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Abstract: The appearance and disappearance of the optimal solution for the change of system 
parameters in optimization theory is a fundamental problem. This paper aims to address this issue by 
transforming the solutions of a constrained optimization problem into equilibrium points (EPs) of a 
dynamical system. The bifurcation of EPs is then used to describe the appearance and disappearance 
of the optimal solution and saddle point through two classes of bifurcation, namely the pseudo 
bifurcation and saddle-node bifurcation. Moreover, a new class of pseudo-bifurcation phenomena is 
introduced to describe the transformation of regular and degenerate EPs, which sheds light on the 
relationship between the optimal solution and a class of infeasible points. This development also 
promotes the proposal of a tool for predicting optimal solutions based on this phenomenon. The study 
finds that the bifurcation of the optimal solution is closely related to the bifurcation of the feasible 
region, as demonstrated by the 5-bus and 9-bus optimal power flow problems. 
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1. Introduction 

Systems of nonlinear equations have emerged as an important modeling tool in various fields, 
including biology [1], engineering [2], and materials science [3]. The study of solution structures, such 
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as bifurcations and multiple solutions, is essential to comprehend the behavior of these nonlinear 
models. Parametric nonlinear programming problems are a type of problem that seeks to determine 
the changes in the behavior of solutions as the parameter values change within a defined region of 
interest. Without loss of generality, we consider the general form of a nonlinear programming (NLP) 
problem: 

min  ( , )

. .   ( , ) 0

      ( , ) 0
I

E

f x a

s t C x a

C x a




         (1) 

where, the objective function : uf    , and inequality constraints CI=(c1,..,cr)T, equality 
constraints CE=(cr+1,..,cm)T: u m   are assumed to be nonlinear and twice differentiable. Note that, 
by introducing slack variables, the inequality constraints are equivalently converted to equality 
constraints, . .   ( ) 0 ,m ns t H x R x R   . The feasible region, FR is defined by the set of solutions in 
which all the constraints of (1) are satisfied, { : ( ) 0}nFR x H x   . 

Under a fixed parameter a  , a point nx    is called a LOS of (1), if x FR    and a 
neighborhood U(x∗, ε) of x∗ exists such that  ( ) ( )f x f x   for all \( ) { }x U FR x  . for a point 

nx    or a pair ( , ), mx       , and    is the optimal Lagrange multiplier of the constrained 

optimization problem (1) at point x  . The Lagrangian function is ( , ) ( ) ( )TL x f x H x    ,where 

: n mL    . Satisfying the KKT first-order conditions, which we call x   is a KKT point (also 
critical point). 

( , ) ( ) ( )
( , ) 0

( , ) ( )

T
xL x f x DH x

L x
L x H x

 



     

         
. 

To obtain a reasonable local structure of the feasible region for the constrained NLP problem (1), 
the following assumptions should be accepted. 

Assumption 1: 
i) (Regularity) For each x FR , { ( ), 1,.., }iH x i m   are linearly independent. 

ii) (Non-degeneracy) At each KKT point *x FR  , 2 * *( , ) 0T
xxd L x d    for all 0d   

satisfying *( ) 0T
iH x d   for all 1,...,i m . 

Assumption 1(i) is known as the linear independence constraint qualification (LICQ) [4]. 
Assumption 1(ii) makes the second-order sufficient condition applicable. Since the FR is compact, the 
non-degeneracy condition implies that it has only a finite number of KKT solutions for the (1). 

The parameter change of the optimization problem will lead to the position change of the optimal 
solution and even lead to the emergence or disappearance of the optimal solution. To explore solution 
configurations, instability, and multiple solutions, analyzing the structure of the solution, studying the 
stability of the critical point, and developing efficient numerical algorithms for computing bifurcations 
of nonlinear parametric systems have been key. Past work has primarily focused on continuous 
parameter optimization problems [5] by analyzing the structure of the solution and studying the 
stability of critical points. Local information on variable change rates with respect to parameters can 
be obtained through differential analysis of Karush-Kuhn-Tucker (KKT) or Fritz John (FJ) conditions. 
Bifurcations may occur in the system when these parameters violate the implicit function theorem, 
leading to the emergence and disappearance of critical points, including minima, saddle points, and 
maxima. While previous work has proposed a set of conditions for Jacobian singularity of conditional 
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parameter systems [5], not all conditions have been explored, and some characteristics of these 
conditions have been analyzed in [6]. These studies are referred to as the robustness problem of KKT 
solutions, and some local stability results of local minima have been proposed [7,7]. Our work takes a 
different approach, transforming the original optimization problem into two classes of nonlinear 
dynamical systems that are completely stable. This allows for more concise results to be obtained. 

We find that the appearance and disappearance of optimal solutions can be explained by two kinds 
of bifurcation that are closely related to the change of the feasible region. By analyzing the bifurcation 
phenomenon of the feasible region, we can gain insights into the bifurcation of the optimal solution. 
One class of bifurcation is called pseudo-bifurcation, which represents the conversion of the optimal 
solution or connected feasible part to a class of infeasible points (DEPs). Pseudo-bifurcation manifests 
as the appearance and disappearance of optimal solutions and feasible parts in optimization problems. 
Previous work did not consider these infeasible points, which may lead to missing useful information. 
We propose an interesting tool for predicting optimal solutions based on the properties of pseudo-
bifurcations and such infeasible points. 

The optimal power flow solution, as a special feasible solution satisfying the constraint conditions, 
is closely related to the feasible region of the OPF problem. Relevant studies have explained the 
disappearance of OPF solutions from the perspective of feasible regions, such as the disappearance [9] 
and curvature change [10] of feasible regions of the OPF problem, and the pseudo-pitchfork 
bifurcation [11], which also leads to the disappearance of the OPF solution. In this paper, the 
bifurcation phenomenon of the proposed optimal solution will be verified by the OPF problem, and 
the appearance and disappearance of the optimal solution will be explained reasonably. 

This paper develops and presents: 
(1) A class of pseudo-bifurcation of optimal solutions or saddle points is presented for the general 
constrained optimization problems. 
(2) For general constrained optimization problems, the reasons for the change in the number of 
optimal solutions and saddle points are explained by two types of bifurcation phenomena: 

1) Pseudo-bifurcation of optimal solutions or saddle points. 
2) Saddle-node bifurcations between (i) LOS and saddle point, (ii) LOS and DUEP, (iii) saddle 

point and DUEP. 
(3) The relationship of the bifurcation phenomena between the feasible region and the optimal 
solution. 
(4) The position, number, and bifurcation phenomena of the optimal solution are influenced by 
the feasible region (i.e., constraint set) together with the objective function of the constrained 
optimization problem, hence the analysis needs to clarify the prerequisites. 
(5) The presented pseudo-bifurcation is applied to predict the appearance of the optimal solution 
and its objective function value. 
The rest of this paper is organized as follows: Section 2 provides an overview of some concepts 

related to dynamic systems, saddle-node bifurcation, and pseudo-pitchfork bifurcation to establish a 
foundation for subsequent discussions. In Section 3, a simplified example is presented to illustrate the 
characteristics of pseudo-bifurcation and the appearance and disappearance of optimal solutions using 
pseudo-bifurcation and saddle-node bifurcation techniques. Section 4 discusses the application of 
pseudo-bifurcation. In Section 5, the bifurcation behavior of IEEE 5-bus and 9-bus systems is analyzed 
under varying load demands and constraint parameters. This section also examines the physical 
implications of saddle-node and pseudo-pitchfork bifurcations. Finally, Section 6 summarizes the key 
findings of the paper. 
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2. Overview 

2.1. Dynamic systems formalization 

Some concepts of dynamic systems will be reviewed. Consider a class of hyperbolic dynamic 
systems as follows, 

( ) ( ) ( )x K x L x H x          (2) 

where ( ) n mH x  ：  and ( ) n n mL x  ： , m n . 
The point nx   is an equilibrium point (EP) of the dynamic system (2) if the corresponding 

Jacobian matrix ( ) 0DK x   that is, the EP is a particular type of solution that does not vary with time. 
A stable equilibrium point (SEP) is an EP whose corresponding Jacobian matrix ( )DK x   has all 

eigenvalues with negative real part. A type-k unstable equilibrium point (type-k UEP, k≥1) refers to an 
EP at which the Jacobian has exactly k eigenvalues with positive real part. 

The present study utilizes the active set method to construct two nonlinear dynamic systems. in 
which, the inequality constraints are segregated into active (i.e., transboundary or critical) constraints 
and inactive constraints. During the computation, only the active constraints are considered, while the 
inactive constraints are ignored. The active set quotient gradient system (QGS) is defined as follows, 

 

QGS QGS( ) ( ) ( )

( )
   = ( ) ( )

( )

   = ( ) ( ) ( ) ( )

C

ET BD T
E I BD

I

T BD T BD
E E I I

x Q x L x H x

C x
DC x DC x

C x

DC x C x DC x C x

  

 
    

 
 



       (3) 

where, { : ( ) }i
IBD i C x     is the index set of the active inequality constraints, and 0   is a 

sufficiently small positive scalar, ( )EDC x ( ( )BD
IDC x ) is the Jacobian matrix of ( )EC x ( ( )BD

IC x ). 
The active set penalty-formula quotient gradient system (AQGS) is defined as follows, 

 

AQGS AQGS

(

( ) ( ) ( )

( )

  ( ) ( ) ( )

( )

  ( ( ) ( ) ( ) ( )) ) ( )

E

T BD T BD
E I I
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C x

DC x DC x C x
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f

f
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 



  

 
      
  

  



 



    (4) 

where, ( )f x  is the gradient vector of ( )f x , and    is the positive constant penalty factor. 
The class of dynamic system (2) includes the QGS system (3), AQGS system (4) and some other 

systems. Note that QGS( )H x  is the active constraint set of the original constrained NLP problem (1), 

and QGS( )L x  is the transposed Jacobian matrix of these active constraint set. The QGS system is used 

for characterizing the feasible region of constrained problems in [9]. And the proposed AQGS is 
inspired by the QGS system for solving local optimal solutions of constrained optimization. AQGS( )H x  

is connected with the active constraint set and the gradient of the objective function, AQGS( )L x  is the 

transposed Jacobian matrix of AQGS( )H x  . After that, we specify some necessary definitions and 

theorems. 
The QGS system (3) and AQGS system (4) are related to problem (1), they should also satisfy 
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Assumption 1 (referred in Section 1). 

Definition 1. (γ-relaxed feasible region). 
The γ-relaxed feasible region of (1) is the set of solutions in which all the equality and inequality 

constraints relaxed by γ are satisfied, i.e., 

( )
( ) :

( )

E En

I I

C x
RFR x

C x

       
  

γ
γ

γ
       (5) 

where 1 1=[ ,... , ,..., ]E E I I m
r mr    Tγ , i ≥0 . 

If γ 0  , the relaxed feasible region is equal to the original feasible region (FR), (i.e.,

(0)=RFR FR ). And FR RFR . If 1 0γ , 2 0γ , and 2 1 0 γ γ ， then 1 2( ) ( )RFR RFRγ γ . It 

illustrates that as the constraint is relaxed, the relaxed feasible region expands, which contains both 
the expansion of the existing feasible component and the emergence of a new feasible component, 
without the disappearance of a feasible component of the relaxed feasible region. 

Assumption 2 [12]. The objective function of a constrained optimization problem (1) is a continuous 
real-valued function, and the feasible region is a compact set. 

According to Heine–Borel theorem [12], in n , a set S  is compact if and only if it is closed 
and bounded. Continuous real-valued functions defined on compact sets are bounded and have both a 
maximum and a minimum value. In the majority of practical physics problems such as cost 
optimization [13], optimal power flow (OPF) [14] in power systems, etc., the objects under 
consideration are characterized by a finite region of definition, and exist within a specific space and 
time domain. The dynamical evolution of such objects typically manifests as a continuous process, 
with each of the distinct states comprising the object being ascertainable with certainty. 

It is worth noting that, given that the constraint ( )H x   is formulated in terms of per unit in 

numerical calculations, We add an offset a, which is guaranteed to be optimized in the positive interval, 
the objective function *( ) ( ) 0f x f x a    should be normalized to per unit as well, in order to 

ensure consistency. 

Definition 2. (Regular EP and degenerate EP). 
For an equilibrium point x   of the nonlinear dynamic system (i.e., the QGS, the AQGS), if 

( ) , ( )E IC x C x    , then it is called a regular equilibrium point (REP); otherwise, it is called a 

degenerate equilibrium point (DEP). 
Therefore, combining the definitions of SEP and UEP above, DEP contains DSEP and DUEP, and 

REP contains RSEP and RUEP (see Figure 1). When the penalty factor is significantly large, the DUEP 
of AQGS corresponds to the UEP of the QGS, and the RUEP of AQGS corresponds to the saddle point 
of the original constrained optimization problem. 

And the next two theorems establish the relationships for the SEPs of the two dynamic systems. 
Then, we can establish the following two relationships. 
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Regular Equilibrium Point, REP

Degenerate Equilibrium Point, DEP

All of the real part of 
eigenvalue are positive?

feasible？ feasible？

EP
(Equilibrium Point)

SEP
(Stable Equilibrium Point)

UEP
(Unstable Equilibrium Point)

RSEP
(Regular SEP)

DSEP
(Degenerate SEP)

DUEP
(Degenerate UEP)

RUEP
(Regular UEP)

YES NO

YES NO NO YES

 

Figure 1. Definition and relationship diagram of different equilibrium points. 

Theorem 1. (Feasible region and regular SEMs of QGS) [9]. Suppose Assumption 1 holds, then, 
the FR of (1) equals the union of regular stable equilibrium manifolds (RSEMs) of QGS (3). 

Motivated by the development of energy functions for the dynamical system, the AQGS (4) 
admits an energy function ( )E x  as follows, 

2

2 2
1 1 1( )

( , ) ( ) ( )
2 2 2( )

H x
E x H x f x

f x

 
 

   
 

. 

According to the definition of k-th power penalty function [15], the energy function ( )E x  is a 

2-th power penalty function. 
Then, according to the theorem of optimality of the exterior penalty function method [15] and the 

formula of AQGS (4), we can establish the following relationships. 

Theorem 2. (Optimal solutions and regular SEPs of AQGS). Suppose Assumption 1 and 
Assumption 2 hold. If the penalty factor   is sufficiently large, then, 

i) the isolated local optimal solution (LOS) of (1) is an RSEP of AQGS (4); 
ii) the RSEP of AQGS (4) is a local optimal solution of (1). 

Proof. When Assumption 2 holds, it is easy to make 

mod ( ) ( ) 0f x f x a   . 

The energy function of AQGS (4), 
2 2

mod( , ) 1 / 2 ( ) 1 / 2 ( )E x H x f x   , is a 2-th power penalty 

function of constrained optimization (2). 

Let x̂  be a regular SEP of AQGS (4) with sufficiently large ̂ . Then, ˆ|| ( ) ||H x   and x̂  is 

a local minimum of ˆmin ( , )nx E x  . Thus, according to the optimal theory of penalty function 
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method [12], when k  is sufficiently large, the local minima of (1) are also a local optimal solution 

of min ( , )n kx E x  . For any k  , there exists an optimal solution ( )x   for the corresponding 

unconstrained optimization problem min ( , )nx E x  . And according to the convergence theorem [12] 

of external penalty function, for any limit point x  of iterative sequence { }kx , which the optimal 

solution of min ( , )n kx E x  , is the optimal solution of the original constrained problem, 

( ) 0H x    as k  . 

Let *x  be a local minimum of original constrained optimization (1). *
mod mod0 ( ) ( )f x f x   and 

*( ) 0H x  , so, for any  , * 2 2
mod mod( ) ( )f x f x 2*( ) 0H x  . 

Hence, 
2* * * 2 * 2 2

mod mod mod1 / 2 ( , ) ( ) ( ) ( ) ( )E x H x f x f x f x      is a local minimum of 

min ( , )nx E x  , which is a SEP of AQGS (4). And *( ) 0H x  , *x  is a regular SEP. 

This completes the proof. 
By choosing   large enough, it can be made arbitrarily close to the optimal objective value of the 

original OPF problem (1). According to the characteristic of an exterior penalty function method [12], 
as the penalty parameter   is made large, the generated points approach an optimal solution from 
outside the feasible region, i.e., it cannot strictly satisfy the constraints of the original constrained 
optimization problem. Hence, for a stable equilibrium point x  of AQGS (4), if ( ) , 0H x    , 

then it is called a regular stable equilibrium point (RSEP); otherwise, it is called a degenerate stable 
equilibrium point (DSEP). It has been proved in the paper [16] that the local minimum of the energy 
function ( , )E x   of such non-hyperbolic dynamical systems is a stable equilibrium point. 

Theorem 1 establishes the relationship between the feasible region and the RSEMs of QGS. And 
Theorem 2 establishes the relationship between the local minima and RSEPs of AQGS. The next 
theorem gives the structure of the stability region of SEPs. 

2.2. Saddle-node bifurcation and pseudo-pitchfork bifurcation 

Consider a nonlinear dynamic system with a parameter p: 

( , )x f x p             (6) 

where nx , depending on the parameter p . For each fixed p, one defines the vector field 
( , ) pf f p  and  ,  p t x  denotes the trajectory of   px f x  passing through x  at time t . The 

point 
0 0( , ) n

px p     is called a saddle-node bifurcation point of the system (6) if 
0px   is an 

equilibrium point and the following three conditions are satisfied. 
(SN1) 

0 0
( )x p pD f x  has a simple eigenvalue 0 with v as an eigenvector to the right and w to the 

left; 
(SN2) 

0 0
2( ( )( )),  0x p pw D f v vx  ; 

(SN3) 
0 0(( )( , 0))/p pw f p px   . 

If the conditions (SN2) and (SN3) are replaced by the hypotheses 3 3/ 0pf x    and
2(( 0)( )/ )pw f x p v   , then one obtains the pitchfork bifurcation. Since the QGS is non-hyperbolic, 

it is obvious that when bifurcation between SEMs occurs in the QGS the conditions for saddle-node 
bifurcation and pitchfork bifurcation are not satisfied. This type of bifurcation is pseudo-pitchfork 
bifurcation. It still has some similar characteristics to pitchfork bifurcation. For example, there are 
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three equilibrium manifolds before the bifurcation and only one equilibrium manifold remains after 
the bifurcation. More details can be found in [11]. 

3. Bifurcation of optimal solutions 

In this section, we will demonstrate a variety of bifurcation phenomena of optimal solutions as 
the constraint set is continuously relaxed on a small test system. 

3.1. Two-dimensional small test system 

We consider the following two-dimensional nonlinear optimization problem P1. Adjusting the 
relaxed parameter c in (7) will affect the changes in the feasible region of the system for the optimal 
solution, and their properties and relationship are explored from these dynamic changes in detail. 

1 1 2 1 2

62 4 2 4
1 21 1 2 2

2 2
1 2

min  ( , ) 2 6

:   4 2.1 / 3 4 4 0.8
. .

( 0.5) ( 0.25) 0.7

f x x x x

x x x x x x x c
s t

x x c

  

      
     

P1 .   (7) 

Firstly, the corresponding QGS and AQGS are constructed, where the penalty factor in AQGS is 
set to be 61 10   . When c=0, there is only one feasible component and one optimal solution in 
Figure 2(a), which correspond to RSEM of QGS and RSEP of AQGS in Figure 2(b), respectively. This 
illustrates Theorems 1 and 2. Therefore, we will use the terms “feasible region” and “SEM”, “optimal 
solution” and “SEP” interchangeably, without making a strict distinction. 

(a) Feasible region and local optimal solution 
by interior point method. 

(b) Regular equilibrium point (manifold) of the 
QGS and AQGS. 

Figure 2. The one-to-one relationships of problem P1 with c=0. 

Furthermore, Figure 3 depicts the stability region of the QGS and the AQGS for problem P1 when 
c=0. Based on Figure 3 and Figure 4(a), we make the following observations. 
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 When the   is significantly large, the stability regions of both dynamic systems exhibit the 
same shape and the corresponding DSEP and DUEP are located at the same position. 

 The type-1 UEPs are positioned on the boundary of two adjacent SEP stability regions, and 
the type-2 UEP is located at the common junction of four stability regions. These findings 
indicate that the UEP is located at the stability region boundary with an n-1 dimensional stable 
manifold, as demonstrated in [16]. 

Therefore, for the sake of simplicity and for non-special cases, we will not differentiate between 
DSEP and DUEP of QGS and AQGS in the latter, and mark the saddle points (RUEP of AQGS) with 
a green ‘×’ specifically. 

The present study investigates the variation of the feasible region and the optimal solutions for a 
small case as the parameter c is varied from 0 to 3.3, as depicted in Figure 4. It should be noted that 
the value of c displayed in the figure is only an approximation of the critical change that occurs and 
does not represent the exact critical value at which bifurcation occurs. 

(a) QGS (b) AQGS 

Figure 3. c=0, the stability region of the two nonlinear dynamic systems, both stability 
regions, three DSEPs (black dots) and the four DUEP (red diamonds) positions are the 
same. A type-1 UEP exists between every two SEPs, and the type-2 UEP locates between 
the four type-1 UEPs. 

Upon increasing c from 0 to 0.017, as depicted in Figure 4(b), a new feasible component and an 
optimal solution appear, resulting in a transition from a DSEM to an RSEM for the QGS system, and 
a DSEP to an RSEP for the AQGS system. This phenomenon is referred to as a pseudo-bifurcation 
and will be described in detail in the following section. 

The feasible components continue to approach, and when c reaches approximately 0.8, as seen in 
Figure 4(d), a pseudo-pitchfork bifurcation [11] occurs, whereby two SEMs and a type-1 UEP 
bifurcate into one connected SEM of larger size in the QGS system. In the AQGS system, the number 
of equilibrium points remains unchanged, but the type-1 DUEP transforms into a type-1 RUEP, which 
corresponds to a saddle point of the original optimization problem. The bifurcation of the feasible 
region can alter the number of critical points and generate a new saddle point between the two optimal 
solutions. Similarly, in Figure 4(e), when c is increased to 1.1, a pseudo-bifurcation occurs, resulting 
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in a transformation of a DSEM of QGS to an RSEM and a DSEP of AQGS to a LOS (RSEP), leading 
to a new feasible component and optimal solution. 

(a) 0 (b) 0.017 

(c) 0.6 (d) 0.8 

(e) 1.1 (f) 1.3 

X
2

X
2

X
2

X
2

X
2

X
2
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(g) 1.35 (h) 2.9 

(i) 2.91 (j) 3.0 

(k) 3.03 (l) 3.08 

X
2

X
2

X
2

X
2
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(m) 3.18 (n) 3.19 

(o) 3.28 (p) 3.3 

Figure 4. Two-dimensional test case P1, variation of the optimal solution and the feasible 
region as c varies. 

As c increases to approximately 1.35, as illustrated in Figure 4(f–g), two feasible components 
undergo a pseudo-pitchfork bifurcation and merge into one feasible component. However, unlike the 
bifurcation that occurs at c=0.8, in this case, for AQGS, a type-1 DUEP and a LOS (RSEP of AQGS) 
approach each other, and a saddle-node bifurcation occurs at c=1.3434 (as seen in Figure 5), causing 
the optimal solution to disappear. Hence, the bifurcation of the feasible region can modify the number 
of optimal solutions and even cause the disappearance of an optimal solution. 

At c=2.9, the non-convexity of the feasible region boundary changes considerably, resulting in a 
new pair of UEPs appearing, as shown in Figure 4(h). At c=2.91, a DSEM of QGS transforms into an 
RSEM, and a DSEP of AQGS transforms into a LOS (RSEP). 
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Figure 5. Position change of the LOS (RSEP) and type-1 DUEP of AQGS due to the 
saddle-node bifurcation with c increasing from 1.34 to the bifurcation point. 

In Figure 4(j–k), two bifurcations occur around c=3.03, where the two feasible components 
undergo a pseudo-pitchfork bifurcation. However, the optimal solution bifurcation phenomenon at this 
point is different. The upper type-1 DUEP is converted into a type-1 RUEP. The lower type-1 DUEP 
bifurcates with the optimal solution and then disappears. The change of eigenvalues for the bifurcation 
of type-1 DUEP and LOS are shown in Figure 6. The eigenvalues both tend to 0 where the saddle-
node bifurcation occurs as c keeps increasing (for LOS, the eigenvalue 2 is suddenly tending to 0 near 
the pseudo-pitchfork bifurcation values). 

(a) Changes in eigenvalues of 
lower type-1 DUEP of AQGS 

(b) Changes in eigenvalues 1 
of the RSEP of AQGS 

(c) Changes in eigenvalues 2 of 
RSEP of AQGS 

Figure 6. Eigenvalue change of type1 DUEP and RSEP of AQGS from 3.0 to 3.03 for c, 
which is a saddle-node bifurcation. 

In Figure 4(l–m), a saddle point and an optimal solution exhibit a bifurcation phenomenon and 
subsequently vanish as parameter c approaches approximately 3.18, thereby indicating a change in the 
number of optimal solutions due to nonconvexity alterations in the boundary. Additionally, Figure 7 
depicts the behavior of one eigenvalue each of the type 1 RUEP and RSEP, which diminish to zero as 
parameter c increases, culminating in zero values at the saddle-node bifurcation. 
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In Figure 4(n–p), two saddle-node bifurcations transpire in the upper right quadrant of the feasible 
region. The first bifurcation engenders the emergence of a saddle point and an optimal solution, 
stemming from the shift in the boundary of the feasible region. The second bifurcation corresponds to 
a pseudo-pitchfork bifurcation within the feasible region, resulting in the disappearance of the optimal 
solution and type-1 DUEP of AQGS via a saddle-node bifurcation. Notably, at parameter values 
approximately 3.2 and 3.28 in Figure 4(o), two inner boundaries or ‘‘holes’’ in the feasible region 
contain a type-2 DUEP of AQGS and a saddle point on the boundary that approach each other and 
eventually bifurcate to disappear. At the saddle-node bifurcation values as depicted in Figure 8, one 
eigenvalue of each DUEP approaches zero and attains zero values at the bifurcation point. 

 

Figure 7. Eigenvalues Change in for type1-RUEP (saddle point) and RSEP of AQGS 
(optimal solution) saddle-node bifurcation from 3.05 to 3.11 for c. 

 

Figure 8. Eigenvalues Change in for type1-RUEP (saddle point) and type-2 DUEP of 
AQGS saddle-node bifurcation from 3.28 to 3.3 for c. 
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3.2. A new class of pseudo-bifurcation 

Based on the findings presented in Section 3.1, it is observed that for the general constrained 
optimization problem, there exists interconversion between RSEM and DSEM as the constraint set is 
continuously relaxed or tightened. Similarly, for the AQGS system, interconversions between DSEP 
and RSEP, and DUEP and RUEP are observed. To describe this phenomenon, we introduce the 
concept of pseudo-bifurcation as follows: 

Definition 3. (Pseudo-bifurcation). For a nonlinear dynamic system, QGS (3) or AQGS (4), with 
successive changes in system parameters, where the number of EPs remains unchanged, that all satisfy 

0x  , while the feasibility ( ( ) 0H x  ) of the EPs changes. 
Figure 9 illustrates the variation of the two constraints of DSEP1 as parameter c is increased from 

0 to 0.02, as shown in Figure 4(a,b). As the constraints are gradually relaxed, the mismatch between 
the two constraints approaches zero and crosses the pseudo-bifurcation value (around c=0.0165). At 
this point, the original DESP1 is transformed into a newly generated optimal solution. 

 

Figure 9. The variation curve of the constraints, when DSEP is converted to RSEP, the 
variation tends to zero as the constraint is continuously relaxed. 

In summary, the pseudo-bifurcation is an observed phenomenon in nonlinear dynamic systems 
that correspond to constrained optimization problems. It arises when successive changes in parameters 
result in the feasibility of equilibrium points changing, causing the appearance or disappearance of 
optimal solutions, saddle points, or feasible components, while the number of equilibrium points 
remains constant. The pseudo-bifurcation does not alter the number of equilibrium points but leads to 
the interconversion of DEP and REP. The continuous approach to zero of the mismatches of each 
constraint as the parameters approach the pseudo-bifurcation value (i.e., DEP to REP), and vice versa 
after crossing the bifurcation value is a characteristic of the pseudo-bifurcation. Understanding this 
phenomenon's features is essential for the analysis of constrained optimization problems. 

Table 1 presents a comparison between the variations in the feasible region and the variations in 
the optimal solutions/saddle points based on the bifurcation phenomena observed in the P1 problem. 
The table defines only one direction of bifurcation, and the opposite direction represents the opposite 
number of changes. The table highlights how the changes in the feasible region correspond to changes 
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in the number of optimal solutions and saddle points. These observations are critical for understanding 
and analyzing constrained optimization problems. 

Table 1. Bifurcation relationship between feasible region variation and optimal 
solution/saddle point variation. 

Variation of feasible 

region 

Variation of EPs 

of QGS 

Bifurcation of 

feasible region 

Optimal 

solution

Saddle 

point

Variation of 

AQGS EPs 

Bifurcation 

of critical 

point 

A New feasible component 

appears 
DSEM to RSEM 

Pseudo 

bifurcation 
increase - DSEP to RSEP 

Pseudo 

bifurcation

Two feasible components 

connect into one 

Two RSEMs and a type-

1 UEPs are merged into 

one RSEM each 

Pseudo-

Pitchfork  

bifurcation 

- increase DUEP to RUEP 
Pseudo 

bifurcation

decrease - 

RSEP and Type-

1 DUEP 

disappear 

Saddle-

node 

bifurcation

non-connected parts of a 

feasible component are 

connected to form an inner 

boundary 

an RSEM and a type-1 

UEP merge into one 

RSEM 

Pseudo-

Pitchfork  

bifurcation 

decrease - 

RSEP and Type-

1 DUEP 

disappear 

Saddle-

node 

bifurcation

Feasible region expansion, 

outer boundary change 
- - decreasedecrease

RSEP and Type-

1 RUEP 

disappear  

Saddle-

node 

bifurcation

Feasible region expansion, 

inner boundary change 
- - - decrease

Type-1 RUEP 

and type-2 

DUEP disappear 

Saddle-

node 

bifurcation

Based on Tables 1 and 2, our summary is as follows. 
(1) Pseudo-bifurcation occurs simultaneously in the feasible region and the optimal solution. 
(2) When two feasible components merge due to pseudo-pitchfork bifurcation, the pseudo-
bifurcation or saddle-node bifurcation of the optimal solution/saddle point occurs at the same time, 
leading to a change in the number of critical points. 
(3) When disconnected localities of a global connected feasible component are connected by a 
pseudo-pitchfork bifurcation (e.g., Figure 4(n–o) upper right), the inner boundary is formed and 
the number of optimal solutions decreases due to the occurrence of saddle-node bifurcation. 
(4) When the non-convexity degree of the feasible region boundary changes, it may lead to the 
appearance (or disappearance) of a pair of optimal solution and saddle points due to the saddle-
node bifurcation. 
(5) When the inner boundary of the feasible region shrinks and disappears, the saddle points on 
the inner boundary will disappear due to the saddle-node bifurcation. 

  



12389 

AIMS Mathematics  Volume 8, Issue 5, 12373–12397. 

Table 2. Bifurcation of optimal solutions for the small case P1 under the variation of parameter c. 

c #LOS LOS1 LOS2 LOS3 LOS4 LOS5 Remark 

0 1 4.9680  
 

 

  

0.017 2 4.9500 6.1547  Pseudo-bifurcation：LOS2 appears 

1.1 3 4.2258 5.0267 3.4903  Pseudo-bifurcation：LOS3 appears 

1.3 3 4.1261 4.7455 3.0826  
saddle-node bifurcation： 

LOS2 disappears 

2.91 3 3.1192 

 

2.4317 2.1437  Pseudo-bifurcation：LOS4 appears 

3.0 3 2.9630 2.4061 1.9423  saddle-node bifurcation：LOS1 disappears

3.08 2  2.3802 1.8570  saddle-node bifurcation：LOS3 disappears

3.19 2    1.7726 9.0696 saddle-node bifurcation：LOS5 disappears

3.28 1    1.7177   

Through the previous examples, we have explored the relationship between the bifurcation of 
optimal solutions and the feasible region. We have identified that the bifurcation of optimal solutions 
is influenced by both the constraint set, which determines the feasible region, and the objective 
function. Notably, when only the objective function is changed while the constraint set remains 
constant, it can lead to significant differences in the number of optimal solutions and their bifurcation 
phenomena. This suggests that the number and locations of optimal solutions are heavily influenced 
by the objective function, and the bifurcation behavior can be inconsistent with changes in the feasible 
regions. Therefore, when discussing the bifurcation of optimal solutions, it is essential to consider both 
the constraint set (feasible region) and the objective function as influential factors. 

4. Predicting tool of optimal solution appearance 

As the relaxation parameters increase, the DSEP in a constrained optimization problem loses its 
significance as an optimal solution, saddle point, or even a feasible point, until a pseudo-bifurcation 
occurs. This conversion of the DSEP into an RSEM (feasible region) and RSEP (optimal solution) due 
to the pseudo-bifurcation allows us to predict the changes in the optimal solution and feasible 
components using the DSEP. In the case of the two-dimensional example P1, when c=0 (as shown in 
Figure 4(a)), there are three DSEPs. 

As c increases, three pseudo-bifurcations occur, accompanied by the appearance of three new 
feasible components and optimal solutions. It should be noted that these three feasible components do 
not appear simultaneously. Initially, at c=0, we predict the position of the feasible component and the 
optimal solution, along with the objective function value of the optimal solution. Then, the changes of 
the three DSEPs are tracked by increasing the value of c, and the position deviation is measured using 

the Euclidean distance, 2( )i id x y   , which represents the distance deviation between the actual 

optimal solution appearance location and the predicted optimal solution appearance position. The 
function value deviation is measured using / 100%f f  , where f   is the initial predicted value of 

the optimal solution. 
In Table 3, we present the positions of the three DSEPs and their corresponding predicted 

objective function values with an initial c value of 0. As c increases, the three DSEPs convert into new 
optimal solutions, respectively. It is evident that the predicted objective function values with the 
assistance of DSEP have only small errors when compared with the actual objective function values, 
and their positions are quite close to each other. However, we should note that due to the relaxation of 
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the constraints, the boundary of the feasible region changes, which can cause the position of the optimal 
solution to shift and the prediction results to be biased. Despite this, the objective function value does 
not suddenly change significantly. The large deviation in the objective function value for DSEP3 is 
primarily due to the substantial change in c from the initial relaxation value of 0 to 2.904081. However, 
its position deviation remains small. 

Table 3. Variation of the three DSEPs in the two-dimensional system. 

c  DSEP1 DSEP2 DSEP3 

0 

(Predict) 

position (-0.17646, 0.53335) (-1.44021, 0.68061) (-1.55920, -0.56010)

f 6.18043 3.8002 2.3215 

0.016434 
position (d) 

(-0.18272, 0.53484) 

d=0.0064 
(-1.44026, 0.68061) (-1.56044, -0.56024) 

f (deviation) 6.16940 (0.18%) 3.8001 2.3189 

0.6 
position  (-1.4429, 0.68088) (-1.60710, -0.56865)

f  3.7951 2.2172 

0.655771 
position (d) - 

(-1.44600, 0.67793) 

d=0.0043
(-1.60710, -0.56865) 

f (deviation)  3.7859 (0.38%) 2.2172 

2.9 
position - - (-1.60721, -0.56871)

f  2.21687

2.904081 

position (d) - - 
(-1.60926, -0.56983) 

d=0.0025

f 

(deviation) 
  2.2117 (4.97%) 

Based on the above observations, we conclude that the information derived from the DSEP 
calculated by the nonlinear dynamic system can be effectively used to predict the objective function 
value for the new emerging feasible component and to determine whether the new optimal solution is 
likely to be better than the current objective function. As such, the DSEP can be a useful tool for 
solving constrained optimization problems. 

5. The numerical study 

5.1. On the optimal power flow problems 

Power system is one of the largest nonlinear dynamic systems in the world, and the optimal power 
flow (OPF) problem is the core of the power system operation [17]. According to a FERC study, a 
well-executed OPF solution approach has the potential to yield annual savings amounting to tens of 
billions of dollars [18]. The OPF problem is a highly complex and nonconvex NLP problem that 
presents significant mathematical challenges. The inclusion of AC power balance constraints 
introduces additional nonlinearity, while nonconvex cost functions and constraints add to the 
complexity of the problem [19,20]. Therefore, linearized DCOPF model is still used in power grid 
companies, instead of nonlinear ACOPF model. Recently, researchers began to pay attention to the 
development of ACOPF problem theory and solution methods. In particular, researcher found that the 
OPF solution would disappear with time change in [21], but did not explore its characteristics and 
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properties. The bifurcation phenomenon and characteristics of the optimal solution proposed in this 
paper are illustrated in some actual OPF problems, and the results are consistent with those mentioned 
above. It is hoped that our research will supplement the optimality theory of OPF and other 
optimization fields. 

A general OPF problem subject to the following equality and inequality constraint functions that 
conform to the standard problem form (1): 
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    (8) 

where the constant parameters are Gij: equivalent conductance of a transmission line from bus i to bus 
j; Bij: equivalent susceptance of a transmission line from bus i to bus j; and PLi, QLi: the real and reactive 
power loads at bus i.; θi: voltage angle at bus i (The voltage angle of reference bus θref is set as a 
constant); Vi: voltage magnitude at bus I;PGi: real power of generators at bus I; QGi: reactive power of 
generators at bus i. Functional expressions: Sf: branch flow at the from bus of line l; St: branch flow at 
the to bus of line l. 

In the context of solving the optimal power flow problem using a nonlinear solver based on 
optimization theory, it is often observed that the solver converges to certain KKT points that satisfy 
the first-order KKT condition of optimization theory but are sometimes not the optimal power flow 
solution. These KKT points tend to deviate from the actual optimal power flow solution as the load 
conditions or inequality constraints in the power system change. In the forthcoming tests, we aim to 
investigate how the bifurcation phenomenon manifests in the γ-relaxed feasible region and the optimal 
solution of the OPF problem with varying relaxation parameters γ. 

5.2. The 5-bus system 

The WB5 system is taken from [10], the detail data and network diagram can be download from [22]. 
This system includes 2 generators and 6 buses, which have multiple feasible components and OPF 
solutions. In OPF problems, the active power output of the generators is the variable we are most 
interested in, so we concentrate on the feasible region and the variation of the optimal solution for the 
WB5 system in the PG plane. 

Since the difference between the upper and lower limits of voltage and the rated voltage (i.e., 1 
p.u.) in the optimal power flow problem is generally the same, when the lower limit of the voltage 
constraint is min

iV , the upper limit of the voltage constraint is min2 iV . 
Figure 10 corresponds to the notation used in Figure 4. With the lower limit of bus-voltage 

amplitude set to 0.96, only one feasible component is available due to the tautness of the bus-voltage 
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amplitude constraint. As the voltage constraint is relaxed, two DSEPs are progressively converted to 
RSEMs via pseudo-bifurcation. The number of OPF solutions increases with the increase of feasible 
components. Relaxing the lower limit of the bus voltage amplitude constraint to 0.90 results in the 
merging of different feasible components. Some OPF solutions vanish due to pseudo-pitchfork 
bifurcation. Table 4 provides detailed data on the bifurcations and parameters changes. It can be seen 
that the decrease of min

iV  from 0.96 to 0.85. 
(1) A pseudo-bifurcation occurs, making the transformation of DSEP to RSEP (LOS) of AQGS, 

correspond to the emergence of a new feasible component as well as a new optimal solution 
(see Figure 10(a)→Figure 10(b)→Figure 10(c)). 

(2) Three pseudo-pitchfork bifurcations occur, causing the three disconnected feasible 
components in Figure 10(c) to merge into a single connected feasible component (see Figure 
10(c)→Figure 10(d)→Figure 10(e)→Figure 10(f)). 

(3) The local optimal solution on each feasible component in Figure 10(c) disappears with a 
saddle-node bifurcation of type-1 DUEP (see Figure 10(c)→Figure 10(d)→Figure 
10(e)→Figure 10(f)). 

(4) A local optimal solution and a saddle point (type-1 RUEP) appear with a saddle-node 
bifurcation in Figure 10(d) enlarged part (see Figure 10(c)→Figure 10(d)). 

This example provides insight into the impact of saddle-node bifurcation and pseudo-bifurcation 
on the emergence or disappearance of LOSs and saddle points. Specifically, the voltage amplitude at 

min
iV   bus i is chosen as the parameter for observing the changes in OPF solutions. From a practical 

perspective, the voltage amplitude of buses has an effect on power supply quality. When the upper and 
lower limits of the voltage amplitude are relaxed, the number of feasible solutions satisfying the OPF 
constraint increases, leading to a larger feasible region as depicted in Figure 10. However, it is worth 
noting that the lower limit of node voltage amplitude of less than 0.9 has little practical significance 
for the power system, yet it does not affect the appearance or disappearance of optimal solutions of 
constrained optimization problems. 

Table 4. Bifurcation of optimal solutions for the 5-bus system under the variation of 
parameter min

iV . 

min
iV  #LOS LOS1 LOS2 LOS3 LOS4 Remark 

0.96 1 1104.70  
 

 

 

0.95 2 1082.33 946.58 Pseudo-bifurcation: LOS2 appears 

0.92 3 1004.22 929.03 2067.40 Pseudo-bifurcation: LOS3 appears 

0.90 3  918.55 1988.19 1996.19
Saddle-node bifurcation#1: LOS1 disappears 

Saddle-node bifurcation#2: LOS4 appears 

0.87 2  902.78 2433.89  Saddle-node bifurcation#2: LOS4 disappears 

0.85 1  892.24   Saddle-node bifurcation#2: LOS3 disappears 
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(a) 𝑉௜
௠௜௡ ൌ 0.96 (b) 𝑉௜

௠௜௡ ൌ 0.95 

 

(c) 𝑉௜
௠௜௡ ൌ 0.92 (d) 𝑉௜

௠௜௡ ൌ 0.90 

(e) 𝑉௜
௠௜௡ ൌ 0.87 (f) 𝑉௜

௠௜௡ ൌ 0.85 

Figure 10. Bifurcation of the feasible components of the WB5 system. 
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5.3. The 9-bus system 

The 9-bus system, case9mod is also taken from [10] and can be download from [22], where there 
have three generators and nine buses. To study the bifurcation phenomenon when the system runs 
under different load conditions, we add the load condition parameter λ to the power flow equation: 
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We will use the variation of the equilibrium points to analyze the variation of the feasible region 
and the optimal solution for this case9mod system (see Figure 11). 

Three pseudo-pitchfork bifurcations will occur in the feasible region. After the first pseudo-
pitchfork bifurcation, the left two feasible components will be merged into one connected feasible 
component, as in Figure 11(a). After the second pseudo-pitchfork bifurcation occurs, the remaining 
two feasible components will be combined into a single connected feasible component, at which point 
only one feasible component remains, as in Figure 11(d). It should be noted that when the first two 
pseudo-pitchfork bifurcations are about to occur, the two disconnected feasible components will 
become larger and closer to each other until they finally merge into one connected feasible component. 
For the last pseudo-pitchfork bifurcation, since there is only one feasible component left, the final 
bifurcation will occur in the two disconnected parts of the feasible component and will eventually 
merge into a larger feasible component, as in Figure 11(f). Table 5 provides a detailed account of the 
data and bifurcations observed during changes in the parameters. 

In this system, four local optimal solutions and one saddle point exist on three disconnected 
feasible components as in Figure 11(a). In the process of a relaxation parameter change, a total of three 
saddle-node bifurcations occurs, i.e., the LOS (RSEP of AQGS) bifurcates with the type-1 DUEP on 
the boundary and then vanish, and the solutions where the bifurcation disappears are all suboptimal in 
the optimal solution pair about the type-1 DUEP. 

Table 5. Bifurcation of optimal solutions for the 9-bus system under the variation of parameter λ. 

λ #LOS LOS1 LOS2 LOS3 LOS4 Remark 

1.0 4 3087.84 3398.03 4265.15 4246.48  

1.023 3 3178.26  4149.51 4115.89 Saddle-node bifurcation: LOS2 disappears 

1.056 3 3052.11  3936.53 3877.00  

1.058 2 3051.97   3858.23 Saddle-node bifurcation: LOS3 disappears 

1.065 2 3052.31   3782.66  

1.074 1 3054.49    Saddle-node bifurcation: LOS4 disappears 
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(a) λ=1.0 (b) λ=1.023 

 
(c) λ=1.056 (d) λ=1.058 

 
(e) λ=1.065 (f) λ=1.074 

Figure 11. Bifurcation of the feasible components of the case9mod system. 
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6. Conclusions 

This paper contributes to the advancement of research on nonlinear constrained optimization 
problems by utilizing feasible region theory and bifurcation theory. Specifically, the paper presents a 
thorough analysis of two types of bifurcation phenomena, namely, saddle-node bifurcation and 
pseudo-bifurcation, to explain the disappearance or appearance of optimal solutions and saddle points 
in general nonlinear constrained optimization problems. 

The paper proposes and analyzes the characteristics and phenomena of saddle-node bifurcation 
and pseudo-bifurcation of optimal solutions. It explores the relationship between bifurcation 
phenomena of the feasible region and the optimal solution, highlighting that changes in the number of 
optimal solutions or saddle points may occur due to new feasible components, bifurcation of feasible 
regions, or changes in the boundaries of feasible regions. Detailed numerical examples show that the 
location, number, and bifurcation phenomenon of optimal solutions are jointly affected by the feasible 
region (i.e., the constraint set) and the objective function of the constrained optimization problem, so 
it stresses the importance of explicitly specifying preconditions for analysis. The bifurcation 
phenomena due to different relaxation parameters in the 5-bus system and 9-bus system OPF problems 
are numerically illustrated. Moreover, the paper proposes a practical predicting tool for optimal 
solutions based on the pseudo-bifurcation of DSEP. Suggesting future research avenues may include 
exploring the application of the bifurcation of the optimal solution discussed in this paper to compute 
the global optimal solution of general constrained optimization problems, which is very challenging. 
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