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Abstract: In this article, we provide a novel criterion for decision making by addressing the
statistical analysis and modeling of health protection expenditures relative to health system of gross
domestic product in a comparative study of four different countries, namely the United States,
Malaysia, Egypt, and kingdom of Saudi Arabia. Researchers examined the issue of spending on health
protection expenditures in relation to gross domestic product from a variety of angles, including social
and statistical. Previous statistical studies also addressed the study of statistical modeling through
regression approach. Here we study this issue from a different perspective, namely modeling with
statistical distributions. In the statistical modeling of the data, we use an extended heavy-tailed updated
version of Weibull distribution named the generalized Weibull distribution Weibull (GWD-W) model,
which has good statistical properties in terms of flexibility and goodness of fit. Some distributional
properties and statistical functions, including the Renyi entropy, skewness, kurtosis, the heavy-tailed
behavior, regular variation, and identifiable property are given. Two important actuarial risk measures
are derived. A simulation study is conducted to prove the usefulness of the two actuarial measures in
finance. The estimation of the model parameters via the maximum likelihood approach is discussed.
Comparison study vs some competitive statistical models is performed using the Kolmogorov-Smirnov
test for a sample and some detection criteria. The discussion shows that proposed statistical modeling
of health care expenditure as a percentage of gross domestic product (GDP) for health care compares
well with their peers.
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1. Introduction

The importance of the study lies in the fact that the decline in government support for the
health sectors leads to a decline in social well-being indicators, which requires work to increase
social expenditure on members of society, which is reflected in economic growth. Therefore, the
importance of the study by explaining the nature and extent of the relationship between aspects of
social government expenditure, especially in the field of health and GDP. Many countries in the world
generally suffer from a lack of social programs and policies that affect the health of individuals and
society, leading to a decline in social welfare and, at the same time, a decline in economic growth rates.

In this article, we address the statistical modeling of health protection expenditures relative to health
system GDP for four different countries in terms of social policies, social welfare levels, credentials,
and economic growth rates. The countries are Saudi Arabia, Egypt, Malaysia, and the United States,
which provides a future vision for policy makers.

The researchers examined the issue of spending on health protection in relation to gross domestic
product from different angles, including political, social, and statistical. Sardar et al. [1] examined
the issue of creating a measure of social welfare based on unadjusted GDP, as the researchers relied
on the benefit-cost analysis method for economic growth. The researchers found that there is a
significant difference between GDP per capita and adjusted GDP per capita, so GDP can be used
as a measure of social welfare. Sardar and Matthew [2] used a modern methodology to analyse the
relationships between economic growth, health outcomes for individuals, and social well-being in both
developing and developed countries. The researchers concluded that economic growth can improve
health outcomes and expand the health sector and social well-being, but that its impact is limited
due to biological laws. In addition, achieving economic growth may have a negative external effect
that reduces health outcomes. Therefore, researchers used the health-to-GDP indicator to show the
relationship between economic growth, health outcomes, and social well-being of individuals from
the perspective of social choice. Therefore, the importance of improving health to social well-being
is significant. Brent [3] has developed a number of alternative applications for measuring well-being
that have emerged in recent decades. These applications are linked to specific indicators to assess
the application of well-being when economic progress is achieved. Romina et al. [4] has concluded
that there are several indicators to measure the specific social indicators related to well-being. In the
countries of the Organisation for Economic Cooperation, the values of most of these social indicators
are significantly related to average GDP per capita, but the changes in these indicators over time are
not significant.

Malin [5] examined the relationship between economic growth and happiness from intellectual,
political, and economic perspectives with what is happening in the Western world today. Gabriel [6]
analyzed firstly, the expenditure on social protection spending in the Greek social system and second
estimated the relationship between this expenditure on social protection spending and economic
growth. The researcher found that the relationship between social protection spending and GDP is low
compared to other European Union countries, such as Spain and Portugal. Hong [7] examined standard
tests of the impact of economic growth on public social spending using its main components: Income
Support, Pensions, and Other Health Benefits. The researcher used the mutual effect model of cross-
sectional data for countries of the Organisation for Economic Cooperation and Development, which
showed a strong and negative correlation between the rate of social spending. Partha and Edward [8]
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usd two classes of nonlinear statistical models to described the health care utilisation and spending.
Malehi et al. found that the gamma regression model behaved well in estimating the population mean
of health care costs. The approximate results are consistent when the sample size is increased. Cuckler
and Sisko [10] described the methods underlying the econometric model. Guemmegne [11] et al.
examined the dynamics of national health care spending in the United States from 1960 to 2011.

Statistical methods play a crucial role in analysis of medical data [12, 13], environmental data [14,
15], engineering data [16, 17], social data [18], actuarial data [19], test data [20], reliability data [21],
sports data [22], educational data [23], measurement system errors [24], risk assessment [25], robust
analysis [26].

Let X be a random variable (R.V.) follows the three-parameters Weibull(β, ϕ, φ), and x ≥ φ; β, ϕ, φ >
0, then its CDF (cumulative distribution function) is:

W(x; β, ϕ, φ) = 1 − e−
( x−φ
ϕ

)β
. (1.1)

The probability density function (PDF) is

w(x; β, ϕ, φ) =
β

ϕ

(
x − φ
ϕ

)β−1

e−
( x−φ
ϕ

)β
, x ≥ φ; β, ϕ, φ > 0. (1.2)

In general, actuarial are skewed positively [27, 28], unimodally shaped [29] and have heavy
tails [30]. Therefore, some right-skewed and unimodal models have been utilized to modelling such
data [31–34].

2. The statistical model

Cordeiro et al. [35] propose the generalized Weibull distribution (GWD-X) family. The CDF and
PDF can be, respectively, written as

F(x; κ, δ) = 1 − e−κAδ(x), x ∈ R; κ, δ > 0, (2.1)

and

f (x; κ, δ) = κδAδ−1(x)eA(x)−κAδ(x)g(x), x ∈ R; κ, δ > 0, (2.2)

where A(x) = − log (1 −G(x)). The special sub-models of the GWD-X family provide symmetric,
asymmetric, density, unimodal , and bimodal shapes. By replacing g(x) and G(x) in Eqs (2.1) and (2.2)
by w(x; β, ϕ, φ) and W(x; β, ϕ, φ) in Eq (1.2), give the CDF of the GWD-W model as

F(x; κ, β′, ϕ, φ) = 1 − e−κ
( x−φ
ϕ

)β′
, x ≥ φ; κ, β′, ϕ, φ > 0, (2.3)

where β′ = δβ. The corresponding PDF (f), hazard function (h), survival function (S), cumulative
hazard function (H), reverse hazard (r), and the quantile (Xp) function are
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f (x; κ, β′, ϕ, φ) =
κβ′

ϕ

(
x − φ
ϕ

)β′−1

e−κ
( x−φ
ϕ

)β′
, (2.4)

h(x; κ, β′, ϕ, φ) =
f (x; κ, β′, ϕ, φ)

1 − F(x; κ, β′, ϕ, φ)
=
κβ′

ϕ

(
x − φ
ϕ

)β′−1

, (2.5)

S (x; κ, β′, ϕ, φ) = 1 − F(x; κ, β′, ϕ, φ) = e−κ
( x−φ
ϕ

)β′
, (2.6)

H(x; κ, β′, ϕ, φ) = − log
(
F(x; κ, β′, ϕ, φ)

)
= − log

(
1 − e−κ

( x−φ
ϕ

)β′ )
, (2.7)

r(x; κ, β′, ϕ, φ) =
f (x; κ, β′, ϕ, φ)
F(x; κ, β′, ϕ, φ)

=
κβ′

(
x−φ
ϕ

)β′−1

ϕ
(
eκ

( x−φ
ϕ

)β′
− 1

) , (2.8)

Xp(p; κ, β′, ϕ, φ) = F(x; κ, β′, ϕ, φ)−1(p) = φ + ϕ

(
−

log (1 − p)
κ

) 1
β′

, p > 0. (2.9)

The GWD-W model are motivated by: (i) a convenient way to mutate the Weibull model, as well
as have simple and closed forms; (ii) improve the flexibility of Weibull model, can provide right-
skewed, left-skewed form, unimodal, increasing, decreasing, symmetric, asymmetric curved densities;
(iii) improve the statistical properties of Weibull model; (iv) includes the Weibull distribution as a
special case and it can provide adequate fit for positively skewed actuarial data; (v) offers also the
heavy-tailed behavior and the regular variational property.

3. Distributional properties

Here, we derive some distribution properties of the GWD-W model. These distribution properties
include linear representation, Renyi entropy, skewness, kurtosis, heavy-tailed characteristic, regular
variational property, VAR (value at risk), TVAR (tail value at risk), and the identifiability property
(I-P).

3.1. Linear representation

Using the real exponential function : R→ R that commonly defined by the following power series:

ex =

∞∑
=0

x 

!
. (3.1)

The corresponding GWD-W density can be written as

f (x; κ, β′, ϕ, φ) =
κβ′

ϕ

∞∑
=0

(−κ) 

!

(
x − φ
ϕ

)( ′+1)β′−1

, x ≥ φ; κ, β′, ϕ, φ > 0. (3.2)

Also the corresponding GWD-W CDF can be expressed as

F(x; κ, β′, ϕ, φ) = 1 −
∞∑
=0

(−κ) 

!

(
x − φ
ϕ

) ′β′
, x ≥ φ; κ, β′, ϕ, φ > 0. (3.3)
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Based on Eq (3.3), if X is R.V. has the GWD-W model, then the transformed R.V. Z (= X−φ
ϕ
≥ 0) has

CDF F(z; κ), and is defined by

F(z; κ) = 1 −
∞∑
=0

(−κ) 

!
z 
′

, z ≥ 0; κ > 0. (3.4)

Hence, the distribution function of the GWD-W model can be expressed as a linear combination of
the transformed R.V. Z, which Z =

X−φ
ϕ

. Using the same procedures, all the GWD-W mode functions
Eq (2.4)–(2.9), can be derived in the form of a linear combination in terms of Z.

3.2. Renyi entropy

Let X is R.V. has the PDF f (x), the Renyi entropy (R% (X)) of X is a measure of variation of
uncertainty. The R% (X) for any % > 0, % , 1 (see, Golomb [36]), is given by

R% (X) =
1

1 − %
log

(∫
X

( f (x))% dx
)
, % > 0, % , 1. (3.5)

Now, let the R.V. X ∼ GWD-W model, (κ, β′, ϕ, φ). By substituting (2.4) in (3.5), R% (X) become

R% (X) =
1

1 − %
log

∫ ∞

φ

κβ′ϕ
(

x − φ
ϕ

)β′−1

e−κ
( x−φ
ϕ

)β′ % dx

 , % > 0, % , 1. (3.6)

By solving the integration and using the transformation y = κ
(

x−φ
ϕ

)β′
, we have

R% (X) =
1

1 − %
log

((
κ

ϕ

)% (
β′

)%−1 (κ%)
%−1
β′
−%

Γ

(
1 − %
β′

+ %

))
, % > 0, % , 1. (3.7)

3.3. The skewness and kurtosis functions

The Skewness (S k) (see, Bowley [37]) and Kurtosis (K) (see, Moor [38]) formulas are given by,
respectively

S k =
2X1/2 − X3/4 − X1/4

X1/4 − X3/4
, and K =

X1/8 − X3/8 + X5/8 − X7/8

X2/8 − X6/8
.

And by using Eq (2.9), we have

S k
(
β′′

)
=

log
(

4
3

)β′′
− 2 log (2)β

′′

+ log (4)β
′′

− log
(

4
3

)β′′
+ log (4)β

′′
, (3.8)

K
(
β′′

)
=

log
(

8
7

)β′′
− log

(
8
5

)β′′
+ log

(
8
3

)β′′
− log (8)β

′′

log
(

4
3

)β′′
− log (4)β

′′
, (3.9)
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where β′′ = 1
β′

. Table 1 represents some numerical values of the Xp at the median (p = 0.50) when
κ = 0.2, ϕ = 0.2, φ = 0.2, ), S k and K for β′ = 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 5, 10. Figure 1 plots for the S k

and K and for different values of β′.

Table 1. Some numerical values of the Xp, S k and K for some β′ values.

β′ Xp S k K
0.1 50001.9 0.998047 57.6336
0.3 12.7994 0.811157 3.59360
0.5 2.60227 0.567503 1.93857
0.7 1.38077 0.405684 1.51258
0.9 0.99579 0.300789 1.34988
1.0 0.89314 0.261860 1.30627
2.0 0.57233 0.075908 1.20397
5.0 0.45644 -0.04058 1.22495
10 0.42646 -0.07957 1.24738

100 0.40250 -0.11455 1.27465

2 4 6 8
β

-0.1

0.1

0.2

0.3

0.4

0.5
Sk

2 4 6 8
β

1.22

1.24

1.26

1.28

K

Figure 1. Plots for the S k(left) and K (right).

3.4. The heavy-tailed behavior

The GWD-W model offers also the heavy-tailed behavior. A probability model is called a heavy
tailed distribution, if it satisfies

lim
y→∞

epy(1 − F(y; κ, β′, ϕ, φ))→ ∞, p > 0. (3.10)

Theorem 1. Let, p, κ, ϕ, φ > 0 and 0 < β′ < 1, the PDF f (y; κ, β′, ϕ, φ) that given in Eq (2.4) is heavy
tailed distribution as y→ ∞.
Proof. Based on Eq (2.3), we can write
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lim
y→∞

epy(1 − F(y; κ, β′, ϕ, φ)) = lim
y→∞

epy
(
e−κ

( x−φ
ϕ

)β′ )
=

(
lim
y→∞

epy

)
×

(
lim
y→∞

e−κ
( y−φ
ϕ

)β′ )
= e∞ ×

(
e−

1
∞

)
0<β′<1

= e∞ × e0

= e∞ × 1
→ ∞. � (3.11)

According to Seneta’s [39] theorem, the GWD-W model in terms of CDF S (y; κ, β′, ϕ, φ) is regularly
varying, if it satisfies

1 − F(py; κ, β′, ϕ, φ)
1 − F(y; κ, β′, ϕ, φ)

= p∆, ∀p,∆ > 0. (3.12)

deqnarray where ∆ represents an index of regular variation.
Theorem 2. Let, p, κ, ϕ > 0, φ = 0 and 0 < β′ < 1, the PDF f (y; κ, β′, ϕ, φ) that given in Eq (2.4), the
PDF f (y; κ, β′, ϕ, φ) that given in Eq (2.4) is regularly varying model.
Proof. Using Eq (2.3), we have

1 − F(x; κ, β′, ϕ, φ)(p y)
1 − F(x; κ, β′, ϕ, φ)(y)

= eκ
( y
ϕ

)β′ (
1−pβ

′ )
. (3.13)

Using Eq (3.13), the PDF f (y; κ, β′, ϕ, φ) that given in Eq (2.4), the PDF f (y; κ, β′, ϕ, φ) that given in
Eq (2.4) with index of regular variation ∆ = κ

log(p)

(
1 − pβ

′
) (

y
ϕ

)β′
is regularly varying model. �

3.5. The VAR and TVAR

Based on the Monte Carlo simulation, the actuarial measures VAR and TVAR are the empirical
approaches to find heavy-tailed models. Mathematically, VAR (VARq(X)) can be specified with a
certain confidence level (C.L.) q ∈ (0, 1), which is typically 99%, 95%, or 90%, see, [40]. Explicit
expressions of the VAR and TVAR can be produced, as

VARq(X) = −in f [x ∈ R : FX(x) > q]. (3.14)

deqnarray Let X follow the GWD-W model, based on Eq (2.9), then

VARq(X) = φ + ϕ

(
−

log (1 − q)
κ

) 1
β′

. (3.15)

The TVAR is given by

TVARq(X) = E[X|X ≤ −VARq(X)]. (3.16)

Let φ = 0, and using Eqs (3.14) and (3.16), we have
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TVARq(X) =
1

1 − q

∫ ∞

VARq(X)
x f (x; κ, β′, ϕ, φ)dx

=
1

1 − q

∫ ∞

VARq(X)
x
κβ′

ϕ

(
x
ϕ

)β′−1

e−κ
(

x
ϕ

)β′
dx

=
1

1 − q
κβ′

∫ ∞

VARq(X)

(
x
ϕ

)β′
e−κ

(
x
ϕ

)β′
dx, (3.17)

and by using the transformation z =
(

x
ϕ

)β′
, we have

TVARq(X) =
1

1 − q
κϕ

∫ ∞(
VARq(X)

ϕ

)β′ e−κz z
1
β′ dz. (3.18)

On solving, we get

TVARq(X) =
ϕκ−1/β′

1 − q
Γ

1 +
1
β′
, κ

(
VARq(X)

ϕ

)β′ , (3.19)

where Γ (., .) is incomplete gamma constant.
Using Eqs (3.16) and (3.19), a numerical simulation study of VAR and TVAR to show empirically

the heaviness of the GWD-W model tail is provided. The simulation algorithm:

(1) Using Eq (2.9), we generating random samples of size n = 100 from both GWD-W and Weibull
models.

(2) Using the maximum likelihood estimation (MLE) for estimating the parameters of both models.

(3) Based on Eqs (3.16) and (3.19), we calculate the VAR and TVAR of both models.

(4) Table 2, report the numerical simulation results of VAR and TVAR for GWD-W (κ = 3.5, β′ =

2.5, ϕ = 2.5, φ = 0) and Weibull (β = 2.5, ϕ = 2.5, φ = 0).

(5) Tables 3, report the numerical simulation results of VAR and TVAR for GWD-W (κ = 0.5, β′ =

2.5, ϕ = 0.5, φ = 0) and Weibull (β = 0.5, ϕ = 0.5, φ = 0).

(6) For visual comparison and based on the numerical simulation results of Tables 2 and 3, Figures 2
and 3, respectively, show the shapes of the proposed two risk measures of both models.

The numerical simulation results of Figures 2 and 3 illustrate that, the VAR and TVAR results for the
GWD-W models are higher than those of the Weibull models, indicating that the GWD-W models
can better capture extreme events. The results also show that the GWD-W models have a higher risk
measure than the Weibull models, which is beneficial for actuarial applications.
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Table 2. Numerical simulation results of VAR and TVAR for n = 100 at different
confidence level.

Model Parameters C.L. VAR TVAR
0.700 0.6797 0.8517
0.750 0.7198 0.8822
0.800 0.7648 0.9173

Weibull (β = 2.5, ϕ = 2.5, φ = 0) 0.850 0.8176 0.9596
0.900 0.8845 1.0147
0.950 0.9843 1.0994
0.990 1.1721 1.2653
0.700 1.6724 2.1490
0.750 1.7858 2.2388
0.800 1.9085 2.3357

GWD-W (κ = 3.5, β′ = 2.5, ϕ = 2.5, φ = 0) 0.850 2.0534 2.4530
0.900 2.2409 2.6098
0.950 2.5081 2.8354
0.990 3.0540 3.3240

Table 3. Numerical simulation results of VAR and TVAR for n = 100 at different
confidence level.

Model Parameters C.L. VAR TVAR
0.700 6.79560 22.7162
0.750 8.73790 25.7156
0.800 11.4016 29.6459

Weibull (β = 0.5, ϕ = 0.5, φ = 0) 0.850 15.2861 35.1248
0.900 21.5909 43.6137
0.950 34.5163 60.1338
0.990 74.2942 107.758
0.700 14.9913 44.6265
0.750 18.8542 50.0525
0.800 24.2379 57.5652

GWD-W (κ = 0.5, β′ = 2.5, ϕ = 0.5, φ = 0) 0.850 31.9053 67.8062
0.900 43.0760 81.5283
0.950 67.3053 111.495
0.990 136.093 191.053
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Figure 2. Shapes of the VAR and TVAR of the NEHTW and Weibull distributions based on
Table 1.
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Figure 3. Shapes of the VAR and TVAR of the NEHTW and Weibull distributions based on
Table 2.

3.6. The I-P

This subsection offers proof of the I-P of the GWD-W model for the parameters κ, β′, ϕ, and φ.

3.6.1. The I-P using κ

Let, F(x; κ1, β
′, ϕ, φ) = F(x; κ2, β

′, ϕ, φ), the parameter κ of the GWD-W model is called identifiable,
if κ1 = κ2. To prove the I-P property of the GWD-W model for κ, we start with

F(x; κ1, β
′, ϕ, φ) = F(x; κ2, β

′, ϕ, φ)

1 − e−κ1
( y−φ
ϕ

)β′
= 1 − e−κ2

( y−φ
ϕ

)β′
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κ1

(
y − φ
ϕ

)β′
= κ2

(
y − φ
ϕ

)β′
κ1 = κ2.

3.6.2. The I-P using β′

Let, F(x; κ, β′1, ϕ, φ) = F(x; κ, β′2, ϕ, φ), the parameter β′ of the GWD-W model is identifiable,
such that

F(x; κ, β′1, ϕ, φ) = F(x; κ, β′2, ϕ, φ)

1 − e−κ
( y−φ
ϕ

)β′1
= 1 − e−κ

( y−φ
ϕ

)β′2
Aβ′1 = Aβ′2

β′1 = β′2. (3.20)

3.6.3. The I-P using ϕ

Let, F(x; κ, β′, ϕ1, φ) = F(x; κ, β′, ϕ2, φ), the parameter ϕ of the GWD-W model is identifiable, such
that

F(x; κ, β′1, ϕ, φ) = F(x; κ, β′2, ϕ, φ)

1 − e−κ
(

y−φ
ϕ1

)β′
= 1 − e−κ

(
y−φ
ϕ2

)β′(
y − φ
ϕ1

)β′
=

(
y − φ
ϕ1

)β′
ϕ1

y − φ
=

ϕ2

y − φ
ϕ1 = ϕ2. (3.21)

3.6.4. The I-P using φ

Let, F(x; κ, β′, ϕ, φ1) = F(x; κ, β′, ϕ, φ2), the parameter φ of the GWD-W model is identifiable, such
that

F(x; κ, β′1, ϕ, φ) = F(x; κ, β′2, ϕ, φ)

1 − e−κ
( y−φ1

ϕ

)β′
= 1 − e−κ

( y−φ2
ϕ

)β′(
y − φ1

ϕ

)β′
=

(
y − φ2

ϕ

)β′
y − φ1

ϕ
=

y − φ2

ϕ
φ1 = φ2. (3.22)

4. Estimations

This section assigns the MLEs to estimate the parameters of the GWD-W model. Suppose
X1:n, X2:n, . . . Xr:n is R.V.s from the GWD-W(κ, β′, ϕ, φ) model that given in (2.4). The GWD-
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W(κ, β′, ϕ, φ) likelihood is

l =

(
κβ′

ϕβ′

)n

e−κ
∑n

i=1

( x−φ
ϕ

)β′  n∏
i=1

(xi − φ)β
′−1

 , (4.1)

and the log-likelihood function log(l) is

L = n log
(
κβ′

ϕβ′

)
− κ

n∑
i=1

(
xi − φ

ϕ

)β′
+ (β′ − 1)

n∑
i=1

log
[
xi − φ

]
. (4.2)

The first partial derivatives of (4.2) w.r.t κ, β′, ϕ, φ are

∂log(l)
∂κ

=
n
κ
−

n∑
i=1

(
xi − φ

ϕ

)β′
, (4.3)

∂log(l)
∂β′

=
n
β′
− n log[ϕ] + δ

n∑
i=1

log
[
xi − φ

]
− κ

(
xi − φ

ϕ

)β′
log

[
−φ + xi

ϕ

] , (4.4)

∂log(l)
∂ϕ

=
β′

ϕ

−n +
κ

ϕ

n∑
i=1

(xi − φ)
(

xi − φ

ϕ

)β′−1 , (4.5)

∂log(l)
∂φ

= (β′ − 1)
n∑

i=1

κβ′ϕ
(

xi − φ

ϕ

)β′−1

−
1

xi − φ

 . (4.6)

The MLEs κ̂ML, β̂′ML, ϕ̂ML, and φ̂ML of the GWD-W(κ, β′, ϕ, φ) parameters are the solutions of the
Eqs (4.3)–(4.6) after equating each of them by zero. One can solve them numerically to obtain the
MLEs. By using any statistical software, these nonlinear system of equations can be solved.

5. Simulation study

The numerical simulation findings is executed for the GWD-W model by R software (version 4.1.3)
with the optim() function, see, Appendix A, and the argument method = “L-BFGS-B”. The simulation
algorithm is:

(1) We generate sample of sizes n = 25, 50, ..., 1000 from the GWD-W for two different sets of initial
parameters.
set 1: κ(0) = 1.7, β′(0) = 2.4, ϕ(0) = 0.01, and φ(0) = 3.4,
set 2: κ(0) = 0.8, β′(0) = 1.5, ϕ(0) = 0.02, and φ(0) = 1.2.

(2) Use sets 1 and 2 for conducting the MLEs of each parameter κ, β′1, ϕ, and φ.

(3) Repeated the steps (1) and (2) M=1000 times.

(4) Obtain the estimates, then calculate the Bias and the Estimated Risk (ER).

(5) The Biases and ERs for the parameter λ(= κ, β′, ϕ, φ) are given by, respectively

Bias
(
λ̂
)

=
1
M

M∑
i=1

(
λ̂i − λ

)
,
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and

ER
(
λ̂
)

=
1
M

M∑
i=1

(
λ̂i − λ

)2
.

(6) Table 4 presents the estimates, Bias and ER, respectively, for set 1.

(7) Table 5 presents the estimates, Bias and ER, respectively, for set 2.

(8) Figure 4 shows graphically the simulation results of Table 4.

(9) Figure 5 shows graphically the simulation results of Table 5.

Table 4. Simulation results of the GWD-W model for set 1.

n κ̂ φ̂ ϕ̂ β̂′

25 1.934058 2.070890 0.3822123 3.160707
100 1.813316 2.206425 0.1868472 3.289071
200 1.781590 2.252850 0.1438054 3.321575

Estimate 400 1.760950 2.282059 0.1180102 3.342488
600 1.753156 2.295761 0.1091235 3.350055
800 1.744710 2.314527 0.1041973 3.357933
1000 1.743711 2.314436 0.1036497 3.359054
25 0.104241 0.353084 0.2418436 0.115640
100 0.025832 0.088620 0.0505954 0.025839
200 0.012392 0.045711 0.0243883 0.011988

ER 400 0.006234 0.025515 0.0136085 0.005797
600 0.004440 0.018176 0.0105188 0.004084
800 0.003378 0.013216 0.0091346 0.003109
1000 0.003117 0.013031 0.0089548 0.002836
25 0.234057 -0.32910 0.3722122 -0.23929
100 0.113316 -0.19357 0.1768471 -0.11092
200 0.081589 -0.14714 0.1338053 -0.07842

Bias 400 0.060949 -0.11794 0.1080101 -0.05751
600 0.053156 -0.10423 0.0991234 -0.04994
800 0.044710 -0.08547 0.0941973 -0.04206
1000 0.043710 -0.08556 0.0936496 -0.04094
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Figure 4. Plot of the simulation results of the GWD-W model.

Table 5. Simulation results of the GWD-W model for set 2.

n κ̂ φ̂ ϕ̂ β̂′

25 1.0827323 1.438229 0.2050052 2.334154
100 0.9054890 1.459133 0.1167855 2.304047
200 0.8321919 1.487253 0.1024533 2.301241

Estimate 400 0.8075830 1.496414 0.1001413 2.300303
600 0.8012212 1.499789 0.1000194 2.300012
800 0.8 1.5 0.1 2.3
1000 0.8 1.5 0.1 2.3
25 0.282732345 -6.18e-02 0.18500519 0.2341538
100 0.105488959 -4.09e-02 0.09678553 0.2040466
200 0.032191938 -1.27e-02 0.08245334 0.2012406

ER 400 0.007583002 -3.59e-03 0.08014134 0.2003029
600 0.001221231 -2.11e-04 0.08001936 0.200012
800 0 0 0.08 0.2
1000 0 0 0.08 0.2
25 1.56e-01 3.78e-02 0.056146880 0.06017765
100 3.06e-02 8.54e-03 0.011109625 0.04171349
200 7.53e-03 2.14e-03 0.006917182 0.04051953

Bias 400 1.63e-03 4.35e-04 0.006424866 0.04012519
600 2.17e-04 2.91e-05 0.006403419 0.04000489
800 0 0 0.0064 0.04
1000 0 0 0.0064 0.04
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Figure 5. Plot of the simulation results of the GWD-W model.

The simulation results in Tables 4 and 5 and Figures 4 and 5 can be explained though the following
steps:

(1) The MLE estimates of κ and ϕ are overestimated for both sets 1 and 2.

(2) The MLE estimates of φ and β′ are underestimated for both set 1 , while the MLE estimates of φ
and β′ are overestimated set 2.

(3) The performance of MLE was good even when the small sample sizes.

(4) Increasing the sample size n leads to a decrease in the estimated biases and ERs, which approach
zero as n increases. These results demonstrate both the efficiency and consistency properties of the
MLEs.
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6. Application of the GWD-W model

Probability distributions are widely used in various real data modeling applications. Heavy tailed
distributions play an important role in data analysis and modeling in various application areas of
life such as economics, financial mathematics, actuarial science, risk management, banking, etc.
The quality of statistical procedures mainly depends on the probability distributions given for the
application data in question. Based on the data were collected by the World Bank (accessed on 15
September 2021), we address the statistical modeling of current health expenditure (% of GDP) for
four different countries in terms of social policies, social welfare levels, credentials, and economic
growth rates. The countries are United States, Malaysia, Egypt, and Saudi Arabia. The data are
analysed and the maximum likelihood estimates of the model parameters are obtained, see, Appendix
B. The data sets for the last fifty years are provided in Table 6.

The goodness-of-fit results of the GWD-W model are compared with some other models. The
comparison of the GWD-W model is made with some important distributions including generalized
Weibull two-parameter Weibull distribution (GW-OWD), exponentiated distribution (EXP-WD) and
two-parameter Weibull distribution (TW-D). The CDF of the competing probability models are,
respectively, given by

F(x; τ, δ, σ) = 1 − e−τ(
x
σ )δ , x ≥ 0; τ, δ, σ, > 0, (6.1)

F(x; τ, δ, σ) =
(
1 − e−(δx)σ

)τ
, x ≥ 0; τ, δ, σ > 0. (6.2)

F(x; δ, σ) = 1 − e−δxσ , x ≥ 0; δ, σ > 0. (6.3)

Table 7 shows the descriptive statistics of the proposed current health expenditure data sets. Table 8
shows the result of the estimates as well as the one-sample Kolmogorov-Smirnov test. Table 9 compare
the GWD-W model via some recognition criterion, such as, Akaike information criterion (AIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC) and consistent
Akaike information Criterion (CAIC). The results in Tables 7 and 8 suggest that the GWD-W model
provides a better fit than other competing models and could be chosen as a suitable model for analyzing
all data sets. The boxplot, the simulated PDF, simulated CDF, the Kaplan-Meier survival function, the
PP plot and Q-Q plot of the proposed current health expenditure data of United States, Malaysia,
Egypt, and Saudi Arabia are shown in Figures 6–9, respectively. These figures confirm the best fitting
of the GWD-W model for the statistical modeling of current health expenditure for all four different
countries. The proposed simulated PDF fits the histogram plot very well. The simulated CDF fits the
empirical plot very well. The proposed model fits the Kaplan-Meier survival plot very well. The PP
plot and Q-Q plot fits the symmetric line very well.

AIMS Mathematics Volume 8, Issue 5, 12398–12421.



12414

Table 6. The current health expenditure (% of GDP) data sets.

USA 12.48431969, 13.16362572, 13.98185062, 14.49863911, 14.59480953,
14.60504532, 14.71834183, 14.93882084, 15.26701450, 16.23350334,
16.25922203, 16.19850540, 16.17543411, 16.06451797, 16.25333214,
16.52407265, 16.84432411, 16.80583572, 16.68710518, 16.76706314.

MYS 2.51463366, 2.67539740, 2.66876554, 2.92417097, 2.86016941, 2.78692698,
3.10897732, 3.07041144, 3.00692534, 3.26105690, 3.16474295, 3.31451941,
3.45786357, 3.51275206, 3.71036983, 3.81819606, 3.68569684, 3.70413661,
3.74833083, 3.82514191.

EGY 4.92244291, 5.40030336, 5.51073790, 5.22425270, 4.85732365, 4.92229176,
4.84190083, 4.44493246, 4.46634817, 4.37870121, 4.15319490, 4.35706949,
4.71025944, 4.91730928, 5.02518845, 5.33657265, 5.36399841, 5.63305616,
4.94757700, 4.73997355.

KSA 4.21159410, 4.46173573, 4.24937630, 3.97909737, 3.58400607, 3.41867280,
3.61922503, 3.56228733, 2.97100425, 4.29041958, 3.64785600, 3.71177721,
4.01962376, 4.46568298, 5.22795486, 5.99834490, 5.83562946, 6.26256323,
5.74845695, 5.68828773.
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Figure 6. The box plot, fitted PDF, CDF, Kaplan-Meier survival, PP, and QQ plots of the
GWD-W model for USA data.
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Figure 7. The box plot, fitted PDF, CDF, Kaplan-Meier survival, PP, and QQ plots of the
GWD-W model for MYS data.

Table 7. Descriptive statistics of the current health expenditure data sets.

Min. 1st Qu. Median Mean 3rd Qu. Max
USA 12.48 14.6 16.12 15.45 16.33 16.84
MYS 2.515 2.908 3.213 3.241 3.69 3.825
EGY 4.153 4.649 4.92 4.908 5.252 5.633
KSA 2.971 3.641 4.23 4.448 5.343 6.263

AIMS Mathematics Volume 8, Issue 5, 12398–12421.



12416

Table 8. The estimate results and the one-sample Kolmogorov-Smirnov test.

MYS Parameters Estimates KS p-value
GWD-W (3.0885, 2.7478, 2.2195, 1.7353 ) 0.15679 0.65300
EWD (0.3098, 1.9974, 1.7480 ) 0.59093 3.48e-07
MEWD (0.3972 ,1.9670 ,1.7881) 0.44434 0.000406
WD (2.6520 ,2.6447 ) 0.38901 0.003092
EGY
GWD-W (3.1871 ,2.9054 ,3.8478 1.7742 ) 0.11145 0.94170
EWD (0.2401 ,1.7714 ,1.4968) 0.50134 3.56e-05
MEWD ( 0.2829 ,1.9714 ,1.9902) 0.55960 1.98e-06
WD (1.4864 ,1.6676 ) 0.9793 2.20e-16
KSA
GWD-W ( 2.8248, 1.6712, 2.8632, 3.2990) 0.13693 0.799600
EWD (0.2406, 1.8339 ,1.5996 ) 0.28297 0.065580
MEWD (0.2994, 1.9216 ,1.8336) 0.40230 0.001955
WD (1.5026, 2.9303) 0.6665 2.81e-09
USA
GWD-W (0.01817365, 16.78765860, 0.0000,

12.59339566)
0.21116 0.2915

EWD (0.0772, 1.2013, 1.1032) 0.58612 4.59e-07
MEWD (0.0818, 1.7145, 1.5862 ) 0.49980 3.82e-05
WD (0.4367, 2.8966) 0.84937 2.20e-16
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Figure 8. The box plot, fitted PDF, CDF, Kaplan-Meier survival, PP, and QQ plots of the
GWD-W model for EGY data.

AIMS Mathematics Volume 8, Issue 5, 12398–12421.



12417

Table 9. Relative quality of the GWD-W distribution Vs competings.

USA GWD-W EWD MEWD WD
AIC 67.73391 146.7170 125.6622 200.3585
CAIC 69.23391 148.2170 127.1622 201.0644
BIC 70.7211 149.7042 128.6494 202.3500
HQIC 68.31704 147.3001 126.2454 200.7473
MYS
AIC 28.62533 62.02928 57.32898 58.21176
CAIC 31.29199 62.73516 58.82898 59.71176
BIC 32.60826 64.02074 60.31618 61.19896
HQIC 29.40284 62.41803 57.91211 58.79489
EGY
AIC 27.96922 79.04032 72.75102 187.1658
CAIC 30.63589 80.54032 74.25102 187.8717
BIC 31.95215 82.02751 75.73821 189.1573
HQIC 28.74673 79.62345 73.33415 187.5546
KSA
AIC 59.80316 75.86634 74.51765 98.97521
CAIC 62.46983 77.36634 76.01765 99.68109
BIC 63.78609 78.85354 77.50485 100.9667
HQIC 60.58067 76.44947 75.10078 99.36397
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Figure 9. The box plot, fitted PDF, CDF, Kaplan-Meier survival, PP, and QQ plots of the
GWD-W model for KSA data.
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Table 10. One-sample Kolmogorov-Smirnov test.

Model KS p-value
GWD-W model 0.15252 0.9476

GW-OWD 0.21753 0.6559
EXP-CD 0.22573 0.6116

TW-D 0.26447 0.4142

7. Discussion and future works

We have presented a new application for modeling health expenditures as a percentage of GDP in
a comparative study for four different countries, namely the United States, Malaysia, Egypt, and the
Kingdom of Saudi Arabia. We have presented a model with flexible properties and proven efficiency
in statistical modeling of a new application that represents health spending as a percentage of GDP for
four different countries in terms of social policies, welfare levels, credentials, and economic growth
rates.

The Weibull distribution is a versatile tool that can be used to model a variety of phenomena.
It has been used to model downtime in reliability engineering, survival times in medical research,
and other applications. The generalized Weibull family of distributions provides additional flexibility
for modeling data with more complex shapes. The new distributions generated from the generalized
Weibull family can be used to better describe data that does not fit the traditional Weibull distribution.

In this work, we used an extended, updated version of the Weibull distribution, called a generalized
Weibull distribution model, which has good statistical properties in terms of flexibility and goodness
of fit. Some distributional properties and statistical functions were derived in closed forms, including
Renyi entropy, skewness, kurtosis, highly fluctuating behavior, regular variation, and identifiable
property.

Based on Monte Carlo simulation, the empirical studies of the actuarial measures provide evidence
of the severity of the GWD-W model tail. The results of VAR and TVAR for the GWD-W models in
Tables 2 and 3 and Figures 2 and 3 are higher than those of the Weibull models, indicating that the
GWD-W models better represent extreme events. The results also show that the GWD-W models have
a higher risk measure than the Weibull models, which is beneficial for actuarial applications.

The results of the statistical analysis show that the GWD-W model is a better fit to the data than the
traditional Weibull distribution and other competing models. Our study provides useful information
for decision makers with regard to allocating resources for health protection expenditures. AIC, BIC,
HQC, and CAIC are all criteria used to compare different models and select the best model for a
given data set. These criteria measure how well a model fits the data and penalize models with
more parameters to prevent overfitting. Both the goodness of fit of the model and its complexity
are considered when calculating the criteria, with more complex models being penalized more heavily.
From the results in Table 8, the GWD-W model could be selected as the best model among the fitted
models.

AIMS Mathematics Volume 8, Issue 5, 12398–12421.
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8. Conclusions

In this article, we address statistical analysis and modeling of World Bank data to compare health
protection expenditure as a percentage of GDP in four countries. In statistically modeling the data,
we used an extended, updated version of the Weibull distribution with heavy tails, the generalized
Weibull distribution (Weibull model). Some of the properties and characteristics of the distribution
were discussed, and some of the properties were proved. The model presented is very flexible and
can be used effectively for modeling data with heavy tails. The empirical studies of the actuarial
measures show the tail heaviness of the generalized Weibull distribution of the Weibull model and
can better capture extreme events. The results also show the efficiency and consistency properties of
the maximum likelihood approaches based on the proposed model. The results show that the proposed
model fits better than other competing models and could be chosen for statistical analysis and modeling
of health protection expenditures relative to gross domestic product in a comparative study of the
United States, Malaysia, Egypt, and the Kingdom of Saudi Arabia.
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