
AIMS Mathematics, 8(5): 12559–12575. 

DOI: 10.3934/math.2023631 

Received: 18 October 2022 

Revised: 17 November 2022 

Accepted: 18 December 2022 

Published: 27 March 2023 

http://www.aimspress.com/journal/Math 

 

Research article 

Numerical investigations of nonlinear Maxwell fluid flow in the presence of 

non-Fourier heat flux theory: Keller box-based simulations 

Afraz Hussain Majeed1,†, Sadia Irshad2, Bagh Ali3, Ahmed Kadhim Hussein4,5, Nehad Ali 

Shah6,† and Thongchai Botmart7,* 

1 Department of Mathematics, Air University, PAF Complex E-9, Islamabad 44000, Pakistan 
2 Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology, 

Rahim Yar Khan, Punjab 64200, Pakistan 
3 Faculty of Computer Science and Information Technology, Superior University, Lahore 54000, 

Pakistan 
4 Mechanical Engineering Department, College of Engineering, University of Babylon, Hilla 00964, 

Iraq 
5 College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq 
6 Department of Mechanical Engineering, Sejong University, Seoul 05006, South Korea 
7 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, 

Thailand 

*Correspondence author: Email: thongbo@kku.ac.th. 

† These authors contributed equally to this work and are co-first authors. 

Abstract: We investigate the thermal flow of Maxwell fluid in a rotating frame using a numerical 

approach. The fluid has been considered a temperature-dependent thermal conductivity. A non-Fourier 

heat flux term that accurately reflects the effects of thermal relaxation is incorporated into the model 

that is used to simulate the heat transfer process. In order to simplify the governing system of partial 

differential equations, boundary layer approximations are used. These approximations are then 

transformed into forms that are self-similar with the help of similarity transformations. The 

mathematical model includes notable quantities such as the rotation parameter 𝜆, Deborah number 𝛽, 

Prandtl number Pr, parameter 𝜖  and the dimensionless thermal relaxation times  𝛾 . These are 

approximately uniformly convergent. The Keller box method is used to find approximate solutions to 

ODEs. We observed due to the addition of elastic factors, the hydrodynamic boundary layer gets 
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thinner. The thickness of the boundary layer can be reduced with the use of the k rotation parameter as 

well. When Pr increases, the wall slope of the temperature increases as well and approaches zero, 

which is an indication that Pr is decreasing. In addition, a comparison of the Cattaneo-Christov (CC) 

and Fourier models are provided and discussed. 

Keywords: Maxwell fluid; CC model; rotating surface; heat flux; Keller box method 

Mathematics Subject Classification: 76-10, 76R10 

 

1. Introduction 

Generalized Newtonian fluid mechanics has been a inspirational field as it describes such central 

problems from food processing, chemical and petroleum industries. Its models are valuable to find the 

effects of fluid flow in nature and industries such as biological fluid, pastes, polymeric liquids and 

numerous complicated mixtures. Viscoelastic fluids are exclusive generalized Newtonian fluids in 

which the shear-stress memory function of deformation rate. In these types of fluids, the deformation 

rate generally decreases when the shear stress is eliminated. This phenomenon is called stress 

relaxation. Many researchers have given special concentrate to the boundary layer flows of Maxwell 

fluid in the current background. The coupled flow and heat transfer of an upper-convected Maxwell 

fluid over a stretching plate with a velocity slip barrier was investigated by Han et al. [1]. The work 

under consideration obtained an analytical solution. The rotating flow of upper-convected Maxwell 

fluid was studied using the CC heat flux model by Mustafa [2], and it was discovered that the fluid 

velocity significantly rises. Bhattacharyya et al. [3] have introduced multiple results for Maxwell fluid 

with a porous shrinking surface by shooting numerical scheme. Fetecau et al. [4,5] have introduced 

the unsteady flows in Maxwell fluid with oscillation and acceleration mature in the rigid body in flow. 

Mahsud et al. [6] studied the Influence of time-fractional derivatives on the boundary layer flow of Maxwell 

fluids. It introduced that the Maxwell fluid is reasonable for relaxation effects which can’t be forecast in other 

various kinds of non-Newtonian fluid. Khan et al. [7] give a scientific report on heat transfer analysis in mixed 

convection flow of Maxwell fluid over an oscillating vertical plate. S. K. Nandy [8] investigated the heat 

transfer assessment over a decreasing sheet with the Navier slip effect and unsteady upper-convected 

Maxwell nanofluid flow, and they found that the quantities of the Nusselt number increased with 

increasing values of the Maxwell variable. Shah et al. [9] provided an idea of Maxwell fluid flow between 

vertical plates with damped shear and thermal flux a free convection phenomenon. Cao et al. [10] 

investigated the steady flow of Maxwell fluid over a porous medium using an interpolation 

methodology that is equivalent to the implicit RK. scheme. The expanding subject of engineering 

known as hybrid nano-liquid has captured the attention of a large number of researchers who were 

seeking for ways to increase the efficiency of cooling processes used in industry. These researchers 

were looking for ways to improve the effectiveness of cooling processes. A nano-liquid is a type of 

fluid that is created when powerful particles with sizes less than 100 nm in diameter are propagated in 

other fluids. One of the noticeable properties of a nano-liquid is its low thermal conductivity, which is 

one of the characteristics that can hinder the effectiveness of heat transport. Karim and Samad [11] 

examined the effect of Brownian diffusion with CC heat flux on viscoelastic squeeze nanofluid flow 

and double slip impact in a channel. Specifically, they focused on the effects of these two factors. The 

effect of thermal radiation on the transmission of heat and mass through an unstable stretched surface 
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was examined by Shateyi and Motsa [12]. Additionally, they noticed that when the values of the 

unsteadiness parameter grew, the velocity profiles and concentration distributions decreased. Abel et al. [13] 

used a numerical approximation to study the flow of a Maxwell material close to a stretchy surface. 

The temperature of the fluid medium above the sheet decreases when the radiation parameter is increased. 

When necessary, this effect might be employed to quicken the sheet's cooling process. The Maxwell effect's 

implications in relation to issues with molecular transport were examined by C. I. Christov [14]. To the 

best of authors’ knowledge, no attempt has yet been made to include the Maxwell delay in the closure 

models for turbulent fluxes, and this potential is explored in the current study. B. Straughan [15] used 

a Cattaneo-type constitutive energy equation to investigate the heat flux caused by thermal convection 

in an incompressible viscous fluid. They showed that when the Cattaneo number is high enough and 

the convection mechanism flips from stationary convection to oscillatory convection for smaller 

magnitudes, thermal relaxation exhibits a significant influence. Tibullo et al. [16] introduced the 

uniqueness of solutions for heat transfer in an incompressible fluid by Cattaneo-Shristov law. In the 

framework of the CC model, S. Hadded [17] analyzes the thermal instability of flow through a porous 

media. 

Aims of this paper are the numerical study of viscoelastic fluid flow in rotating surfaces with 

variable thermal conductivity. In this, firstly, mathematical modeling for laminar flow of Maxwell fluid 

with a stretchable rotating surface. Secondly, to investigate the effects of heat transfer with thermal 

conductivity. Finally, to solve numerical results by using the Keller box based on a finite difference 

scheme. Furthermore, the following strategy is being utilized for the current communication: The 

equation that describes the characteristics of fluid flow can be found in Section 2 of the document.  

Section 3 disclosure includes the procedure for the numerical system that was implemented. In Section 4, 

the primary conclusions are presented in the form of rough sketches of a few of the involved quantities. 

In Section 5, the results are discussed. 

2. Mathematical modeling 

Let's imagine a stretchy surface as an incompressible Maxwell fluid laminar flow (see Figure 1). 

 

Figure 1. Schematic diagram of the problem. 
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We choose the Cartesian coordinate system so that the fluid is taken into account in space 𝑧 ≥ 0 

and the surface is aligned with the xy-plane. The fluid is considered to spin continuously about the z-

axis with constant angular velocity 𝛺 while the surface is assumed to stretch in the x-direction at a 

greater rate. We investigate a non-Fourier heat conduction model because the temperature of the sheet, 

denoted by the symbol 𝑇𝑊, is constant and is thought to be higher than the ambient temperature 𝑇∞. 

Below are given the pertinent equations that represent the Maxwell fluid flow in a rotating frame [6]. 

∇. 𝐕 = 𝟎,          (2.1) 

{(𝑽. ∇)𝑽 + (𝛀 × (𝛀 × 𝒓)) + (2𝛀 × 𝑽)} = −∇𝑝 + ∇. 𝑺,     (2.2) 

where the pressure and fluid density are denoted by 𝑝 and 𝜌,  while the angular velocity is 𝛀 =

[0, 0, Ω]. The stress tensor S for upper-convected Maxwell fluid follows the relation 

(1 + 𝜆1
𝐷

𝐷𝑡
) 𝑺 = 𝜇𝐀1,         (2.3) 

where the fluid relaxation time is 𝜆1,  first Rivlin-Ericksen tensor is 𝐀1 = (∇𝑽) + (∇𝑽)𝑇  and the 

derivative of upper-convection with time is 
𝐷

𝐷𝑡
. For second rank tensor S and vector a, as 

𝐷𝑺

𝐷𝑡
=

𝜕𝑺

𝜕𝑡
+ (𝐕. ∇)𝑺 − 𝑳𝑺 − 𝑺𝑳𝑻,       (2.4) 

𝐷𝒂

𝐷𝑡
=

𝜕𝒂

𝜕𝑡
+ (𝐕. ∇)𝒂 − 𝑳𝒂,        (2.5) 

Now, consider (1 + 𝜆1
𝐷

𝐷𝑡
) operator to applying in Eq (2.3), then compute the component forms after 

implementation of boundary layer approximation while the resulting equations are obtained as [18] 
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 (2.7) 

The energy balance equation is provided by under the supposition that viscous dissipation and heat 

generation/absorption effects are zero. 
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( ) ,pc T  = −V q          (2.8) 

3 ( ) ,k T
t


 

= − +  −  +  −  
 

q
q V q q V V q     (2.9) 

where 𝑘 is the thermal conductivity and 𝜆3 is the thermal relaxation time. The time delay required 

for the start of a heat flow after a temperature gradient has been introduced at a certain place is known 

as the thermal relaxation time. The heat can be transported via thermal waves that travel at a finite rate 

according to the non-Fourier heat flux phenomenon. We eliminate q from Eqs (2.8) and (2.9) to achieve 

the following: 
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 (2.10) 

The flow is subjected to the following conditions: 

,  0,  ,  ,       at 0,

0,  0,  ,              at .

wu ax v w o T T z

u v T T z

= = = = =


→ → → →
      (2.11) 

We seek the similarity solution of the problem in the following form: 

( ) ( ) ( ) ( ) ( )' ,  ,  w ,  ,   ,w

u v a
f g av f T T T T z

ax ax v
     = = = − − = − =    (2.12) 

where prime denotes a change in differentiation with regard to 𝜂. The equation 𝑘 = 𝑘∞ [1 +
𝜖(𝑇−𝑇∞)

∆𝑇
], 

where 𝜖 > 0 is a positive constant and 𝑘∞ specifies the thermal conductivity at ambient temperature, 

further assumes that the thermal conductivity varies with temperature 𝑇 . Equation (2.1) is 

automatically satisfied by transformation (2.12), and Eqs (2.6), (2.7) and (2.10) are transformed into 

the following differential equations: 

2 2''' '' ' +2 2 ' 2 ' '' ''' 0,f ff f g fg ff f f f   + − − + − =     (2.13) 

( ) ( )2 2 2'' ' 'g 2 ' 2 ' '' 2 'g' g'' 0,g fg f f f ff g ff f  + − − − − + + − =   (2.14) 

  2 21 '' ' ' ' ' '' 0,Prf Pr ff f       + + + − + =       (2.15) 

assuming to the transformed conditions: 
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0,  0,  ' 1,  1,    at 0,

' 0,  0,  0,          at ,

f g f

f g

 

 

= = = = →


→ → → →
      (2.16) 

where 𝛽 = 𝜆1𝑎  is relaxation time, 𝛾 = 𝜆3𝑎  is thermal relaxation, 𝑃𝑟 =
𝜇𝑐𝑝

𝑘⁄   is the Prandtl 

number, 𝜆 = Ω
𝑎⁄  is the Ratio of rotation and stretching rates. 

3. Numerical approach 

The physical perception of the current work requires the manipulation of an accurate solution. 

Karman approximation is used to model the equations at first, and then we arrive at the nonlinear 

system of ordinary differential equations (2.13)–(2.15) along with boundary conditions in Eq (2.16). 

Therefore, we used the implicit finite difference Keller-box approach that is mentioned in [19–21]. As 

follows are the details of the Keller Box Method: 

 

Figure 2. Keller box method. 

In order to use this strategy, we must first convert to a system of first-order equations and establish 

new variables 𝑢(𝑧, 𝜂), 𝑣(𝑧, 𝜂), 𝑔(𝑧, 𝜂), 𝑤(𝑧, 𝜂), 𝑝(𝑧, 𝜂) and 𝜃(𝑧, 𝜂) are 

𝑓′ = 𝑢, 𝑢′ = 𝑣, 𝑔′ = 𝑤, 𝜃′ = 𝑝,        (3.1) 

𝑣′ + 𝑓𝑣 − 𝑢2 + 2𝜆(𝑔 − 𝛽 + 𝑤) + 𝛽(2𝑓𝑢𝑣 − 𝑓2𝑣′) = 0,    (3.2) 

𝑤′ + 𝑓𝑤 − 𝑢𝑔 − 2𝜆(𝑢 + 𝛽[𝑢2 − 𝑓𝑣 + 𝑔2]) + 𝛽(2𝑓𝑢𝑣 − 𝑓2𝑤′) = 0,  (3.3) 

(1 + 𝜖𝜃)𝑝′ + 𝑃𝑟𝑓𝑝 − 𝑃𝑟𝛾(𝑓𝑢𝑝 + 𝑓2𝑝′) = 0,     (3.4) 

Implementing the Newton iteration 𝑓𝑗+1 = 𝑓𝑗 + 𝛿𝑓𝑗  for all dependent variables included in the 

linearized nonlinear algebraic equations, substituting these formulations in the differential systems, 

and ignoring quadratic and higher order terms in 𝛿 the following linear tridiagonal arrangement: 

𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 −
1

2
ℎ(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1) = (𝑟1)𝑗−1

2

, 

𝛿𝑢𝑗 − 𝛿𝑢𝑗−1 −
1

2
ℎ(𝛿𝑣𝑗 + 𝛿𝑣𝑗−1) = (𝑟2)𝑗−1

2

, 
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𝛿𝑔𝑗 − 𝛿𝑔𝑗−1 −
1

2
ℎ(𝛿𝑤𝑗 + 𝛿𝑤𝑗−1) = (𝑟3)𝑗−1

2

, 

𝛿𝜃𝑗 − 𝛿𝜃𝑗−1 −
1

2
ℎ(𝛿𝑝𝑗 + 𝛿𝑝𝑗−1) = (𝑟4)𝑗−1

2

, 

where 

𝑓𝑗−1 − 𝑓𝑗 +
ℎ

2
(𝑢𝑗 + 𝑢𝑗−1) = (𝑟1)𝑗−1

2

, 

𝑢𝑗−1 − 𝑢𝑗 +
ℎ

2
(𝑣𝑗 + 𝑣𝑗−1) = (𝑟2)𝑗−1

2

, 

𝑔𝑗−1 − 𝑔𝑗 +
ℎ

2
(𝑤𝑗 + 𝑤𝑗−1) = (𝑟3)𝑗−1

2

, 

𝜃𝑗−1 − 𝜃𝑗 +
ℎ

2
(𝑝𝑗 + 𝑝𝑗−1) = (𝑟4)𝑗−1

2

, 

𝜓1 = 𝜓2 =
1

4
(𝑣𝑗 + 𝑣𝑗−1) −

𝜆𝛽ℎ

2
(𝑤𝑗 + 𝑤𝑗−1) +

𝛽ℎ

4
(𝑢𝑗 + 𝑢𝑗−1)(𝑣𝑗 + 𝑣𝑗−1) 

−
𝛽

2
(𝑓𝑗 + 𝑓𝑗−1)(𝑣𝑗 + 𝑣𝑗−1), 

𝜓3 = 𝜓4 = −
ℎ

2
(𝑢𝑗 + 𝑢𝑗−1) +

𝛽ℎ

4
(𝑣𝑗 + 𝑣𝑗−1)(𝑓𝑗 + 𝑓𝑗−1), 

𝜓5 = 1 +
ℎ

4
(𝑓𝑗 + 𝑓𝑗−1) +

𝛽ℎ

4
(𝑢 + 𝑢𝑗−1)(𝑓𝑗 + 𝑓𝑗−1) −

𝛽

4
(𝑓𝑗 + 𝑓𝑗−1)

2
, 

𝜓6 = −1 +
ℎ

4
(𝑓𝑗 + 𝑓𝑗−1) +

𝛽ℎ

4
(𝑢 + 𝑢𝑗−1)(𝑓𝑗 + 𝑓𝑗−1) −

𝛽

4
(𝑓𝑗 + 𝑓𝑗−1)

2
, 

𝜓7 = 𝜓8 = 𝜆ℎ, 

𝜓9 = 𝜓10 =
𝜆ℎ

2
(𝑓𝑖 + 𝑓𝑗−1). 

Also, 

(𝑟5)𝑗+1
2

= 𝑣𝑗+1 − 𝑣𝑗 −
ℎ

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑣𝑗 + 𝑣𝑗−1) +

ℎ

4
(𝑣𝑗 + 𝑣𝑗−1)

2
 

−ℎ𝜆(𝑔𝑗 − 𝑔𝑗−1) +
ℎ𝛽1

2
(𝑓𝑗 + 𝑓𝑗−1)(𝑣𝑗 + 𝑣𝑗−2), 

𝛼1𝛿𝑓𝑗 + 𝛼2𝛿𝑓𝑗−1 + 𝛼3𝛿𝑢𝑗 + 𝛼4𝛿𝑢𝑗−1 + 𝛼5𝛿𝑣𝑗 + 𝛼6𝛿𝑣𝑗−1 

+𝛼7𝛿𝑔𝑗 + 𝛼8𝛿𝑔𝑗−1 + 𝛼9𝛿𝑤𝑗 + +𝛼10𝛿𝑔𝑗−1 = (𝑟6)𝑗−1, 
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𝛼1 = 𝛼2 =
ℎ

4
(𝑤𝑗 + 𝑤𝑗−1 ) +

𝜆𝛽ℎ

2
(𝑣𝑗 + 𝑣𝑗−1) −

𝛽ℎ

4
(𝑢𝑗 + 𝑢𝑗−1)(𝑤𝑗 + 𝑤𝑗−1) 

−
𝛽

2
(𝑓𝑗 + 𝑓𝑗−1)(𝑤𝑗 + 𝑤𝑗−1), 

𝛼3 = 𝛼4 =
𝛽ℎ

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑤𝑗 + 𝑤𝑗−1) −

ℎ

4
(𝑔𝑗 + 𝑔𝑗−1) − 𝜆ℎ − 𝜆𝛽ℎ(𝑓𝑗 + 𝑓𝑗−1)(𝑢𝑗 + 𝑢𝑗−1), 

𝛼5 = 𝛼6 =
𝜆𝛽ℎ

2
(𝑓𝑗 + 𝑓𝑗−1), 

𝛼7 = 𝛼8 = −
ℎ

4
(𝑢𝑗 + 𝑢𝑗−1) − 2ℎ𝜆𝛽(𝑔𝑗 + 𝑔𝑗−1), 

𝛼9 = 1 +
ℎ

4
(𝑓𝑗 + 𝑓𝑗−1) +

𝛽ℎ

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑢𝑗 + 𝑢𝑗−1) −

𝛽

4
(𝑓𝑗 + 𝑓𝑗−1)

2
, 

𝛼10 = −1 +
ℎ

4
(𝑓𝑗 + 𝑓𝑗−1) +

𝛽ℎ

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑢𝑗 + 𝑢𝑗−1) −

𝛽

4
(𝑓𝑗 + 𝑓𝑗−1)

2
. 

Also, 

(𝑟6)𝑗−1=𝑤𝑗−1–𝑤𝑗 −
ℎ

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑤𝑗 + 𝑤𝑗−1) +

ℎ

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑔𝑗 + 𝑔𝑗−1) + 2ℎ𝜆 (

𝑢𝑗−𝑢𝑗−1

2 ) 

+𝛽[(
𝑢𝑗 − 𝑢𝑗−1

2
)2 − (

𝑓𝑗 − 𝑓𝑗−1

2
)(

𝑣𝑗 − 𝑣𝑗−1

2
) + (

𝑔𝑗 − 𝑔𝑗−1

2
)2] 

−𝛽ℎ[2(
𝑓𝑗−𝑓𝑗−1

2
)(

𝑢𝑗−𝑢𝑗−1

2
)(

𝑤𝑗−𝑤𝑗−1

2
) − (

𝑓𝑗−𝑓𝑗−1

2
)2(

𝑤𝑗−𝑤𝑗−1

ℎ
)], 

𝛽1𝛿𝑓𝑗 + 𝛽2𝛿𝑓𝑗−1 + 𝛽3𝛿𝑢𝑗 + 𝛽4𝛿𝑢𝑗−1 + 𝛽5𝛿𝜃𝑗 + 𝛽6𝛿𝜃𝑗−1 + 𝛽7𝛿𝑝𝑗 + 𝛽8𝛿𝑝8 = (𝑟7)𝑗−1, 

𝛽1 = 𝛽2 =
𝑃𝑟 ℎ

4𝑗𝑗−1

𝑃𝑟 𝑟ℎ

𝜃
(𝑢𝑗 +𝑗−1)

𝑃𝑟 𝑟

2
(𝑓𝑗 +𝑗−1)

, 

𝛽3 = 𝛽4 = −
𝑃𝑟 𝑟ℎ

8
(𝑓𝑗 +𝑓𝑗−1)(𝑝𝑗 + 𝑝𝑗−1), 

𝛽5 = 𝛽6 = 𝜀(𝑝𝑗 − 𝑝𝑗−1), 

𝛽7 = (1 + 𝜀𝜃) +
𝜀ℎ

2
(𝑝𝑗 + 𝑝𝑗−1) +

𝑃𝑟 ℎ

4𝑓𝑗 +𝑗−1
𝑃𝑟 𝑟ℎ

8
𝑢𝑗 +𝑗−1 𝑓𝑗 +𝑗−1

𝑃𝑟 𝑟

4
𝑓𝑗 +𝑗−1

2
, 

𝛽8 = −(1 + 𝜀𝜃) +
𝜀ℎ

2
(𝑝𝑗 + 𝑝𝑗−1) +

𝑃𝑟 ℎ

4𝑓𝑗 +𝑗−1
𝑃𝑟 𝑟ℎ

8
𝑢𝑗 +𝑗−1 𝑓𝑗 +𝑗−1

𝑃𝑟 𝑟

4
𝑓𝑗 −𝑗−1

2
, 

(𝑟7)𝑗−1
2

= (1 + 𝜀 (
𝜃𝑗 + 𝜃𝑗−1

2
)) (𝑝𝑗−1 − 𝑝𝑗) − 𝜀ℎ (

𝑝𝑗 + 𝑝𝑗−1

2
)
2

− 𝑃𝑟ℎ (
𝑓𝑗 +𝑓𝑗−1

2
) (

𝑝𝑗 + 𝑝𝑗−1

2
) 

+𝑃𝑟 𝑟 ℎ [(
𝑓𝑗 +𝑓𝑗−1

2
) (

𝑢𝑗+𝑢𝑗−1

2
) (

𝑝𝑗+𝑝𝑗−1

2
) + (

𝑓𝑗 +𝑓𝑗−1

2
)
2

(
𝑝𝑗+𝑝𝑗−1

ℎ
)]. 
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The block tridiagonal structure of the linearized difference equation often consists of variables or 

constants, but in this case, it consists of block matrices. The matrix elements in our scenario are defined 

as follows: 

[
 
 
 
 
 
 
 
[𝐀𝟏] [𝐂𝟐] ∙ ∙ ∙ ∙
[𝐁𝟐] [𝐀𝟐] [𝐂𝟐] ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ [𝐁𝐣−𝟏

] [𝐀𝐣−𝟏
] [𝐂𝐣−𝟏]

∙ ∙ ∙ ∙ [𝐁𝐣] [𝐀𝐣] ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

[𝛿1]

[𝛿2]
∙
∙
∙

[𝛿𝑗−1]

[𝛿𝑗] ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

[𝑟1]

[𝑟2]
∙
∙
∙

[𝑟𝑗−1]

[𝑟𝑗] ]
 
 
 
 
 
 
 

. 

That is [𝐴][𝛿] = [𝑟], where 

A1=

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

0 1
−ℎ

2
0 0 0 0

0 0 0 1
−ℎ

2
0 0

0 0 0 0 0 1
−ℎ

2 ]
 
 
 
 
 
 
 
 

, 

B2=

[
 
 
 
 
 
 
 1

−ℎ

2
0 0 0 0 0

𝛹1 𝛹3 𝛹5 𝛹7 𝛹9 0 0
𝛼1 𝛼3 𝛼5 𝛼7 𝛼9 0 0
𝛽1 𝛽3 0 0 0 𝛽5 𝛽7

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 

, 

C2 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 −1
−ℎ

2
0 0 0 0

0 0 0 −1
−ℎ

2
0 0

0 0 0 0 0 −1
−ℎ

2 ]
 
 
 
 
 
 
 
 

, 
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A2=

[
 
 
 
 
 
 
 
 
 −1

−ℎ

2
0 0 0 0 0

𝛹1 𝛹4 𝛹6 𝛹8 𝛹 0 0
𝛼2 𝛼1 𝛼6 𝛼8 𝛼10 0 0
𝛽2 𝛽4 0 0 0 𝛽6 𝛽8

0 1
−ℎ

2
0 0 0 0

0 0 0 −1
−ℎ

2
0 0

0 0 0 0 0 1
ℎ

2 ]
 
 
 
 
 
 
 
 
 

. 

We assume that A is nonsingular and it can be factored into [𝐴] = [𝐿][𝑈], where 

[𝐿] =

[
 
 
 
 
 
 
 
[𝛂𝟏] ∙ ∙ ∙ ∙ ∙
[𝛃𝟐] [𝛂𝟐] ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ [𝛂𝐣−𝟏

] ∙

∙ ∙ ∙ ∙ [𝛃𝐣] [𝛂𝐣]]
 
 
 
 
 
 
 

 and [𝑈] =

[
 
 
 
 
 
 
[𝐈] [𝚪𝟏] ∙ ∙ ∙ ∙

∙ [𝐈] [𝚪𝟐] ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ [𝐈] [𝛂𝐣−𝟏

]

∙ ∙ ∙ ∙ ∙ [𝐈] ]
 
 
 
 
 
 

, 

where [𝐼] is the matrix of order 7 and [αi] and [Γi] are 7x7 matrices which elements determined by 

the following equation: 

[α1]=[A1], 

[A1] = [Γ1][C1], 

[AJ] = [AJ−1] − [BJ][ΓJ−1], J=2,3,4,...,J, 

[AJ][ΓJ] = [CJ], J=2,3,4,…,J-1, 

[L][U][𝛿] = [r]. 

If we define [U][𝛿] = [W], then equation becomes [L][𝑊] = [r], where 

[𝑊]=

[
 
 
 
 
 
 
 

[𝑊1]

[𝑊2]
∙
∙
∙

[𝑊𝑗−1]

[𝑊𝑗] ]
 
 
 
 
 
 
 

, 1≤ 𝑗 ≤ 𝐽, 

and the [𝑊𝑗] are 7x1 column matrices. The elements W can be solved from 

[α1][𝑊1] = [r1], 

[α2]⌊𝑊𝑗⌋=⌊𝑟𝑗⌋-⌊𝐵𝑗 ⊥ 𝑊𝑗⌋, 2≤ 𝑗 ≤ 𝐽. 
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The step in which ΓJ, 𝛂𝐣 and 𝑊𝑗 are calculated is usually referred to as the forward sweep. Once the 

elements of W are found, the solution 𝛿 in the so-called backward sweep in which the elements are 

obtained by the following relations: 

[𝛿𝑗]=[𝑊𝑗], 

[𝛿𝑗]=[𝑊𝑗] − ⌊𝛤𝑗⌋⌊𝛿𝑗+1⌋, 1≤ 𝑗 ≤ 𝐽-1. 

These calculations are repeated until some convergence criterion is satisfied and calculations are 

stopped where |𝛿𝑣0
(𝑖)| ≤ 𝜀1, where 𝜀1 is a small, prescribed value. 

4. Results and discussion 

We were able to find a solution to the problem of laminar boundary layer flow in rotating Maxwell 

fluid that was induced by uniform elastic stretching material. In addition, the CC model is put to use 

in the study of the characteristics of heat transmission. The primary objective of this section is to 

present and analyze the impacts that physical parameters have on the solutions, and this will be 

accomplished through the use of instances. To do this, we depict the temperature and velocity profiles 

in Figures 3–8. 

When 𝜆=0.2, we draw conclusions about the profiles of the non-dimensional x-component of 

velocity 𝑓′(𝜂) at various values of the Deborah’s number 𝛽 is shown in Figure 3. Deborah's number 

contrasts the observation time scale with the fluid relaxation time of memory distortion. When Deborah 

number is low, the material reacts like a completely viscous fluid and the recovery time is quick. When 

𝛽 increases, the horizontal velocity of the vehicle tends to decrease. A greater value of 𝛽 implies a 

more physically significant viscous force, which resists the flow and causes the velocity to drop. When 

the value of 𝛽 is increased, we observe that the patterns are skewed in the direction of the border. 

This suggests that the thickness of the boundary layer decreases as 𝛽 increases. A substance with a 

high Deborah number, however, receives a strong like response. When 𝜂  is increasing and it 

diminishes beyond the boundary layer, the function 𝑓′(𝜂) gradually decreases. It is evident that the 

velocity fluid 𝑓′(𝜂)  and boundary layer thickness decrease as the parameter 𝛽 , or the parameter 

associated to fluid relaxation time, increases. 

Figure 4 reveals that the behavior of 𝑓′(𝜂) affects the rotational parameter 𝜆. 𝜆=0 refers to a 

condition where the frame is not rotating. The ratio of rotation rate to stretching rate rises as 𝜆 grows. 

From a physical perspective, when 𝜆  grows, the rotation rate increases more quickly than the 

stretching rate. Due to rotational effects, the value of 𝑓′ for bigger values of 𝜆 turns negative close 

to the border. 

Figure 5 reveal that the features of Deborah number 𝛽 on the 𝑔(𝜂), the sheet is only stretched 

in the x-direction, therefore flow in the y-direction is only anticipated as a result of the rotating frame, 

where the magnitude of the velocity field 𝑔(𝜂), which is proportional to the y-component of velocity, 

decreases further from the stretching surface. Because of the rotating effect, flow only occurs in the 

negative y-direction in this case, as indicated by the negative value of 𝑔(𝜂). The velocity profile 𝑔(𝜂) 

as a function of the rotational constant λ is depicts in Figure 6. As can be observed, the rotation 

parameter helps the flow move in the opposite direction of y. The profile 𝑔(𝜂) is comparable to the 
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function -𝜂 exp(-𝜂) for lower lambda. However, an oscillating pattern in the profile of 𝑔(𝜂) is seen 

for large values of the rotation parameter λ. 

 

Figure 3. Impact of 𝛽 on 𝑓′(𝜂). 

 

Figure 4. Impact of 𝜆 on 𝑓′(𝜂). 
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Figure 5. Impact of 𝛽 on 𝑔(𝜂). 

 

Figure 6. Impact of 𝜆 on 𝑔(𝜂). 

Figure 7 shows that the on 𝜃(𝜂) for different values of 𝜀 with given values of other factors. In 

this study, variable thermal conductivity is taken into account, and its expression implies that the 

parameter 𝜀 has a direct relationship to thermal conductivity. A bigger value of 𝜀 indicates a larger 

thermal diffusivity, which results in a thicker temperature penetration depth. 

Figure 8 includes the 𝜃 curve with non-dimensionality for different thermal relaxation times. 

The curve tends to move closer to the stretching border when parameter 𝛾 is directly proportional to 

the increase in thermal relaxation time. When a longer thermal relaxation time is taken into account, it 

suggests that the temperature penetration depth is shortened. 
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Figure 7. Impact of 𝜖 on 𝜃(𝜂). 

 

Figure 8. Impact of 𝛾 on 𝜃(𝜂). 

In order to verify the accuracy of our calculations, we compare the results for 𝑓′′(0) to those 

found in the prior literature in the non-rotating frame 𝜆 = 0, is shown in Table 1. Table 2 contain a 

numerical summary of the results for the wall velocity gradients 𝑓′′(0) and 𝑔′(0). 

Table 1. Code validation test for 𝑓′′(0) for 𝜆 = 0. 

𝛽 Abel et al. [13] 1.000000 

0.0 0.999962 1.101903 

0.4 1.101850 1.196711 

0.8 1.196692 1.285363 

1.2 1.285257 1.368758 

1.6 1.368641 1.368758 

2.0 0.999962 1.000000 
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Table 2. Numeric data for 𝑓′′(0) and 𝑔′(0) for 𝜆 = 0.2. 

𝛽 −𝑓′′(0) −𝑔′(0) 

0.0 1.01091 1.01091 

0.4 1.13091 1.13091 

0.8 1.19832 1.19832 

1.0 1.25312 1.25312 

1.2 1.30912 1.30912 

5. Conclusions 

A numerical investigation of Maxwell thermal fluid flow in a rotating frame with variable thermal 

conductivity and Cattaneo-Christov heat flux is carried out. A Keller box finite difference-based 

approach is used to solve nonlinear equations governing self-similar flow. The following summarizes 

the main features of this work: 

• Viscoelastic effects provide flow resistance in both the x and y directions. However, when a 

larger value of the viscoelastic component 𝛽 is considered, the temperature 𝜃 rises slightly. 

• As 𝑃𝑟  rises, the wall slope of the temperature rises and becomes closer to zero, which 

indicates that 𝑃𝑟 is vanishing. 

• As expected, increasing 𝜖  increases the thickness of the thermal boundary layer while 

decreasing the gradient of the wall temperature. 

• By putting 𝛽 = 0, the current model reduces to the Newtonian fluid condition. The setting 

𝛾 = 0 also makes it possible to retrieve the Fourier-law aspect. 

• The consideration of rotational effects reduces the thickness of the hydrodynamic boundary 

layer. 

These findings could be extended to include the unsteady dynamics of the incompressible UCM 

fluids that are caused by body forces. 
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