherwise, the E and M steps of the algorithm continue to iterate.
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Proposition 2.1. Each iteration of the above E and M steps will monotonically increase Q(θ) in the
Eq (2.6), i.e., for any l,

Q(θ(l+1)) ≥ Q(θ(l)).

The consistency and asymptotic of θ are established. Let H = diag(1, h, h) ⊗ Ip, where ⊗ is
the Kronecker product and Ip is the unit matrix of p × p. For i, j = 0, 1, 2, k = 1, 2, denote
γi j =

∫
ui

kK j(∥u∥)du with u = (u1, u2), and q(·) is the marginal density function of u.

Theorem 2.1. Under the regularity conditions in the A, there exists a consistent maximizer θ̂ =
(b̂1, · · · , b̂p, ĉ1, · · · , ĉp)⊤ of (2.6) with probability approaching 1 such that

H(θ̂ − θ) = Op{(nh2)−1/2 + h2}.

Based on Theorem 2.1, we can know that the proposed adaptive estimator of θ is consistent and
its proof is provided in the Appendix. Next, we provide the asymptotic distribution of the proposed
estimator.

Theorem 2.2. Suppose that the regularity conditions in the A hold. Then θ̂, given in Theorem 2.1, has
the following asymptotic distribution

√
nh2{H(θ̂ − θ) − S−1 h2

2

p∑
k=1

tr(Hβk)ψk(1 + op(1))}
D
−→ N(03p×1, [E{ρ′(ε)2}]−1q(u0)−1S−1ΛS−1)}},

where ρ(·) = log f (·), S = diag(γ01, γ21, γ21) ⊗ Γ(u0), Γ(u0) = {Γk j(u0)}1≤k, j≤p, Γk j(u0) = E(xikxi j|u0),
Λ = diag(γ02, γ22, γ22) ⊗ Γ(u0), and ψk =

(
γ21
02×1

)
⊗ (Γk j(u0))⊤1≤ j≤p.

3. Simulation study

This section simulates the proposed adaptive estimation method and compares it with that of the
local linear geographically weighted regression (LL) [24] and the Geographically Weighted Regression
Model (GWR). In numerical experiments, the following four designs of error structure are considered:

1) ε ∼ N(0, 1);
2) ε ∼ t3;
3) ε ∼ 0.5N(−1, 0.52) + 0.5N(1, 0.52);
4) ε ∼ eT − E(eT ), where T ∼ N(0, 1).

The first is the standard normal distribution as a benchmark for comparison, and the second is the t
distribution with 3 degrees of freedom. The distributions of the third are doublet and left-biased, and
the last one has a long right tail. For the above error distribution, the population positions are located
at the N = 25 × 25 regular grid in the square region of D = [0, 1]2, and the distance between any two
adjacent points in the horizontal and vertical directions is equal. At each location, the response variable
y1, · · · , yn is generated by yi = β1(ui)xi1+β2(ui)xi2+εi, where x1 and x2 follow N(0, 1) with correlation
coefficient ρ = 1/

√
2, and the regression coefficient function is as follows:

β1(u) = 1 +
25
12

(u1 + u2),
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β2(u) = 1 +
1

324
[36 − (6 −

25u1

2
)2][36 − (6 −

25u2

2
)2],

the true coefficient functions contour plots of β1(u) and β2(u) are shown in Figure 1. We randomly
sample n = 200 and 400 points from the 25 × 25 points in each of the 100 Monte Carlo experiments.

There are two bandwidths h and h0 in the estimate, we use the leave-one-out cross-validation method
to select h, and the choice of h0 = h/ log(n) follows Linton and Xiao [25]. The performance of the
estimator β̂(·) is evaluated by the square root of the average squared errors (RASE), which calculated
as follows:

RAS E =

√√√
1
n

n∑
i=1

2∑
p=1

[β̂p(ui) − βp(ui)]2.

The simulation results are summarized in Table 1. It can be clearly seen that when the error is
non-normal, the proposed adaptive estimation is better than LL and GWR, and the improvement of
estimation efficiency may also be considerable. When the error is fully normally distributed, our
method is still comparable to the LL and GWR method.

Figure 1. True coefficient functions contour plots of β1 (left) and β2 (right).

Table 1. Comparison RASE and its standard error in brackets.

ε
n = 200 n = 400

GWR LL Adaptive GWR LL Adaptive
1 0.838(0.101) 0.787(0.099) 0.978(0.097) 0.677(0.051) 0.561(0.051) 0.790(0.048)
2 0.964(0.152) 0.857(0.123) 0.854(0.110) 0.737(0.090) 0.655(0.067) 0.538(0.028)
3 1.104(0.109) 1.009(0.107) 0.940(0.081) 0.796(0.061) 0.685(0.052) 0.632(0.031)
4 0.869(0.175) 0.837(0.127) 0.653(0.084) 0.692(0.158) 0.621(0.131) 0.405(0.060)

GWR: geographically weighted regression; LL: local linear geographically weighted regression.

Figure 2 visualizes the estimated surfaces of β1(·) and β2(·) using adaptive estimation method, LL
and GWR based on sample size n = 400 when the error distribution of ε is the case 3, These results
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highlight that the adaptive estimation method can capture more accurate spatial pattern than the LL
and GWR method.
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Figure 2. Estimated surface via adaptive method, LL and GWR based on sample size n =
400 when the error distribution in the case 3.
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4. Real data analysis

Example 1. (Dublin Voter Turnout Data) This section applies the proposed methodology to Dublin
Voter data. This dataset includes the proportion of the voting population in 322 areas, as well as several
variables that may explain the change in the proportion of the voting population. Specifically, we will
explore how the unemployment rate (Unempl), the proportion of ages 25 to 44 (Age 25 44) and no
formal education (LowEduc) affect the proportion of the voting population in each region (GenEl2004).
Figure 3 shows the spatial distribution of the dependent variable and the three independent variables.

(a) GenEl2004 (b) Unempl (c) Age25 44 (d) LowEduc

Figure 3. Response and independent variables for voter turnout data in Dublin.

The dependent variable GenEl2004 and the independent variable Unempl, Age25 44, LowEduc are
y, x2, x3, x4, respectively, x1 = 1 as intercept terms. We use the spatially varying coefficient models to
fit the data as follows:

yi = β1(ui) +
4∑

k=2

βp(ui)xik + εi.

Figure 4 summarizes estimated coefficient functions using the adaptive method, LL, and GWR
respectively, which are considerably in space. Figure 7(a) shows a residual QQ-plot of the Dublin
voter turnout via the adaptive method. From the plot, we can see that the distribution of the residual is
very close to normal.

To evaluate the prediction accuracy of the adaptive method, we set aside 50 observations for
comparing the mean squared prediction error (MSPE) of the adaptive method, LL, and GWR. The
MSPE is computed as follows:

MSPE =
1
m

m∑
j=1

(y j − ŷ j)2, j = 1, · · · ,m,

where m = 50 and ŷ j = β̂1(u j) +
∑4

k=2 β̂p(u j)x jk. The MSPE values by three methods are comparable,
which are 0.018, 0.015 and 0.017, respectively. The QQ-plot of residuals from the Fingure 7(a) are
close to the normal distribution, which explains why the MSPE of the adaptive method is very close to
the MSPE of the GWR and the LL.

AIMS Mathematics Volume 8, Issue 6, 13923–13942.
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(a) β̂1 (b) β̂2 (c) β̂3 (d) β̂4

Figure 4. Estimated coefficient functions for voter turnout data in Dublin using adaptive
method (top), LL (middle) and GWR (bottom).

Example 2. (England and Wales House Price Data) England and Wales house price data is publicly
available in the R package GWmodel. The dataset includes 10 variables, namely: house sale price
(PurPrice), BldIntWr, BldPostW, bld60, bld70, bld80, TypDetch, TypS emiD, TypFlat and floor
area (FlrArea). With the exception of the floor area (FlrArea), all independent variables are indicative
variables (1 or 0). Figure 5 is shown Spatial distribution of PurPrice and FlrArea.

(a) Purprice (b) FlrArea

Figure 5. Response and independent variables for house price data in England and Wales.

We take the house sale price (y) as the dependent variable, FlrArea(x2) as the independent variable,
x1 = 1 as the intercept term, and the spatially varying coefficient models of the fitted data is:

yi = β1(ui) + β2(ui)x2 + εi.

AIMS Mathematics Volume 8, Issue 6, 13923–13942.
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The estimated coefficient function is shown in Figure 6, and Figure 7(b) shows a residual QQ plot
via adaptive method for England and Wales house price data. Similar to the analysis in example 1, we
set aside 50 observations as the test set. The MSPE of the adaptive approach, LL and GWR are 0.302,
0.339 and 0.548, respectively. The QQ-plot of residuals from the above fit showed a clear deviation
from normality, which explains why the MSPE from the adaptive approach is smaller than LL and
GWR.

(a) β̂1 (b) β̂2

Figure 6. Estimated coefficient functions for house price data in England and Wales using
adaptive method (top), LL (middle) and GWR (bottom).

AIMS Mathematics Volume 8, Issue 6, 13923–13942.
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(a) (b)

Figure 7. Residual QQ-plot for two data examples: (a) Dublin voter turnout data; (b)
England and Wales housing data.

5. Concluding remarks

In this article, we proposed an adaptive estimation for spatially varying coefficient models. The new
estimation procedure can adapt to different errors and improve estimation efficiency than the LL and
the GWR method. Simulation studies and two real data applications confirmed our theoretical findings.

The proposed method in this article can be easily extended to semiparametric varying-coefficient
partially linear models, where some coefficients in the model are assumed to be constant and the
remaining coefficients are allowed to spatially vary across the studied region. Another interesting
future work is the spatiotemporal extension to analyze data collected across time and space.
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A. Appendix

This section will give proofs of propositions 2.1, theorem 2.1 and theorem 2.2, with the required
regular conditions as follows:

1) K(·) is bounded, symmetric, and has bounded support and bounded derivatives;
2) {xi}

n
i=1, {ui}

n
i=1, {εi}

n
i=1 are independent and identically distributed and {εi}

n
i=1 is independent of

{xi}
n
i=1 and {ui}

n
i=1. In addition, the independent variable x has bounded support;

3) The probability density function f (ε) of ε has fourth-order bounded continuous derivative.
Assume E[ρ′(ε)] = 0, E[ρ′′(ε)] < ∞, E[ρ′(ε)2] < ∞ and ρ′′′(·) is bounded;

4) The marginal density q(u) of u has a continuous second derivative in some neighborhood of u0

and q(u0) , 0;
5) h→ 0, when n→ ∞, nh→ ∞, h0 = h/ log(n);
6) βk(·), k = 1, · · · , p has bounded and continuous third derivative.

Proof of propositions 2.1: Note that
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Q(θ(l+1)) − Q(θ(l))

=

n∑
i=1

Kh(||ui − u0||) log


∑

j,i Kh0

[
yi −

∑p
k=1

{
b(l+1)

k + c(l+1)
k (ui − u0)

}
xik − ε̃ j

]
∑

j,i Kh0

[
yi −

∑p
k=1

{
b(l)

k + c(l)
k (ui − u0)

}
xik − ε̃ j

]


=

n∑
i=1

Kh(||ui − u0||) log
∑
j,i

 Kh0

[
yi −

∑p
k=1

{
b(l)

k + c(l)
k (ui − u0)

}
xik − ε̃ j

]
∑

j,i Kh0

[
yi −

∑p
k=1

{
b(l)

k + c(l)
k (ui − u0)

}
xik − ε̃ j

]
×

Kh0

[
yi −

∑p
k=1

{
b(l+1)

k + c(l+1)
k (ui − u0)

}
xik − ε̃ j

]
Kh0

[
yi −

∑p
k=1

{
b(l)

k + c(l)
k (ui − u0)

}
xik − ε̃ j

] 
=

n∑
i=1

Kh(||ui − u0||) log

∑j,i

p(l+1)
i j

Kh0

[
yi −

∑p
k=1

{
b(l+1)

k + c(l+1)
k (ui − u0)

}
xik − ε̃ j

]
Kh0

[
yi −

∑p
k=1

{
b(l)

k + c(l)
k (ui − u0)

}
xik − ε̃ j

]
 ,

where

p(l+1)
i j =

Kh0

[
yi −

∑p
k=1

{
b(l)

k + c(l)
k (ui − u0)

}
xik − ε̃ j

]
∑

j,i Kh0

[
yi −

∑p
k=1

{
b(l)

k + c(l)
k (ui − u0)

}
xik − ε̃ j

] .
From Jensen’s inequality,

Q(θ(k+1)) − Q(θ(k))

≥

n∑
i=1

Kh(||ui − u0||)
∑
j,i

p(l+1)
i j log

Kh0

[
yi −

∑p
k=1

{
b(l+1)

k + c(l+1)
k (ui − u0)

}
xik − ε̃ j

]
Kh0

[
yi −

∑p
k=1

{
b(l)

k + c(l)
k (ui − u0)

}
xik − ε̃ j

]
 .

Based on the properties of step M of formula (2.9), it is proved that Q(θ(k+1)) − Q(θ(k)) ≥ 0.

Proof of theorem 2.1: According to the the result of Linton and Xiao [25], the asymptotic behaviour
of θ̂ in (7) is the same as that obtained from (4). Therefore, we prove the asymptotic properties of θ̂
based on (2.3).

Denote θ∗ = Hθ, x∗i =
(
xi1, · · · , xip, (ui−u0

h )⊤xi1, · · · , (ui−u0
h )⊤xip

)⊤
, Ki = Kh(||ui − u0||), R(ui, xi) =∑p

k=1 βk(ui)xik −
∑p

k=1{bk + ck(ui −u0)}xik, and an = (nh2)−1/2 + h2. Let ρ(·) = log f (·), objective function
(2.3) is written as

L(θ) =
1
n

n∑
i=1

Kiρ(yi − θ
∗⊤x∗i ) △= L(θ∗).

Based on the definition of θ∗, it is sufficient to show that for any given η > 0, there exists a large
constant c such that

P{ sup
∥µ∥=1

L(θ∗ + anµ) < L(θ∗)} ≥ 1 − η

where µ has the same dimension as θ, an is the convergence rate. By using Taylor expansion, it follows
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that

L(θ∗ + anµ) − L(θ∗) =
1
n

n∑
i=1

Ki{ρ(εi + R(ui, xi) − anµ
⊤x∗i ) − ρ(εi + R(ui, xi))}

= −
1
n

n∑
i=1

Kiρ
′(εi + R(ui, xi))anµ

⊤x∗i +
1

2n

n∑
i=1

Kiρ
′′(εi + R(ui, xi))a2

n(µ⊤x∗i )2

−
1

6n

n∑
i=1

Kiρ
′′′(zi)a3

n(µ⊤x∗i )3

△
= I1 + I2 + I3,

where zi is a value between εi + R(ui, xi) − anµ
⊤x∗i and εi + R(ui, xi).

For I1 = −
1
n

∑n
i=1 Kiρ

′(εi + R(ui, xi))anµ
⊤x∗i , Let δ1 = E[ρ′′(εi)]. Since R(ui, xi) =

∑p
k=0 βk(ui)xik −∑p

k=0{bk + ck(ui − u0)}xik = Op(h2) = op(1) and E[ρ′(ε)] = 0, so

E(I1) = −E(Kiρ
′(εi + R(ui, xi))anµ

⊤x∗i )
≈ −anE{Kiρ

′′(εi)R(ui, xi)µ⊤x∗i }
= −anE[ρ′′(εi)]E[KiR(ui, xi)µ⊤x∗i ]
= −anδ1E[KiR(ui, xi)µ⊤x∗i ]
= −anδ1E{E[R(ui, xi)µ⊤x∗i |ui]Ki}

By using µ⊤x∗i ≤ ∥µ∥ · ∥x
∗
i ∥, we have E(I1) = O(anh2).

var(I1) =
1
n

var{Kiρ
′(εi + R(ui, xi))anµ

⊤x∗i }

=
1
n
{E(A2) − [E(A)]2}

where A = Kiρ
′(εi + R(ui, xi))anµ

⊤x∗i . Let δ2 = E[ρ′(εi)2], then

E(A2) = E{K2
i ρ
′(εi + R(ui, xi))2a2

n(µ⊤x∗i )2}

≈ a2
nE{K2

i ρ
′(εi)2(µ⊤x∗i )2}

= a2
nδ2E{E[µ⊤x∗i x∗⊤i µ|ui]K2

i }

= a2
nδ2µ

⊤E{E[x∗i x∗⊤i |ui]K2
i }µ

Note that x∗i x∗⊤i =
(
xi jxik(ui−u0

h )l((ui−u0
h )l′)⊤

)
1≤ j,k≤p;l,l′=0,1

, Γ jk(ui) = E(xi jxik|ui),
∫

R2 uK(∥u∥)du = 02×1,
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R2 uu′uK(∥u∥)du = 02×1,

∫
R2 u1u2K(∥u∥)du = 02×1, for 1 ≤ j, k ≤ p, then

E
[
E(xi jxik|ui)

(ui − u0

h

)l
((ui − u0

h

)l′
)⊤

K2
i

]
= E

[
Γ jk(ui)

(ui − u0

h

)l
((ui − u0

h

)l′
)⊤

K2
i

]
=

1
h4

∫
Γ jk(ui)

(ui − u0

h

)l
((ui − u0

h

)l′
)⊤

K2
(
∥ui − u0∥

h

)
q(ui)dui

=
1
h2 q(u0)Γ jk(u0)

∫
tl(tl′)⊤K2(∥t∥)d t

(A.1)

The second equation follows the Taylor expansion, and the assumption ε is independent of u and x.
Then, E{E[x∗i x∗⊤i |ui]K2

i } =
1
h2 q(u0)Λ, where Λ = diag(1, ν2, ν2) ⊗ Γ(u0) is a 3p × 3p matrix. Thus,

E(A2) = a2
nδ2

1
h

q(u0)µ⊤Λµ = O(a2
n

1
h2 ).

Note that [E(A)]2 = [E(I1)]2 = [O(anh2]2 ≪ E(A2), then var(I1) ≈ 1
n [E(A)]2 = O(a2

n
1

nh2 ). Hence,

I1 = E(I1) + Op(
√

var(I1)) = Op(anh2) + Op(

√
a2

n
1

nh2 ) = Op(a2
n).

Similarly,

I2 =
1

2n

n∑
i=1

Kiρ
′′(εi + R(ui, xi))a2

n(µ⊤x∗i )2 = Op(a2
n),

and

I3 =
1

6n

n∑
i=1

Kiρ
′′′(zi)a3

n(µ⊤x∗i )3 = Op(a3
n).

Assume δ1 > 0, we can choose c large enough such that I1 + I2 + I3 < 0 with probability at least

1 − η. Thus P
{

sup
∥µ∥=c

L(θ∗ + anµ) < L(θ∗)
}
≥ 1 − η.

Proof of theorem 2.2: Since θ̂∗ maximizes L(θ∗), then L′(θ̂∗) = 0. By Taylor expansion,

0 = L′(θ̂∗) = L′(θ∗) + L′′(θ∗)(θ̂∗ − θ∗) + op(1),

thus
θ̂∗ − θ∗ = −[L′′(θ∗)]−1L′(θ∗)(1 + op(1)).

For L′′(θ∗), since L(θ∗) = 1
n

∑n
i=1 Kiρ(yi − θ

∗⊤x∗i ), and yi − θ
∗⊤x∗i = εi + R(ui, xi), then L′′(θ∗) =

1
n

∑n
i=1 Kiρ

′′(εi + R(ui, xi))x∗i x∗⊤i , and the expectation is

E[L′′(θ∗)] = E{Kiρ
′′(εi + R(ui, xi))x∗i x∗⊤i }

≈ E{Kiρ
′′(εi)x∗i x∗⊤i }

= δ1E{E{x∗i x∗⊤i |ui}Ki}

= δ1q(u0)Q(1 + o(1)),
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where S = diag(γ01, γ21, γ21) ⊗ Γ(u0), the last equation follow (A.1). In this study, we consider the
element-wise variance of a matrix, then

var[L′′(θ∗)] =
1
n

var{Kiρ
′′(εi + R(ui, xi))x∗i x∗⊤i }

= Op(
1

nh2 ).

Based on the result L′′(θ∗) = E[L′′(θ∗)]+Op
√

var[L′′(θ∗)] and the assumption nh→ ∞, it follows that
L′′(θ∗) = δ1q(u0)S(1 + op(1)).

For L′(θ∗),

L′(θ∗) = −
1
n

n∑
i=1

Kiρ
′(εi + R(ui, xi))x∗i

= −
1
n

n∑
i=1

Kiρ
′(εi)x∗i −

1
n

n∑
i=1

Kiρ
′′(εi)R(ui, xi))x∗i

△
= −wm − νn

The asymptotic result is determined by wm. Next, calculating the order of νn.

E(νn) = E[Kiρ
′′(εi)R(ui, xi))x∗i ] = δ1E{E{R(ui, xi)x∗i |ui}Ki}

For R(ui, xi)x∗i , since β′′′j (·) is bounded, then we have

R(ui, xi) =
p∑

k=1

βk(ui)xik −

p∑
k=1

{bk + ck(ui − u0)}xik

=

p∑
k=1

1
2

(ui − u0)⊤Hβk(u0)(ui − u0)xik(1 + op(1))

whereHβk is Hessian matrix. By x∗i = (xi1, · · · , xip, (ui−u0
h )⊤xi1, · · · , (ui−u0

h )⊤xip)⊤,

R(ui, xi)x∗i =


 p∑

k=1

1
2

(ui − u0)⊤Hβk(u0)(ui − u0)xikxi j


1≤ j≤p

,

 p∑
k=1

1
2h

(ui − u0)⊤Hβk(u0)(ui − u0)(ui − u0)⊤xikxi j


1≤ j≤p


⊤

3p×1

.
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The expectation about the first item is

E

E

 p∑
k=1

1
2

(ui − u0)⊤Hβk(u0)(ui − u0)xikxi j|ui

 Ki


= E

 p∑
k=1

1
2

(ui − u0)⊤Hβk(u0)(ui − u0)Γk j(ui)Ki


=

h2

2
q(u0)

p∑
k=1

Γk j(u0)
∫

t⊤Hβk tK(∥t∥)d t

=
h2

2
q(u0)

p∑
k=1

tr(Hβk)Γk j(u0)γ21,

and the expectation on second item is

E

E

 p∑
k=1

1
2h

(ui − u0)⊤Hβk(u0)(ui − u0)2xikxi j|ui

 Ki


=

h2

2
q(u0)

p∑
k=1

Γk j(u0)
∫

t⊤Hβk t t⊤K(∥t∥)dt

= 02×1,

then

E(νn) = δ1
h2

2
q(u0)

p∑
k=1

tr(Hβk)ψ j(1 + o(1))

where ψk =
(
γ21
02×1

)
⊗ (Γk j(u0))⊤1≤ j≤p is a 3p × 1 vector for j = 1, · · · , p. Since var(νn) =

1
nvar{Kiρ

′′(εi)R(ui, xi))x∗i } = O(h2/n), then based on the result νn = E(νn) + var(
√
νn) and the

assumption nh→ ∞, it follows that

νn = δ1
h2

2
q(u0)

p∑
k=1

tr(Hβk)ψ j(1 + op(1)).

Then

θ̂∗ − θ∗ = −[L′′(θ∗)]−1L′(θ∗)(1 + op(1))

=
S−1wn

δq(u0)
(1 + op(1)) + S−1 h2

2

p∑
k=1

tr(Hβk)ψ j(1 + op(1)).

For wn, based on the assumption E[ρ′(εi)] = 0, we can easily get E(wn) = 0, and

var(wn) =
1
n

var{
1
n

Kiρ
′(εi)x∗i }

=
1
n

E{K2
i ρ
′(εi)2x∗i x∗⊤i }

=
1

nh2 δ2q(u0)Λ(1 + o(1)).
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Based on Lyapunov Central Limit Theorem, we have the following result

√
nh2{θ̂∗ − θ∗ − S−1 h2

2

p∑
k=1

tr(Hβk)ψk(1 + op(1))}
D
→ N(03p×1, δ

−2
1 δ2q(u0)−1S −1ΛS −1).

By δ−1
1 = δ2, the theorem is proved.
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