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Abstract: This paper presents a mathematical analysis on our proposed physiologically structured
PDE model that incorporates multiscale and nonlinear features. The model accounts for both
mutated and healthy populations of quiescent and proliferating cells at the macroscale, as well
as the microscale dynamics of cell cycle proteins. A reversible transition between quiescent and
proliferating cell populations is assumed. The growth factors generated from the total cell population
of proliferating and quiescent cells influence cell cycle dynamics. As feedback from the microscale,
Cyclin D/CDK 4-6 protein concentration determines the transition rates between quiescent and
proliferating cell populations. Using semigroup and spectral theory, we investigate the well-posedness
of the model, derive steady-state solutions, and find sufficient conditions of stability for derived
solutions. In the end, we executed numerical simulations to observe the impact of the parameters
on the model’s nonlinear dynamics.
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1. Introduction

Mammalian cell division patterns are critical to understanding human tumor progression. It has
drawn the attention of many researchers, and it has been the topic of intense research for a long
time. Several research works utilize age-structured frameworks to investigate the cell cycle. Some
examples of age-structured growth models include epidemic [1–3], microscopic virus [4, 5] and cell
population [6–9] models. The concealed molecular complexity of a tissue, on the other hand, demand
a more thorough modeling framework that includes special cellular and molecular interactions.

Cells that divide in living tissues can be divided into two categories: proliferating and quiescent.
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The proliferating cells go through different phases in the cell cycle (G1, S ,G2,M) while dividing.
Quiescent cells, however, do not grow or divide, but rather move to the G0 phase, where they remain
until they differentiate or undergo apoptosis. To preserve tissue homeostasis, cells must be capable
to transition between proliferative and quiescent phases. The transition between proliferating and
quiescent compartments, however, is dependent on signaling molecules called anti-growth or growth
factors [10]. In a population of tumor cells, proliferating cells multiply till the tumor becomes active
and aggressive. Additionally, to maintain homeostasis, the total number of cells in all sub-populations
stays at equilibrium; hence, in a healthy and mutated cell populations, the proliferative compartment is
constrained in size. Schematics in Figure 1 depicts multiscale-modeling framework used in this paper.
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Figure 1. Model schematics. Both healthy and mutated subpopulations of proliferating and
quiescent cells are with various transition effects depicted. Healthy proliferating cells can
transition to cancer proliferating cells upon mutation with rate m. Microscale (or cell cycle)
dynamics with predominating protein states along with their interactions are shown, as indicated
by the legend in the bottom right corner. The growth factors g f from the macroscale influences
the cell-cycle.
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Mutations in genes that regulate cell growth and division can disturb the finely-tuned equilibrium
that governs cell proliferation, which in turn can result in the emergence of cancer. Although other
factors like environmental exposures and lifestyle choices may also play a role in cancer development,
mutations in genes are a major contributor to this disease. Mutations can be of several types, those that
are particularly significant for cancer involve increased potential for proliferation, decreased apoptosis,
genetic instability, and reduced tumor suppression [11]. Furthermore, studies have shown that the
transformation of a normal cell into a cancerous one usually requires the accumulation of one to ten
mutations [11, 12]. The mutated cell population also consists of its own progeny including different
differentiation stages and quiescent cells.

This research focuses on the model development of the cell population in all healthy and mutated
cell populations. We investigate the coupling dynamics of tissue cell density and cell cycle proteins.
Previous studies have used age-structured models to investigate cell populations in quiescent phase [6]
only, the proliferating phase [13, 14] only, or both phases together [7, 15–19]. Despite this, the impact
of molecular interactions on the interplay between proliferative and quiescent phases at the subcellular
level has yet to be examined. Thus, the primary aim of this paper is to develop a multiscale model
utilizing mathematical techniques that can capture the intricacies of a complex system existing at the
sub-cellular level.

The emphasis is laid upon the interaction between the macro- (population dynamics) and micro-
scale (cell cycle dynamics) at two distinct levels. The concept of age is used to refer to the time since the
last division, as described in previous studies [14,20]. In age-structured models, an additional variable,
referred to as “age” (a), is introduced, which has a physiological rather than physical interpretation.
The idea of cell age reflects the variability (biological) within a population of dividing cells and is
distinct from the physical time variable (t). To model the behavior of cell populations in both the
proliferative and quiescent stages at the macroscale, we use partial differential equations (PDEs).
For predicting sub-cellular protein interactions related to cell cycle dynamics, we employ ordinary
differential equations (ODEs). The two scales are connected via the feedback incorporated in both
directions. Within a cycle of cell division (G1,S ,G2,M), cells in the early proliferating phase (G1) can
move to the quiescent-phase until the restriction point (R).

It is clear that the restriction point (R) cut the G1 phase into two portions, where before R, the
cells become quiescent but once R is passed, cells can no longer avoid division [21, 22]. During
the quiescent phase, cells do not grow or divide, but they still complete other cellular functions.
The bidirectional transition of cells between quiescent and proliferation phases in both healthy and
mutated cell populations plays a crucial role in maintaining tissue homeostasis, and it is controlled
by the conditions of extracellular environmental [10]. In tumors, the transitional balance between
two compartments is disturbed, and cells can grow uncontrollably [23]. Recent experimental results
support that cyclin proteins are the most important to regulate any change in the cell-cycle phase [24].
Therefore, we utilize a vital aspect of cell cycle dynamics (i.e., the G1 − S phase-transition) to predict
how the transitional balance between proliferating and quiescent subpopulations evolve, which is
essential for maintaining homeostasis.

Several proteins are involved in regulating the transitions between different phases of the cell
cycle at the microscale. The interactions between these proteins have been mathematically modeled
and simulated using ODEs by various researchers, as documented in [25–30] and related references.
However, to keep things simple, we focus only on four proteins: Cyclin D − CDK4/6, p21, E2F,
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and Rb. These proteins are mainly involved in Cyclin D activity and the transition of cells from G1

phase to S phase. Experimental data supports this choice, as Cyclin D has been shown to regulate the
transition between the G0 and G1 phases [31–33]. In addition, over-expression of Cyclin D leads to cell
division commitment in the proliferative phase, while under-expression leads to the quiescent phase. It
is essential to note that these molecular-interactions are considered to occur in a rapidly growing cell
population rather than a single cell. Furthermore, we assume the average protein concentrations in both
quiescent and proliferating cell subpopulations, thus omitting the variability between individual cells.
The proteins involved in the cell cycle play a vital role in regulating its progression. Cyclin proteins,
which are structural proteins, along with their inhibitors cyclin-dependent kinases (CDK), control the
various phases of the cell cycle. Each phase of the cycle is regulated by a specific Cyclin/CDK complex.

The initiation of a cell cycle is triggered when the microenvironment of a cell receives sufficient
growth signals [34], which induce the activity of Cyclin-CDK 4-6 complex. During the G1 phase,
Cyclin D is activated only by growth signals, and in case of low or no growth factors, its concentration
decreases, and the cell doesn’t enter the cycle. Growth factors bind to specific receptors which are
situated on the cell’s external cytoplasmic membrane, activating intracellular signaling pathways (such
as Ras/Map/Rap kinase), eventually which directing to the production of Cyclin D (see [35–37], for
more details). The active complex of Cyclin D and CDK4/6 is synthesized at maximum. Cyclin
complex then triggers the transcription factor E2F’s activation by phosphorylating retinoblastoma
protein Rb. Consequently, the transcription factor E2F accumulates and triggers some other important
cyclins. It is important to note that these interactions occur in a fast growing population of cells rather
than in a single cell.

In summary, our contribution is to develop a multiscale model that describes the coupling between
two predominant scales and focuses on the challenges related to the disruption of cell transitioning
between proliferating and quiescent states, leading to uncontrolled tumor growth. Specifically, we
investigate whether Cyclin D complex is one of the important cause in creating a deregulation in cell
transitioning between proliferating and quiescent cells.

The structure of rest of this paper is as follows. In Section 2, we delve into the details of multiscale
mathematical modeling of proliferating and quiescent cells with regards to the dynamics of cell cycle.
In Section 3, we investigate the existence and uniqueness of non-negative solutions utilizing spectral
and semigroup theory. Moving on to Section 4, we start with deriving steady-state solutions and
then establish spectral criteria for their local stability. Specifically, we show that if the linearised
semigroup’s growth bound is negative, the steady-state solution is locally asymptotically stable, while
a positive growth bound implies instability of the steady-state solution. Lastly, Sections 5 and 6 offer
results discussion and the concluding remarks of this paper, respectively.

2. Mathematical modeling

2.1. Age-structured model

The cell densities of healthy and mutated cells in the proliferative and quiescent compartments
are described by nonlinear hyperbolic transport PDEs that relate the cell density distribution to both
physiological age a and time t. Specifically, the densities of healthy cells in the proliferative and
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quiescent phases are expressed as follows:

∂

∂t
ph(a, t) +

∂

∂a
(gh(a)ph(a, t)) = γh(N)qh(a, t) − (τh(a) + αh(a, x1) + µph(a))ph(a, t), (2.1)

∂

∂t
qh(a, t) = αh(a, x1)ph(a, t) − (γh(N) + µqh(a))qh(a, t), (2.2)

where the rate evolution of a cell cycle is denoted by gh(a) in the equation. The first term on the
right side, γh(N)qh(a, t), represents the transition to proliferating from quiescent cells, while the term
τh(a)ph(a, t) represents the cell densities for completing cell division in some age of the proliferating
phase. Cells which move to the quiescent phase without undergoing division are represented by
αh(a, x1)ph(a, t). The loss in the proliferating cells due to apoptosis/necrosis is represented by the
death rate µph(a). The inflow from healthy proliferating cells, regulated by the microscale variable of
Cyclin complex concentration x1 for each age, is denoted by the first term in Eq (2.2): αh(a, x1)ph(a, t).
The next term depicts a loss in the quiescent cells due to either by returning to proliferating phase at
the rate γh(N) or by cell death due to apoptosis (or necrosis), as represented by the death rate µqh(a).

Next, the cell density of mutated cells in mutated proliferating (pc) and quiescent (qc) phases,
respectively, is presented:

∂

∂t
pc(a, t) +

∂

∂a
(gc(a)pc(a, t)) = γc(N)qc(a, t) − (τc(a) + αc(a, x1) + µpc(a))pc(a, t), (2.3)

∂

∂t
qc(a, t) = αc(a, x1)pc(a, t) − (γc(N) + µqc(a))qc(a, t), (2.4)

where the terms used are similar to those in the case of healthier cells, as shown in Eqs (2.1) and (2.2).
The total cell number in both healthy and mutated populations of cells in quiescent and proliferating
phases is denoted by N(t) and is defined in Eq (2.5). In the case of quiescent cells, aging does
not occur (i.e., the cells stop aging), so the convection term related to physiological age a is absent
in Eqs (2.2) and (2.4). The total number of cells, represented by N(t), represents the sum of all cells in
the proliferating and quiescent phases throughout all ages, and can be expressed as

N(t) =
∫ a⋆

0
(ph(a, t) + qh(a, t) + pc(a, t) + qc(a, t)) da, (2.5)

where maximum age of the cells is given by a⋆. The initial conditions are given below:

ph(a, 0) = ph,0(a), qh(a, 0) = qh,0(a), pc(a, 0) = pc,0(a), qc(a, 0) = qc,0(a), ∀a ≥ 0. (2.6)

The boundary conditions are given as follows:

gh(0)ph(0, t) = 2(1 − m)
∫ a⋆

0
τh(a)ph(a, t)da, (2.7)

gc(0)pc(0, t) = 2
∫ a⋆

0
τc(a)pc(a, t)da + 2m

∫ a⋆

0
τh(a)ph(a, t)da, (2.8)

for t > 0, where the number 2 shows the two newborn cells initializing in the proliferating phase, and
the parameter m represents the mutation rate. Since healthy cell can acquire a mutation only during a
division process, therefore, new born mutated cells start will start at age 0.
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The function τi(a) represents the cell number that finish dividing at a particular age in both healthy
and mutated proliferating phases. Here, the index i indicates whether the compartment is healthy or
cancerous, denoted by h and c, respectively. The function τi(a) is regulated by the age of the cell,
denoted by a, and is almost zero until a minimum cell age. Afterward, the function increases until it
reaches the age of a∗.

τi(a) =
ρ1,iaγ1,i

ρ
γ1,i
2,i + aγ1,i

, (2.9)

The maximum proliferation rate is represented by ρ1,i, while ρ2,i is the age t achieve half-maximum.
The Hill coefficient is represented by the exponent γ1,i.

Next, we establish the rate at which cells transition to the quiescent phase from the proliferating
compartments, which depends on both the age of the cell (a) and the quantity of the Cyclin
D − CDK4/6 complex (x1).

αi(a, x1) = σ1,i

σ
γ2,i
2,i

(σγ2,i
2,i + xγ2,i

1 )

σ
γ3,i
3,i

(σγ3,i
3,i + aγ3,i)

. (2.10)

The function αi(a, x1) depicts the number non-dividing cells due to anti-growth factors. The age-
dependence of αi is motivated by the fact that cells transition to the quiescent phase from the
proliferating phase only until they reach a specific age that marks a restriction point (R) in the cell
cycle (which is also G1 − S phase transition). However, before the restriction point, the Cyclin
complex’s concentration x1 must be below a certain value to enable cells to exit the proliferating
phase. In Eq (2.10), the Hill coefficients are represented by γ2,i and γ3,i, while σ2,i and σ3,i denote
the concentration of the Cyclin D − CDK4/6 complex x1 and the age a, respectively. After γ2,i and γ3,i,
the rate function α decreases asymptotically to zero, preventing cells from transitioning to the quiescent
phase. This implies that at age σ3,i, cells are inevitably committed to entering the proliferation phase.
Finally, σ3,i represents the threshold concentration of the Cyclin complex to determine the restriction
point R.

The function γi(N), which determines the number of cells transitioning to the proliferating phase
from the quiescent phase, is represented by a Hill function of N that decreases monotonically:

γi(N) =
νiθ

κi
i

θκi
i + Nκi

, (2.11)

where the Hill function are defined as follows: νi specifies the maximum rate at which cells transition
to proliferating from quiescent population, when there are no cells, i.e., N = 0; κi is the Hill coefficient,
and θi represents the proportion of the total cell population that reaches half the maximum value of νi.
This implies that the number of quiescent cells transitioning to the proliferative compartment decreases
to zero as the cell population increases, illustrating density inhibition.

Cell growth is controlled by proteins such as cytokines and other factors that regulate
proliferation [38]. Cytokines bind to specific receptors, activating signaling pathways [39]. The
cytokine signals that regulate cell numbers are reliant on the total population of cells, as demonstrated
by various studies [40]. For a detailed explanation of cytokine signal dynamics, refer to [41,42]. Using
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the quasi-steady-state approximation, we can express the quantity of growth factors (g f ) produced by
the entire cell population (N) as

g f =
1

1 + ktN
. (2.12)

2.2. Cell cycle model

We restrict ourselves to only four microscale proteins (states of the model) in our cell cycle
model, as mentioned earlier, that are sufficient to account for the reversible transitions between
the quiescent and proliferating phases.We utilize Michaelis-Menten kinetics to depict the chemical
reactions occurring between enzymes and substrates during the cell cycle. The basics of this approach
are briefly outlined below. When adequate growth factors are present, Cyclin D protein combines
with its catalytic partner CDK4-6, resulting in the formation of Cyclin D − CDK4/6 complex. As
outlined in [31, 43], this complex is responsible for phosphorylating various proteins involved in the
cell cycle. These phosphorylated proteins are essential for advancing through the initial growth phase
of the cell cycle and crossing the restriction point R. To provide further details, the Cyclin D − CDK4/6
complex induces phosphorylation of the retinoblastoma protein Rb, resulting in its deactivation and
subsequent release of the transcription factor E2F. This activates several signals that promote cell
growth, facilitating the progression of the cell cycle. In contrast, p21 regulates the cell cycle by
inhibiting the functions of various CDK proteins. These proteins are described in Table 1.

Table 1. Description of the cell states at the microscale.

Description State

Cyclin D − CDK4/6 x1

E2F x2

Rb x3

p21 x4

In this study, we examine the behavior of a single cell to represent the dynamics of all cells
within a population. Assuming that all cells behave similarly, we utilize a single ordinary differential
equation (ODE) model with similar parameters for all cells in the population to describe the underlying
cell cycle dynamics on a microscale. We also account for cells with shorter cycles on a macroscale
using the function τi(a). Our model considers a specific age a⋆ at which the representative cell
completes division. The cell cycle dynamics are described by the ODE system presented in [44].

dx1

da
= k1s

( g f

kg f + g f

)
− k14x4x1 − k1d

( x1

k1 + x1

)
, (2.13)

dx2

da
= k21

( x2t − x2

k2 + (x2t − x2)

)
x1 − k32x2x3 − k2d x2, (2.14)

dx3

da
= k3s − k32x2x3 − k31

( x3

k3 + x3

)
x1 − k3d x3, (2.15)

dx4

da
= k4s + k42

( k34

k34 + x3

)
x2 − k41

( x4

k4 + x4

)
x1 − k4d x4. (2.16)
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A detailed description of all the terms and parameters involved in the model equations (2.13)–(2.16)
can be found in [45]. Although we will not delve into the full derivation of these equations here,
inquisitive readers can refer to [44] for a comprehensive explanation. To aid in understanding, we have
included simulations of the four microscale states mentioned earlier in Figure 2.
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Figure 2. Over time, the microscale proteins involved in the cell cycle undergo changes. The
Cyclin D − CDK4/6 complex undergoes a complete cycle of activation and degradation. As
the Retinoblastoma protein Rb becomes inactivated due to the rise in the Cyclin D − CDK4/6
complex, the transcription factor E2F concentration increases. Likewise, protein p21
concentration increases towards the end of the cell cycle to aid in the degradation of the Cyclin
complex.

3. Existence and uniqueness of non-negative solution

This section presents the uniqueness of the solution to the initial-boundary value problem (2.1)–
(2.7) and (2.13)–(2.16), which we will simplify by using the microscale model for the entire time t,
instead only until age a. We introduce Banach spaces, X = L1(0, a⋆)× L1(0, a⋆)× L1(0, a⋆)× L1(0, a⋆)
and Y = L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆), with the norm |ϕ| =

∑4
i=1 |ϕi|1 for ϕ(a) =

(ϕ1(a), ϕ2(a), ϕ3(a), ϕ4(a))T ∈ X and |φ| =
∑

i = 14|φi|1 for φ(a) = (φ1(a), φ2(a), φ3(a), φ4(a))T ∈ Y ,
where | · |1 is the standard norm of L1(0, a⋆). We first treat the initial-boundary value problem
of system (2.1)–(2.7) as an abstract Cauchy problem on Banach space X. We assume that
gha, ghaa, gca , gcaa ∈ L∞((0, a⋆) × R+), and non-negative death rates, that is, µph(·) = µqh(·) ≥ 0
and µpc(·) = µqc(·) ≥ 0, and are locally integrable on [0, a⋆). The transition rate αi(a, x1) ∈
L∞((0, a⋆) × (0, a⋆)), and τi(a) ∈ L1(0, a⋆). We start by defining a linear operator A1 as follows:

(A1ϕ)(a) =


−
∂(gh(a)ϕ1(a))

∂a − (τh(a) + µph(a))ϕ1(a)
−µqh(a)ϕ2(a)

−
∂(gc(a)ϕ3(a))

∂a − (τc(a) + µpc(a))ϕ3(a)
−µqc(a)ϕ4(a)

 , ϕ(a) = (ϕ1(a), ϕ2(a), ϕ3(a), ϕ4(a))T ∈ D(A1).

The symbol T denotes the transpose of the vector, and the domain D(A1) is given by the following:

D(A1) =
{
(ϕ1, ϕ2, ϕ3, ϕ4) | ϕi is absolute continuous on [0, a⋆),

ϕ(0) =
(
2(1 − m)

∫ a⋆

0
τh(a)ϕ1(a)da, 0, 2

∫ a⋆

0
τc(a)ϕ3(a)da + 2m

∫ a⋆

0
τh(a)ϕ1(a)da, 0

)T}
.

The nonlinear operator F1 : X × Y → X is given by
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(F1(ϕ, φ))(a) =



νhθ
κh
h ϕ2(a)

θκh
h + (Nϕ)κh

− αh(φ1, a)ϕ1(a)

−νhθ
κh
h ϕ2(a)

θκh
h + (Nϕ)κh

+ αh(φ1, a)ϕ1(a)

νcθ
κc
c ϕ3(a)

θκc
c + (Nϕ)κc

− αc(φ1, a)ϕ4(a)

−νcθ
κc
c ϕ3(a)

θκc
c + (Nϕ)κc

+ αc(φ1, a)ϕ4(a)


, ϕ ∈ X, φ ∈ Y,

where the linear operator N on L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) is given by

Nϕ =
∫ a⋆

0
(ϕ1(a) + ϕ2(a) + ϕ3(a) + ϕ4(a)) da.

Consider υ(t) = (ph(·, t), qh(·, t), pc(·, t), qc(·, t))T ∈ X. We can define the initial-boundary value
problem (2.1)–(2.7) as an abstract semilinear initial value problem (IVP) in X, as shown below:

d
dt
υ(t) = A1υ(t) + F1(υ(t), v(t)), υ(0) = υ0 ∈ X, (3.1)

where υ0(a) = (ph0(a), qh0(a), pc0(a), qc0(a)).
Next, we define IVP (2.13) as a Cauchy problem on the Banach space Y . Suppose A2 is a linear

operator which reads

(A2φ)(a) =


0

−k2dφ2(a)
k3s − k3dφ3(a)
k4s − k4dφ4(a)

 , φ(a) = (φ1(a), φ2(a), φ3(a), φ4(a))T ∈ D(A2),

where the domain D(A2) is

D(A2) = {φ ∈ Y |φi is absolute continuous on [0, a⋆), φ(0) = (0, 0, 0, 0)T}.

We define the nonlinear operator F2 : X × Y → Y by

(F2(ϕ, φ))(a) =



k1s

(
g f (Nϕ)

kg f+g f (Nϕ)

)
− k14φ4(a)φ1(a) − k1d

(
φ1(a)

k1+φ1(a)

)
,

k21

(
x2t−φ2(a)

k2+(x2t−φ2(a))

)
φ1(a) − k32φ2(a)φ3(a)

−k32φ2(a)φ3(a) − k31

(
φ3(a)

k3+φ3(a)

)
φ1(a)

k42

(
k34

k34+φ3(a)

)
φ2(a) − k41

(
φ4(a)

k4+φ4(a)

)
φ1(a)


,

where ϕ ∈ X, φ ∈ Y . Take v(t) = (x1(t), x2(t), x3(t), x4(t))T ∈ Y . Then (2.13)–(2.16) can be expressed as
an abstract semilinear IVP in Y:

d
dt

v(t) = A2v(t) + F2(υ(t), v(t)), v(0) = v0 ∈ Y, (3.2)
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where v0(t) = (x0
1, x

0
2, x

0
3, x

0
4), we can now establish a joint Cauchy problem for (3.1) and (3.2) as shown

below:

d
dt

(
υ

v

)
=

(
A1 0
0 A2

) (
υ

v

)
+

(
F1(υ, v)
F2(υ, v)

)
,

(
υ(0)
v(0)

)
=

(
υ0

v0

)
∈ Z,

d
dt
ζ(t) = Aζ(t) + F(ζ(t)), ζ(0) = ζ0 ∈ Z, (3.3)

where ζ = (υ, v), ζ0 = (υ0, v0), A =
(

A1 0
0 A2

)
, F =

(
F1

F2

)
and the Banach space is Z = {X,Y}.

Assuming that T (t) is a C0-semigroup generated by A for t ≥ 0, and the operator F is continuously
Fréchet differentiable on Z (specifically, both F1 and F2 are Fréchet differentiable on X and Y), a
continuous mild solution t → ζ(t, ζ0) exists and is unique for each ζ0 ∈ Z on a maximal interval [0, t1)
in Z.

ζ(t, ζ0) = T (t)ζ0 +

∫ t

0
T (t − s)F(ζ(s, ζ0))ds, ∀t ∈ [0, t1), (3.4)

where t1 can be either +∞ or limt→t−1
|ζ(t, ζ0)| = ∞. Moreover, if ζ0 ∈ D(A), then ζ(t, ζ0) ∈ D(A) for

0 ≤ t < t1, and the function ζ → ζ(t, ζ0) is continuously differentiable and satisfies (3.3) on [0, t1). This
has been established in Proposition 4.16 [46, 47].

Remark 3.1. Let’s take ph,max, qh,max, pc,max, qc,max, x1,max, x2,max, x3,max and x4,max to represent the
maximum values of the solution variables. If we normalise the governing equations using N(a) =
ph(a, t) + qh(a, t) + pc(a, t) + qc(a, t) + x1(a) + x2(a) + x3(a) + x4(a), then an a-priori estimate on these
would lead to ph(a, t) + qh(a, t) + pc(a, t) + qc(a, t) + x1(a) + x2(a) + x3(a) + x4(a) = 1.

Lemma 3.1. Let Ω = {(ph, qh, pc, qc, x1, x2, x3, x4) ∈ Z|ph ≥ 0, qh ≥ 0, pc ≥ 0, qc ≥ 0, x1 ≥ 0, x2 ≥

0, x3 ≥ 0, x4 ≥ 0} and let Ω0 = {(ph, qh, pc, qc, x1, x2, x3, x4) ∈ Z|0 ≤ ph ≤ ph,max, 0 ≤ qh ≤ qh,max, 0 ≤
pc ≤ pc,max, 0 ≤ qc ≤ qc,max, 0 ≤ x1 ≤ x1,max, 0 ≤ x2 ≤ x2,max, 0 ≤ x3 ≤ x3,max, 0 ≤ x4 ≤ x4,max}. Then
after a finite time, the mild solution ζ(t, ζ0) of (3.3), where ζ0 ∈ Ω, enters a positively invariant set Ω0.

Proof. To obtain the solution of Eq (2.1), we will begin by utilizing transformations p̃h(a, t) =
gh(a)ph(a, t) and q̃h(a, t) = gh(a)qh(a, t) for t ∈ [0, t1] and a ∈ [a0, a⋆). Then, for t ∈ (0, t1) and
a ∈ (a0, a⋆), we have from Eq (2.1)

∂p̃h(a, t)
∂t

+ gh(a)
∂ p̃h(a, t)
∂a

= γh(N(t))q̃h(a, t) − (τh(a) + αh(x1(a), a) + µph(a)) p̃h(a, t), (3.5)

Next, we apply the parameter transform to remove the term gh(a) and define a new age variable η for
both ph and qh, Lemma 3.1 [41] . This yields the expression:

∂

∂η
p̃h(a(η), t) =

da
dη

∂

∂a
p̃h(a, t) = gh(a)

∂

∂a
p̃h(a, t), where

da
dη
= gh(a).

Therefore, from Eq (3.5), it follows that

∂p̃h(a(η), t)
∂t

+
∂p̃h(a(η), t)

∂η
=γh(N(t))q̃h(a(η), t) − (τh(a(η)) + αh(x1(a(η)), a(η)) + µph(a(η))) p̃h(a(η), t).

(3.6)
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To obtain the explicit relation of p̃h(a(η), t), we will utilize the method of characteristics (MOC).
Specifically, we assume that p̃h(a(η), t) is governed by an ODE along the curve (a(ψ1(y)), ψ2(y)) = ψ(y),
and therefore, we have

ψ̇1(y) := 1⇒ ψ1(y) = y + c1, ψ̇2(y) := 1⇒ ψ2(y) = y + c2, z(y) := p̃h(a(ψ1(y)), ψ2(y)),

where c1, c2 ∈ R are constants. Then, it follows

dz
dy
=

dp̃h(a(ψ1(y)), ψ2(y))
dy

=
∂p̃h(a(ψ1(y)), ψ2(y))

∂a
da(ψ1(y))

dψ1

dψ1(y)
dy

+
∂ p̃h(a(ψ1(y)), ψ2(y))

∂ψ2

dψ2(y)
dy

=γh(N(ψ2(y)))q̃h(a(ψ1(y)), ψ2(y)) − (τh(a(ψ1(y))) + αh(x1(a(ψ1(y))), a(ψ1(y)))
+ µph(a(ψ1(y)))) p̃h(a(ψ1(y)), ψ2(y))
=γh(N(ψ2(y)))q̃h(a(ψ1(y)), ψ2(y)) − (τh(a(ψ1(y))) + αh(x1(a(ψ1(y))), a(ψ1(y)))
+ µph(a(ψ1(y))))z(y). (3.7)

We can now write p̃h using an ODE (3.7) so that

p̃h(a(y + c1), y + c2)=p̃h(a(ψ1(y)), ψ2(y)) = z(y)

= exp
(
−

∫ y

0

(
τh(a(ψ1(ξ))) + αh(x1(a(ψ1(ξ))), a(ψ1(ξ))) + µph(a(ψ1(ξ)))

)
dξ

)
[ ∫ y

0
exp

( ∫ ζ

0

(
τh(a(ψ1(ξ))) + αh(x1(a(ψ1(ξ))), a(ψ1(ξ))) + µph(a(ψ1(ξ)))

)
dξ

)
γh(N(ψ2(ζ)))q̃h(a(ψ1(ζ)), ψ2(ζ))dζ + p̃h(a(ψ1(0)), ψ2(0))

]
= exp

(
−

∫ y

0

(
τh(a(ξ + c1)) + αh(x1(a(ψ1(ξ + c1))), a(ξ + c1)) + µph(a(ξ + c1))

)
dξ

)
[ ∫ y

0
exp

(∫ ζ

0

(
τh(a(ξ + c1))+ αh(x1(a(ψ1(ξ + c1))), a(ξ + c1))+µph(a(ξ + c1))

)
dξ

)
γh(N(ζ + c2))q̃h(a(ζ + c1), ζ + c2)dζ + p̃h(a(c1), c2)

]
.

Now, we define the boundary set Γ as [a0, a⋆) × 0 ∪ 0 × [0, t1], which enables us to use the boundary
condition to determine p̃h(a(c1), c2) if a curve (a(ψ1(y)), ψ2(y)) begins in Γ. In order for (a(y+c1), y+c2)
to lie on Γ, either c1 = 0 or c2 = 0. Therefore, we have the following two scenarios:

In the first scenario, we can randomly choose c1 = 0 and c2 ∈ [0, t1). In this case, we have

p̃h(a(y), y + c2) = exp
(
−

∫ y

0

(
τh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph(a(ξ))

)
dξ

)
[ ∫ y

0
exp

( ∫ ζ

0

(
τh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph(a(ξ))

)
dξ

)
γh(N(ζ + c2))

q̃h(a(ζ), ζ + c2)dζ + p̃h(a(0), c2)
]
.
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The solution in (a(η), t)|t ∈ [0, t1], η ∈ [0,min(η∗, t)) can be obtained using the characteristic solution as
follows:

η
!
= ψ1(y) = y + c1 = y⇒ y = η and t !

= ψ2(y) = y + c2 ⇒ c2 = t − y,

which implies

p̃h(a(η), t) = exp
(
−

∫ η

0

(
τh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph(a(ξ))

)
dξ

)
[ ∫ η

0
exp

( ∫ ζ

0

(
τh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph(a(ξ))

)
dξ

)
γh(N(ζ + t − η))

q̃h(a(ζ), ζ + t − η)dζ + p̃h(a(0), t − η)
]
.

Using the above equation, we can obtain the expression for gh(a(η))ph(a(η), t) when η < t. By choosing
an arbitrary c1 ∈ [0, η∗) and setting c2 = 0, we obtain

p̃h(a(y + c1), u) = exp
(
−

∫ y

0

(
τh(a(ξ + c1)) + αh(x1(a(ξ + c1)), a(ξ + c1)) + µph(a(ξ + c1))

)
dξ

)
[ ∫ y

0
exp

( ∫ ζ

0

(
τh(a(ξ + c1)) + αh(x1(a(ξ + c1)), a(ξ + c1))µph(a(ξ + c1))

)
dξ

)
+ γh(N(ζ))q̃h(a(ζ + c1), ζ)dζ + p̃h(a(c1), 0)

]
.

Using the characteristic solution, we can obtain a solution in the set (a(η), t)|t ∈ [0, t1], η ∈ [t, η∗) as
follows:

η
!
= ψ1(y) = y + c1 ⇒ c1 = η − y and t !

= ψ2(y) = y + c2 ⇒ y = t,

which results into

p̃h(a(η), t) = exp
(
−

∫ t

0

(
τh(a(ξ + η − t)) + αh(x1(a(ξ + η − t)), a(ξ + η − t)) + µph(a(ξ + η − t))

)
dξ

)
[ ∫ t

0
exp

( ∫ ζ

0

(
τh(a(ξ + η − t)) + αh(x1(a(ξ + η − t)), a(ξ + η − t)) + µph(a(ξ + η − t))

)
dξ

)
γh(N(ζ))q̃h(a(ζ + η − t), ζ)dζ + p̃h(a(η − t), 0)

]
.

Hence, the relation for gh(a(η))ph(a(η), t) is now established for η > t. As a result, the ultimate solution
for gh(a(η))ph(a(η), t) can be expressed as
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p̃h(a(η), t) :=



exp
(
−

∫ η

0

(
τh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph(a(ξ))

)
dξ

)[
h(t − η)∫ η

0
exp

(∫ ζ

0

(
τh(a(ξ))+αh(x1(a(ξ)), a(ξ))+µph(a(ξ))

)
dξ

)
γh(N(ζ + t − η))q̃h(a(ζ), ζ + t − η)dζ

]
, ā < t,

exp
(
−

∫ t

0

(
τh(a(ξ + η − t)) + αh(x1(a(ξ + η − t)), a(ξ + η − t))+

µph(a(ξ + η − t))
)
dξ

)[
p0(a(η − t)) +

∫ t

0
exp

( ∫ ζ

0

(
τh(a(ξ + η − t))

+ αh(x1(a(ξ + η − t)), a(ξ + η − t)) + µph(a(ξ + η − t))
)
dξ

)
γh(N(ζ))

q̃h(a(ζ + η − t), ζ)dζ
]
, ā ≥ t,

where the boundary condition p̃h(a(0), t − η) is denoted as h(t − η). Note that for positive initial data,
the above expression is positive and for gh(a)qh(a, t) ≥ 0.

We then derive the solution expression from (2.2) as shown below:

qh(a, t) (3.8)

:= exp
(
−

∫ t

0
µqh(a) + γh(N(t))dt

){∫ t

0
exp

(
−

∫ ξ

0
µqh(a) + γh(N(π))dπ

)
αh(x1(a), a)ph(a, ξ)dξ + qh,0(a)

}
.

As a direct consequence, we observe that qh(a, t) is non-negative for positive initial data and whenever
gh(a)qh(a, t) ≥ 0. Similarly, we can obtain the solution expression for pc and qc.

Next, to ensure the positivity of the coupled ODE model (2.13), we express the system of ODEs as
follows: 

dx1

da
= F1(x1, x4),

dx2

da
= F2(x1, x2, x3),

dx3

da
= F3(x1, x2, x3),

dx4

da
= F4(x1, x2, x3, x4),

(3.9)

where F1, F2, F3 and F4 correspond to the vector fields of the microscale states x1–x4. It is worth noting
that in (3.9), F1 does not depend on N (i.e., ph, qh, pc and qc), as N changes with time and is a fixed
constant at each time step, which determines the growth factors entire age range.

To ensure that the solutions of all ODEs is positive, it is essential to verify that the vector fields
F1,F2,F3,F4 are smoothly differentiable and oriented in a direction that points away from the negative
regions in the state space. Starting with the ODE for x1 from (3.9), we set x4 = 0 in F1(x1, x4) to obtain

ẋ1 = F1(x1). We can observe that F1(x1) = k1s

(
g f

kg f+g f

)
− k1d

(
x1

k1+x1

)
> 0 for all a > 0 when k1s

(
g f

kg f+g f

)
>
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k1d

(
x1

k1+x1

)
. This implies that the concentration of x1 consistently rises more than it falls over time, as

the sole source of an increase in x1 concentration is from growth factors. Consequently, during periods
when growth factors are at their minimum, the concentration of x1 is also at its minimum, meaning
the amount of degradation or decrement cannot surpass the activation of the x1 complex. Given that
the solution to system (2.13)–(2.16) is unique for each initial condition, as can be observed from (3.3)
and (3.4), we can infer that the solution remains in the first quadrant for any x4 > 0. Therefore,
the positivity of the solution for x1 is guaranteed. To obtain an ODE for ẋ2, we assume x1 = 0 in
F2(x1, x2, x3). This results in ẋ2 = F2(x2, x3), whose solution takes the form x2(a) = x0

2e−(k32x3(a)−k2d)a.
Hence, for any positive initial data, x2(a) remains positive for all ages and x3(a) values. Similarly, we
substitute x3 = 0 in F2(x1, x2, x3) to obtain a nonlinear ODE ẋ2 = F2(x1, x2) for x2. Although an explicit
solution cannot be computed, the phase portrait of (x1, x2) reveals that the solution trajectories move
away from the axis separating the positive and negative space for positive initial data. By following
a similar procedure, we can establish sufficient conditions for the positivity of solutions for x3(a) and
x4(a). Therefore, we conclude that if ζ0 ∈ Ω, then ζ(t, ζ0) ∈ Ω for all t > 0. □

The above analysis implies that the local solution ζ(t, ζ0) of (3.3) with initial conditions ζ0 ∈ D(A)∩
Ω has a well-defined and finite norm. Consequently, we obtain our final result.

Theorem 3.1. The abstract Cauchy problem (3.3) has a unique global classical solution on Z with
respect to the initial data z0 ∈ Ω ∩ D(A).

As a result of having positive initial data, the IVP (2.1)–(2.4) possesses a singular positive solution.

4. Existence and stability of steady-state

This section aims to determine the steady-state solution of the model and to present sufficient
conditions for the existence of a positive steady-state. To this end, we specify some notation. Let
X be a real or complex Banach space, and let X⋆ denote its dual space. We denote the value of F ∈ X⋆

at ψ ∈ X as ⟨F, ψ⟩. Additionally, we define a cone X+ as a non-zero set that satisfies X+ ∩ (−X+) = 0,
λX+ ⊂ X+ for λ ≥ 0, and X+ + X+ ⊂ X+. Furthermore, we define the dual cone, denoted as X⋆

+ , as the
subset of the dual space.

4.1. Existence of steady-states

The steady-states of the system (2.1)–(2.4) and (2.13)–(2.16) are denoted by p̄h(a), q̄h(a), p̄c(a),
q̄c(a) and x̄1 − x̄4. These steady-states must satisfy the following set of time-invariant ordinary
differential equations:

∂(gh(a) p̄h(a))
∂a

= γ̄hq̄h(a) − (τh(a) + αh(a, x̄1) + µph(a)) p̄h(a), (4.1)

0 = αh(a, x̄1) p̄h(a) − (γ̄h + µqh(a))q̄h(a), (4.2)
∂(gc(a)p̄c(a))

∂a
= γ̄cq̄c(a) − (τc(a) + αc(a, x̄1) + µpc(a)) p̄c(a), (4.3)

0 = αc(a, x̄1)p̄c(a) − (γ̄c + µqc(a))q̄c(a), (4.4)
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p̄h(0) = 2(1 − m)
∫ a⋆

0
τh(a) p̄h(a)da, (4.5)

p̄c(0) = 2
∫ a⋆

0
τc(a)p̄c(a)da + 2

∫ a⋆

0
τh(a) p̄h(a)da, (4.6)

dx̄1

da
= k1s

( ḡ f

kg f + ḡ f

)
− k14 x̄4 x̄1 − k1d

( x̄1

k1 + x̄1

)
, (4.7)

dx̄2

da
= k21

( x2t − x̄2

k2 + (x2t − x̄2)

)
x̄1 − k32 x̄2 x̄3 − k2d x̄2, (4.8)

dx̄3

da
= k3s − k32 x̄2 x̄3 − k31

( x̄3

k3 + x̄3

)
x̄2 − k3d x̄3, (4.9)

dx̄4

da
= k4s + k42

( k34

k34 + x̄3

)
x̄2 − k41

( x̄4

k4 + x̄4

)
x̄1 − k4d x̄4, (4.10)

where γ̄i = γi(N̄), ḡ f = g f (N̄) and N̄ =
∫ a⋆

0
(p̄h(a)+ q̄h(a)+ p̄c(a)+ q̄c(a))da. Since the cell cycle model’s

ODEs are age-dependent and the system is in a steady-state due to the input of growth factors, all cell
cycle states attain a steady-state. As a result, we can determine the steady-states of the quiescent and
proliferating cell populations, represented by p̄h(a), q̄h(a), p̄c(a) and q̄c(a), without explicitly solving
the equations of microscale model. Solving the system (4.10) for p̄h, q̄h, p̄c and q̄c allows us to obtain
the values of q̄h and q̄c:

q̄h(a) =
αh(a, x̄1) p̄h(a)
γ̄h + µqh(a)

, q̄c(a) =
αc(a, x̄1) p̄c(a)
γ̄c + µqc(a)

, (4.11)

and substituting the aforementioned expressions for q̄h and q̄c into the equations for p̄h and p̄c,
respectively, results in the following expressions:

d(gh(a) p̄h(a))
da

+

(αh(a, x̄1)µqh(a)
γ̄h + µqh(a)

+ τh(a) + µph(a)
)
p̄h(a) = 0, (4.12)

d(gc(a)p̄c(a))
da

+

(αc(a, x̄1)µqc(a)
γ̄c + µqc(a)

+ τc(a) + µpc(a)
)
p̄c(a) = 0. (4.13)

Solving Eq (4.12) for p̄h(a) and p̄c(a), yields steady-state solutions for p̄h(a), q̄h(a), p̄c(a) and q̄c(a) as
follows:

p̄h(a) = p̄h(0) exp
(
−

∫ a

0

1
gh(a)

(
g′h(a) +

αh(x̄1, ξ)µqh(ξ)
γ̄h + µqh(ξ)

+ τh(ξ) + µph(ξ)
)
dξ

)
,

q̄h(a) =
αh(a, x̄1) p̄h(0)
γ̄h + µqh(a)

exp
(
−

∫ a

0

1
gh(a)

(
g′h(a) +

αh(x̄1, ξ)µq,h(ξ)
γ̄h + µqh(ξ)

+ τh(ξ) + µph(ξ)
)
dξ

)
,

p̄c(a) = p̄c(0) exp
(
−

∫ a

0

1
gc(a)

(
g′c(a) +

αc(x̄1, ξ)µqc(ξ)
γ̄c + µqc(ξ)

+ τc(ξ) + µpc(ξ)
)
dξ

)
,

q̄c(a) =
αc(a, x̄1) p̄c(0)
γ̄c + µqc(a)

exp
(
−

∫ a

0

1
gc(a)

(
g′c(a) +

αc(x̄1, ξ)µq,c(ξ)
γ̄c + µqc(ξ)

+ τc(ξ) + µpc(ξ)
)
dξ

)
.

It is evident that the system described in Eqs (2.1)–(2.4), (2.13) always has a trivial steady-state.
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4.2. Stability analysis of steady-state solutions

Our next objective is to obtain the stability criteria for a positive steady-state solution. Suppose
ph(a, t) = p̄h, qh(a, t) = q̄h, pc(a, t) = p̄c, qc(a, t) = q̄c, ∀t ≥ 0 represent equilibrium solutions
to the PDE model (2.1)–(2.4) and p∗h(a, t), q∗h(a, t), p∗c(a, t) and q∗c(a, t) represent the corresponding
perturbation terms:

ph(a, t) = p̄h + ϵp∗h(a, t), qh(a, t) = q̄h + ϵq∗h(a, t), pc(a, t) = p̄c + ϵp∗c(a, t), qc(a, t) = q̄c + ϵq∗c(a, t).

After substituting the aforementioned expressions into the PDE model (2.1)–(2.4), we obtain

ϵ
∂

∂t
p∗h(a, t) +

∂

∂a
(gh(a)(p̄h + ϵp∗h(a, t)))

=

( νhθ
κh
h

θκh
h + (N̄ + ϵn(t))κh

)
( p̄h + ϵq∗h(a, t)) − (τh(a) + αh(a, x̄1) + µph(a))( p̄h + ϵp∗h(a, t)),

ϵ
∂

∂t
q∗h(a, t) = αh(a, x̄1)(p̄h + ϵp∗h(a, t)) −

( νhθ
κh
h

θκh
h + (N̄ + ϵn(t))κh

+ µqh(a)
)
( p̄h + ϵq∗h(a, t)),

ϵ
∂

∂t
p∗c(a, t) +

∂

∂a
(gc(a)( p̄c + ϵp∗c(a, t)))

=

(
νcθ

κc
c

θκc
c + (N̄ + ϵn(t))κc

)
( p̄c + ϵq∗c(a, t)) − (τc(a) + αc(a, x̄1) + µpc(a))(p̄c + ϵp∗c(a, t)),

ϵ
∂

∂t
q∗c(a, t) = αc(a, x̄1)( p̄c + ϵp∗c(a, t)) −

(
νcθ

κh
c

θκc
c + (N̄ + ϵn(t))κc

+ µqc(a)
)
( p̄c + ϵq∗c(a, t)),

( p̄h(0) + ϵp∗h(0, t)) = 2(1 − m)
∫ a⋆

0
τh(a)( p̄h + ϵp∗h(a, t))da,

( p̄c(0) + ϵp∗c(0, t)) = 2
∫ a⋆

0
τc(a)( p̄c + ϵp∗c(a, t))da + 2m

∫ a⋆

0
τh(a)( p̄h + ϵp∗h(a, t))da,

where n(t) :=
∫ a⋆

0

(
p∗h(a, t) + q∗h(a, t) + p∗c(a, t) + q∗c(a, t)

)
da. Then, take the derivative with respect to

epsilon ϵ, leads to

∂

∂t
p∗h(a, t) +

∂

∂a
(gh(a)p∗h(a, t)) =

∂

∂ϵ

( νhθ
κh
h ϵ

θκh
h + (N̄ + ϵn(t))κh

)
q∗h(a, t) − (τh(a) + αh(a, x̄1) + µph(a))p∗h(a, t),

∂

∂t
q∗h(a, t) = αh(a, x̄1)p∗h(a, t) −

(
∂

∂ϵ

( νhθ
κh
h ϵ

θκh
h + (N̄ + ϵn(t))κh

)
− µqh(a)

)
q∗h(a, t),

∂

∂t
p∗c(a, t) +

∂

∂a
(gc(a)p∗c(a, t)) =

∂

∂ϵ

(
νcθ

κc
c ϵ

θκc
c + (N̄ + ϵn(t))κc

)
q∗c(a, t) − (τc(a) + αc(a, x̄1) + µpc(a))p∗c(a, t),

∂

∂t
q∗c(a, t) = αc(a, x̄1)p∗c(a, t) −

(
∂

∂ϵ

(
νcθ

κc
c ϵ

θκc
c + (N̄ + ϵn(t))κc

)
− µqc(a)

)
q∗c(a, t),

p∗h(0, t) = 2(1 − m)
∫ a⋆

0
τh(a)p∗h(a, t)da,

p∗c(0, t) = 2
∫ a⋆

0
τc(a)p∗c(a, t)da + 2m

∫ a⋆

0
τh(a)p∗h(a, t)da,
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which simplifies to

∂

∂t
p∗h(a, t) +

∂

∂a
(gh(a)p∗h(a, t))

=νhθ
κh
h

(θκh
h + (N̄ + ϵn(t))κh − κhϵn(t)(N̄ + ϵn(t))κh−1

(θκh
h + (N̄ + ϵn(t))κh)2

)
q∗h(a, t) − (αh(a, x̄1) + τh(a) + µph(a))p∗h(a, t),

∂

∂t
q∗h(a, t) = αh(a, x̄1)p∗h(a, t) −

(
νhθ

κh
h

(θκh
h + (N̄ + ϵn(t))κh − κhϵn(t)(N̄ + ϵn(t))κh−1

(θκh
h + (N̄ + ϵn(t))κh)2

)
− µqh(a)

)
q∗h(a, t),

∂

∂t
p∗c(a, t) +

∂

∂a
(gc(a)p∗c(a, t))

=νcθ
κc
c

(
θκc

c + (N̄ + ϵn(t))κc − κcϵn(t)(N̄ + ϵn(t))κc−1

(θκc
c + (N̄ + ϵn(t))κc)2

)
q∗c(a, t) − (αc(a, x̄1) + τc(a) + µpc(a))p∗c(a, t),

∂

∂t
q∗c(a, t) = αc(a, x̄1)p∗c(a, t) −

(
νcθ

κc
c

(
θκc

c + (N̄ + ϵn(t))κc − κcϵn(t)(N̄ + ϵn(t))κc−1

(θκc
c + (N̄ + ϵn(t))κc)2

)
− µqc(a)

)
q∗c(a, t),

p∗h(0, t) = 2(1 − m)
∫ a⋆

0
τh(a)p∗h(a, t)da,

p∗c(0, t) = 2
∫ a⋆

0
τc(a)p∗c(a, t)da + 2m

∫ a⋆

0
τh(a)p∗h(a, t)da.

In the limit as ϵ approaches zero, we arrive at a linear system of partial differential equations:

∂

∂t
p∗h(a, t) +

∂

∂a
(gh(a)p∗h(a, t)) = γh(N̄)q∗h(a, t)) − (αh(a, x̄1) + τh(a) + µph(a))p∗h(a, t),

∂

∂t
q∗h(a, t) = αh(a, x̄1)p∗h(a, t) −

(
µqh(a) + γh(N̄)

)
q∗h(a, t),

∂

∂t
p∗c(a, t) +

∂

∂a
(gc(a)p∗c(a, t)) = γc(N̄)q∗c(a, t)) − (αc(a, x̄1) + τc(a) + µpc(a))p∗c(a, t),

∂

∂t
q∗c(a, t) = αc(a, x̄1)p∗c(a, t) −

(
µqc(a) + γc(N̄)

)
q∗c(a, t),

p∗h(0, t) = 2(1 − m)
∫ a⋆

0
τh(a)p∗h(a, t)da,

p∗c(0, t) = 2
∫ a⋆

0
τc(a)p∗c(a, t)da + 2m

∫ a⋆

0
τh(a)p∗h(a, t)da,

(4.14)

where γi(N̄) = νiθ
κi
i /(θ

κi
i + N̄κi), where i = {h, c}. Next, we formulate (4.14) as semilinear problem:

d
dt
ω(t) = Cω(t), ω(0) = ω0 ∈ X, (4.15)

where the generator C is defined on the Banach space X as follows:

(Cϕ)(a) =


−

(
∂
∂a +

1
gh(a)

(
τh(a) + αh(a, x̄1) + µph(a)

))
gh(a)ϕ1(a) + γh(N̄)ϕ2(a)

αh(a, x̄1)ϕ1(a) − (γh(N̄) + µqh(a))ϕ2(a)

−

(
∂
∂a +

1
gc(a)

(
τc(a) + αc(a, x̄1) + µpc(a)

))
gc(a)ϕ1(a) + γc(N̄)ϕ2(a)

αc(a, x̄1)ϕ1(a) − (γc(N̄) + µqc(a))ϕ2(a)


,
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where
ϕ(a) = (ϕ1(a), ϕ2(a), ϕ3(a), ϕ4(a))T ∈ D(C),

where D(C) is defined below:

D(C) =
{
(ϕ1, ϕ2) | ϕi is absolute continuous on [0, a⋆),

ϕ(0) =
(
2(1 − m)

∫ a⋆

0
τh(a)ϕ1(a)da, 0, 2

∫ a⋆

0
τc(a)ϕ2(a)da + 2m

∫ a⋆

0
τh(a)ϕ1(a)da, 0

)T}
.

Next, we take the resolvent equation for the operator C:

(λI − C)ϕ = ψ, ϕ ∈ D(C), ψ ∈ X, λ ∈ C, (4.16)

which leads to

−γh(N̄)ϕ2(a) +
∂

∂a
(gh(a)ϕ1(a)) +

(
λ + τh(a) + αh(a, x̄1) + µph(a)

)
ϕ1(a) = ψ1(a), (4.17)(

λ + γh(N̄) + µqh(a)
)
ϕ2(a) − αh(a, x̄1)ϕ1(a) = ψ2(a), (4.18)

−γc(N̄)ϕ4(a) +
∂

∂a
(gc(a)ϕ3(a)) +

(
λ + τc(a) + αc(a, x̄1) + µpc(a)

)
ϕ3(a) = ψ3(a), (4.19)(

λ + γc(N̄) + µqc(a)
)
ϕ4(a) − αc(a, x̄1)ϕ3(a) = ψ4(a), (4.20)

and

ϕ1(0) = 2(1 − m)
∫ a⋆

0
τh(a)ϕ1(a)da, ϕ3(0) = 2

∫ a⋆

0
τc(a)ϕ3(a)da + 2m

∫ a⋆

0
τh(a)ϕ1(a)da.

By solving (4.18) and (4.20), we get

ϕ2(a) =
ψ2(a) + αh(a, x̄1)ϕ1(a)
λ + γh(N̄) + µqh(a)

, ϕ4(a) =
ψ4(a) + αc(a, x̄1)ϕ3(a)
λ + γc(N̄) + µqc(a)

, (4.21)

which after substituting in Eqs. (4.17) and (4.19) gives

ϕ1(a) = exp
(
−

∫ a

0
τh(ξ) + αh(x̄1, ξ) + λ + µph(ξ) −

γh(N̄)αh(x̄1, ξ)
gh(ξ)(λ + γh(N̄) + µqh(ξ))

dξ
)

[ ∫ a

0
exp

( ∫ ζ

0
τh(ξ) + αh(x̄1, ξ) + λ + µph(ξ) −

γh(N̄)αh(x̄1, ξ)
gh(ξ)

(
λ + γh(N̄) + µqh(ξ)

)dξ
)

1
gh(ζ)

{
ψ1(ζ) +

γh(N̄)ψ2(ζ)
λ + γh(N̄) + µqh(ζ)

}
dζ + ϕ1(0)

]
,

ϕ3(a) = exp
(
−

∫ a

0
τc(ξ) + αc(x̄1, ξ) + λ + µpc(ξ) −

γc(N̄)αc(x̄1, ξ)
gc(ξ)(λ + γc(N̄) + µqc(ξ))

dξ
)

[ ∫ a

0
exp

( ∫ ζ

0
τc(ξ) + αc(x̄1, ξ) + λ + µpc(ξ) −

γc(N̄)αc(x̄1, ξ)
gc(ξ)

(
λ + γc(N̄) + µqc(ξ)

)dξ
)

1
gc(ζ)

{
ψ3(ζ) +

γc(N̄)ψ4(ζ)
λ + γc(N̄) + µqc(ζ)

}
dζ + ϕ3(0)

]
.
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Substituting ϕ1(a) and ϕ3(a) back in Eq (4.21) yields

ϕ2(a) =
1

λ + γh(N̄) + µqh(a)

[
exp

(
−

∫ a

0
τh(ξ) + αh(x̄1, ξ) + λ + µph(ξ)

−
γh(N̄)αh(x̄1, ξ)

gh(ξ)(λ + γh(N̄) + µqh(ξ))
dξ

){ ∫ a

0
exp

( ∫ ζ

0
τh(ξ) + αh(x̄1, ξ) + λ + µph(ξ)

−
γh(N̄)αh(x̄1, ξ)

gh(ξ)
(
λ + γh(N̄) + µqh(ξ)

)dξ
) 1
gh(ζ)

{
ψ1(ζ) +

γh(N̄)ψ2(ζ)
λ + γh(N̄) + µqh(ζ)

}
dζ

+ ϕ1(0)
}
αh(a, x̄1) + ψ2(a)

]
,

ϕ4(a) =
1

λ + γc(N̄) + µqc(a)

[
exp

(
−

∫ a

0
τc(ξ) + αc(x̄1, ξ) + λ + µpc(ξ)

−
γc(N̄)αc(x̄1, ξ)

gc(ξ)(λ + γc(N̄) + µqc(ξ))
dξ

){ ∫ a

0
exp

( ∫ ζ

0
τc(ξ) + αc(x̄1, ξ) + λ + µpc(ξ)

−
γc(N̄)αc(x̄1, ξ)

gc(ξ)
(
λ + γc(N̄) + µqc(ξ)

)dξ
) 1
gc(ζ)

{
ψ3(ζ) +

γc(N̄)ψ4(ζ)
λ + γc(N̄) + µqc(ζ)

}
dζ

+ ϕ3(0)
}
αc(a, x̄1) + ψ4(a)

]
.

Lemma 4.1. The resolvent of operator C is compact and its spectrum, denoted by σ(C), satisfies the
condition:

σ(C) = σP(C) = {λ ∈ C |1 ∈ σp(Uλ)}. (4.22)

Here, σP(C) refers to the point spectrum of C, and Uλ is an operator dependent on λ.

Proof. The expression of ϕ1(a) and ϕ3(a) can be re-written as

ϕ1(a) =
1

αh(a, x̄1)
{
(λ + γh(N̄) + µqh)(Uh,λψ2)(a) + γh(N̄)(Uh,λψ1)(a)

}
,

ϕ3(a) =
1

αc(a, x̄1)
{
(λ + γc(N̄) + µqc)(Uc,λψ4)(a) + γc(N̄)(Uc,λψ3)(a)

}
,

where the linear operator on Banach space, Ui,λ is given as

(Ui,λψ)(a) =
∫ a⋆

0
Hi,λ(ζ, a)ψ(ζ)dζ, i = {h, c}, (4.23)

where

Hλ(ζ, a) =
αi(a, x̄1)

gi(ζ)(λ + γi(N̄) + µqi(a))
exp

(
−

∫ a

0
τi(ξ)+αi(x̄1, ξ)+λ+µpi(ξ)−

γi(N̄)αi(x̄1, ξ)
g(ξ)(λ+γi(N̄)+µqi(ξ))

dξ
)

exp
( ∫ ζ

0
τi(ξ) + αi(x̄1, ξ) + λ + µpi(ξ) −

γi(N̄)αi(x̄1, ξ)
gi(ξ)(λ + γi(N̄) + µqi(ξ))

dξ
)
. (4.24)

Similarly, we rewrite ϕ2(a) and ϕ4(a) as

ϕ2(a) = (Ui,λψ2)(a) + (Vi,λψ1)(a), ϕ4(a) = (Ui,λψ4)(a) + (Vi,λψ3)(a),
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where the linear operator on Banach space, Vi,λ is given as

(Vi,λψ)(a) =
∫ a⋆

0
Gi,λ(ζ, a)ψ(ζ)dζ, Gi,λ(ζ, a) =

1
gi(ζ)(λ + γi(N̄) + µqi(ξ))

(
γi(N̄)Hi,λ(ζ, a) +

gi(ζ)
a⋆

)
.

Let Λ = λ ∈ C, |1 ∈ σ(Uλ). For λ ∈ C\Λ, the operators Ui,λ and Vi,λ are compact operators from
X to L1(0, a⋆), implying that ϕ1(a) and ϕ3(a) are represented by compact operators, and similarly,
ϕ2(a) and ϕ4(a) are also represented by compact operators. As a result, the operator C has a compact
resolvent, which confirms that its spectrum σ(C) constitutes only isolated eigenvalues, i.e., σ(C) =
σP(C) (see Theorem 6.29 on page 187 in [48]). Hence, C\Λ ⊂ ρ(C), where ρ(C) is the resolvent of
operator C. Therefore, σP(C) = σ(C) ⊂ Λ. Since Uλ is a compact operator, we have σ(Uλ)\0 =
σP(Uλ)\0. If λ ∈ Λ, there exists an eigenfunction ψλ such that Uλψλ = ψλ. It is easy to see that
(ϕ1(a), ϕ2(a), ϕ3(a), ϕ4(a))T provides an eigenvector of C for the eigenvalue λ. Thus, we have Λ ⊂
σP(C), and we can conclude that (4.22) is satisfied. □

Lemma 4.2. Consider the operator C which generates C0-semigroup for t ≥ 0. Then, T(t) is eventually
norm continuous (ENC), and we have

ω0(C) = s(C) = sup Reλ, |λ ∈ σ(C), (4.25)

where s(C) represents the spectral bound of the operator C, and ω0(C) denotes the growth bound of
the semigroup T(t).

Proof. To begin, we express the bounded operator C as

Cϕ =


kh(a) γh(N̄) 0 0

αh(a, x̄1) −γh(N̄) − µqh(a) 0 0
0 0 kc(a) γc(N̄)
0 0 αc(a, x̄1) −γc(N̄) − µqc(a)



ϕ1(a)
ϕ2(a)
ϕ3(a)
ϕ4(a)

 ,
for ϕ ∈ X, kh(a) = −∂gh(a)

∂a − τh(a)− αh(a, x̄1)− µph(a) and kc(a) = −∂gc(a)
∂a − τc(a)− αc(a, x̄1)− µpc(a). To

establish the compactness of C, our strategy is to demonstrate that for any bounded sequence (ϕn)n ∈ N
in X, the sequence (Cϕn)n ∈ N contains a subsequence that converges uniformly. To accomplish
this, we invoke the Arzelà-Ascoli Theorem, which requires us to verify that (Cϕn)n ∈ N is uniformly
bounded and uniformly equicontinuous. To prove boundedness, since we assume (ϕn)n ∈ N to be
bounded, we get

∥Cϕn∥1 ≤ ∥C∥ ∥ϕn∥1 ≤ ∥C∥ sup
n∈N
∥ϕn∥1,

which determines that (Cϕn)n ∈ N is also bounded. For uniform equicontinuity, we consider∫
R
|(Cϕ)(a + h) − (Cϕ)(a)|da =

∫
R
|C(a + h) − C(a)| |ϕ(a)|da

≤

∫
R

∣∣∣∣∣∣∣∣∣∣∣


kh(a + h) γh(N̄) 0 0
αh(a + h, x̄1) −γh(N̄) − µqh(a + h) 0 0

0 0 kc(a + h) γc(N̄)
0 0 αc(a + h, x̄1) −γc(N̄) − µqc(a + h)


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−


kh(a) γh(N̄) 0 0

αh(a, x̄1) −γh(N̄) − µqh(a) 0 0
0 0 kc(a) γc(N̄)
0 0 αc(a, x̄1) −γc(N̄) − µqc(a)


∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ϕ1(a)
ϕ2(a)
ϕ3(a)
ϕ4(a)

∣∣∣∣∣∣∣∣∣∣∣ da

=

∫
R

∣∣∣∣∣∣∣∣∣∣∣
kh(a + h) − kh(a) 0 0 0

αh(a + h, x̄1) − αh(a, x̄1) −µqh(ah) − µqh(a) 0 0
0 0 kc(a + h) − kc(a) 0
0 0 αc(a + h, x̄1) − αc(a, x̄1) −µqc(a + h) − µqc(a)

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ϕ1(a)
ϕ2(a)
ϕ3(a)
ϕ4(a)

∣∣∣∣∣∣∣∣∣∣∣ da

≤∥ϕ∥

∫
R

∣∣∣∣∣∣∣∣∣∣∣
kh(a + h) − kh(a) 0 0 0

αh(a + h, x̄1) − αh(a, x̄1) −µqh(ah) − µqh(a) 0 0
0 0 kc(a + h) − kc(a) 0
0 0 αc(a + h, x̄1) − αc(a, x̄1) −µqc(a + h) − µqc(a)

∣∣∣∣∣∣∣∣∣∣∣ da.

Hence, we have shown that (Cϕn)n ∈ N is equicontinuous, and by the Arzelà-Ascoli Theorem, we can
conclude that there exists a uniformly convergent subsequence of (Cϕn)n ∈ N. Hence, C is compact,
which in turn implies that T is an ENC semigroup. Since the spectral mapping theorem can be applied
to ENC semigroups, we have the spectral determined growth condition given by ω0(C) = s(C). Thus,
we obtain (4.25). □

The local exponential asymptotic stability of the steady-state solution ω = 0 of (4.15) is established
when ω0(C) < 0. Specifically, there exist constants ϵ > 0, M ≥ 1, and γ < 0 such that if x ∈ X and
|x| ≤ ϵ, then the solution ω(t, x) of (4.15) exists globally and satisfies |ω(t, x)| ≤ M exp(γt)|x| for all
t > 0. In order to examine the stability of steady states, it is necessary to identify the dominant singular
point within the setΛ, which corresponds to the element with the highest real value. By utilizing (4.22)
and (4.25), we can then determine the growth bound of the semigroup T.

Lemma 4.3. For any λ ∈ R, the operator Ui,λ is nonsupporting with respect to X+ and

lim
λ→+∞

r(Ui,λ) = 0 (4.26)

holds.

Proof. By Eqs. (4.23) and (4.24), we can conclude that the operator Ui,λ, λ ∈ R is strictly positive. To
prove that Uλ, λ ∈ R is non-supporting, we can easily demonstrate the inequality

Ui,λψ ≥ ⟨ fi,λ, ψ⟩c, c = 1 ∈ X+, ψ ∈ X+, (4.27)

where the linear function fi,λ, is

⟨ fi,λ, ψ⟩=

∫ a⋆

0

[ si(ζ)
gi(ζ)(λ + γi(N̄) + µqi(a))

exp
(
−

∫ a

0
τi(ξ)+αi(x̄1, ξ)+λ+µpi(ξ)−

γi(N̄)αi(x̄1, ξ)
g(ξ)(λ+γi(N̄)+µqi(ξ))

dξ
)

exp
( ∫ ζ

0
τi(ξ) + αi(x̄1, ξ) + λ + µpi(ξ) −

γi(N̄)αi(x̄1, ξ)
gi(ξ)(λ + γi(N̄) + µqi(ξ))

dξ
)]
ψ(ζ)dζ. (4.28)

Thereby, it leads us to Un+1
i,λ ψ ≥ ⟨ fi,λ, ψ⟩⟨ fi,λ, c⟩nc, ∀n. which holds for all ψ ∈ X+, where fi,λ is strictly

positive and the constant function c = 1 is a quasi-interior point of L1(0, a⋆). This implies that
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⟨F,Un
i,λ⟩ > 0 for every pair ψ ∈ X+\0, F ∈ X∗+\0, and therefore Ui,λ, , λ ∈ R is non-supporting. We then

use inequality (4.27) and take the duality pairing with the eigenfunctional Fi,λ of Ui,λ corresponding to
r(Ui,λ), yielding

r(Ui,λ)⟨Fλ, ψ⟩ ≥ ⟨Fλ, e⟩⟨ fi,λ, ψ⟩.

Assuming ψ = c, we obtain the inequality:

r(Ui,λ) ≥ ⟨ fi,λ, c⟩,

where

⟨ fi,λ, c⟩ =
∫ a⋆

0

si(ζ)
gi(ζ)(λ + γi(N̄) + µqi(ζ))

exp
(
−

∫ a

0
τi(ξ)+αi(x̄1, ξ)+λ+µpi(ξ)−

γi(N̄)αi(x̄1, ξ)
g(ξ)(λ+γi(N̄)+µqi(ξ))

dξ
)

exp
( ∫ ζ

0
τi(ξ) + αi(x̄1, ξ) + λ + µpi(ξ) −

γi(N̄)αi(x̄1, ξ)
gi(ξ)(λ + γi(N̄) + µqi(ξ))

dξ
)
dζ. (4.29)

It follows that

⟨ fλ, c⟩ ≥ϵ
∫ a⋆

0

1
gi(ζ)(λ + γi(N̄) + µqi(ζ))

exp
(
−

∫ a

0
τi(ξ)+αi(x̄1, ξ)+λ+µpi(ξ)−

γi(N̄)αi(x̄1, ξ)
g(ξ)(λ+γi(N̄)+µqi(ξ))

dξ
)

exp
( ∫ ζ

0
τi(ξ) + αi(x̄1, ξ) + λ + µpi(ξ) −

γi(N̄)αi(x̄1, ξ)
gi(ξ)(λ + γi(N̄) + µqi(ξ))

dξ
)
dζ. (4.30)

By using the positivity of γi(N̄), µpi , µqi , αi and τi, we conclude the following:

lim
λ→+∞

r(Ui,λ) = 0.

Hence proved. □

The previous lemma implies that the function λ → r(Ui,λ) is decreasing for all λ ∈ R. Moreover, if
there exists a λ ∈ R such that r(Ui,λ) = 1, then it follows that λ ∈ Λ, as r(Ui,λ) ∈ σP(Ui,λ). Combining
this with the monotonicity property of r(Ui,λ) and inequality (4.26), we obtain the following result.

Lemma 4.4. There exists a unique λ0 ∈ R ∩ Λ such that r(Ui,λ0) = 1, and λ0 > 0 if r(U0) > 1; λ0 = 0
if r(U0) = 1; λ0 < 0 if r(U0) < 1.

We will demonstrate that λ0 is a dominant singular point, utilizing Theorem 6.13 in [49].

Lemma 4.5. If there exists a λ ∈ Λ, λ , λ0, then Reλ < λ0.

Proof. Let λ ∈ Λ and Ui,λψ = ψ. Then |ψ|(a) = |ψ(a)|, and we have |Ui,λψ| = |ψ|. Therefore, we obtain
Ui,Reλψ ≥ ψ. By taking the duality pairing with FReλ ∈ X⋆

+ , we get r(Ui,Reλ)⟨FReλ, |ψ|⟩ ≥ ⟨FReλ, |ψ|⟩. We
have r(Ui,Reλ) ≥ 1, as FReλ is strictly positive. Since r(Ui,λ), λ ∈ R is a declining function, we conclude
that Reλ ≤ λ0. Suppose Reλ = λ0. Then Ui,λ0 |ψ| = |ψ|. If we assume Ui,λ0 |ψ| > |ψ|, then taking the
duality pairing with the eigenfunctional F0 corresponding to r(Ui,λ0) = 1 results in ⟨F0, |ψ|⟩ > ⟨F0, |ψ|⟩,
which is a contradiction. Therefore, we have Ui,λ0 |ψ| = |ψ|, and we can deduce that |ψ| = cψ0, where
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constant c is assumed to be 1, and ψ0 is the eigenfunction relating to r(Ui,λ0) = 1. Hence, we have
ψ(a) = ψ0(a) exp(iv(a)) for a real-valued function v(a). Substituting this into Ui,λ0ψ0 = |Ui,λψ| yields

αi(a, x̄1)
gi(a)(λ0 + γi(N̄) + µqi(a))

∫ a⋆

0
exp

( ∫ ζ

a
τi(ξ) + αi(x̄1, ξ) + λ0 + µpi(ξ) −

γi(N̄)αi(x̄1, ξ)
λ0 + γi(N̄) + µqi(ξ)

dξ
)
ψ0(ζ)dζ

=

∣∣∣∣∣ αi(a, x̄1)
gi(a)(λ0 + iImλ + γi(N̄) + µqi(a))

∫ a⋆

0
exp

( ∫ ζ

a
τi(ξ) + αi(x̄1, ξ) + λ0 + iImλ

+ µpi(ξ) −
γ(iN̄)αi(x̄1, ξ)

λ0 + iImλ + γi(N̄) + µqi(ξ)
dξ

)
exp(iv(ζ))ψ0(ζ)dζ

∣∣∣∣∣.
Lemma 6.12 [49] implies that Imλ + v(ζ) equals a constant Θ. Using the fact that Ui,λψ = ψ,

we obtain the equation exp(iΘ)Ui,λ0ψλ0 = ψλ0 exp(iv(ζ)). This equation shows that if Θ = v(ζ), then
Imλ = 0. Therefore, the proof is complete. □

Theorem 4.1. The equilibrium state (p̄h(a), q̄h(a), p̄c(a), q̄c(a))T, for (2.1)–(2.4), is locally
asymptotically stable if r(U0) < 1 and locally unstable if r(U0) > 1.

Proof. Lemmas 4.4 and 4.5 suggests that sup Reλ : 1 ∈ σP(Ui,λ) = λ0. This implies that if
r(U0) < 1, then s(C) = sup Reλ : 1 ∈ σP(Ui,λ) < 0. Conversely, if r(U0) > 1, then s(C) =
sup Reλ : 1 ∈ σP(Ui,λ) > 0. Therefore, the proof is complete. □

5. Results and discussion

In this section, we show simulations of the model to investigate the evolution of healthy and mutated
sub-populations of quiescent and proliferative cells in relation to the cell cycle dynamics. These
simulations are performed in the Matlab and we have used finite volume method with discretization
central upwind scheme. Table 2 displays the model parameters that were used in the simulations. A
maximum cell age of 50 is assumed, and the time step and spatial step size are set to ∆t = 0.02 and
∆a = 0.5, respectively. Additionally, we use unit speed, such that gh(a) = gc(a) = 1.

Steady-state dynamics of healthy and mutated cell populations:
This case study aims to study the steady-state dynamics of both healthy and mutated cell

populations, where the death rates are set to µph = µqh = 0.0014 and µpc = µqc = 0.0014. Additionally,
γ(N) = 6.8964× 10−6 and ρ1 = 1.0, while the mutation rate is set to m = 0.1. The initial conditions for
the healthy cell populations are defined as normal distributions ph(a, 0) = qh(a, 0) = k0√

2πσ2
exp

(
−

(a−µ)2

2σ2

)
,

where k0 = 106, µ = 2, and σ2 = 200. Similar initial distributions are used for the mutated cell
populations, but with k0 = 102. A normal distribution is used because it provides a good approximation
of the cell distribution within a population by incorporating heterogeneity with respect to cell age in a
population.

Figure 3 illustrates the number density distribution of different cell populations, namely healthy (a)
proliferating, (b) quiescent, and mutated (c) proliferating, (d) quiescent, as they evolve and eventually
reach a steady-state. Here, the cell age is measured in time and cell density is measured as cells per
cubic millimeter. The mutation rate is set to m = 0.1. Over time, the population of mutated proliferating
and quiescent cells gradually declines as they grow faster and occupy the tissues completely. However,
the total population of cells (consisting of both healthy and mutated proliferating and quiescent cells)
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denoted by N(t) increases rapidly, as shown in Figure 4(a), before eventually reaching a steady-
state. Furthermore, Figure 4(b) demonstrates that the growth factors, which are influenced by the cell
population N(t), initially increase due to the low cell count and subsequently decrease until reaching an
equilibrium. Finally, Figure 4(c) portrays the transition rate of cells, denoted by γ(N), from quiescent
phase to proliferating phase.

Table 2. Parameters used in the simulations.

Para. Description Healthy Mutated Unit
m Mutation rate 0.2 - day−1

νi Maximum transition rate from quiescent to
proliferation phase

0.6 [50] 0.6 day−1

θi Total cell population beyond which Γ is zero 0.095 × 106 [50] 0.095 × 106 -
κi Hill coefficient 1 [50] 1 -
ρ1,i Maximal effect of Cyclin D − CDK4/6 complex

on the division of cell
0.7 0.7 -

ρ2,i Value of Cyclin D − CDK4/6 complex to achieve
half maximum effect

0.35 0.35 -

γ1,i Hill coefficient 8 8 -
σ1,i Maximum rate of switching cells from

proliferating to quiescent phase
0.01 0.01 -

σ2,i Switching Cyclin D − CDK4/6 complex value,
after that α is close to zero

0.5 [45] 0.45

σ3,i Switching age value beyond which α is close to
zero

14 15 h

γ2,i Hill coefficient 7 7 -
γ3,i Hill coefficient 7 7 -
kt Rate constant which measures the effect of total

population on growth factors
1.80 × 10−9 [51] 1.80 × 10−9 -
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(a) Proliferating healthy cells (b) Proliferating mutated cells

(c) Quiescent healthy cells (d) Quiescent mutated cells

Figure 3. Cell number density distribution of different cell populations in macroscale.
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Figure 4. Dynamics of the combined cell population, growth factors, and transition function
γ: (a) the total cell population N(t) reaches a steady-state, (b) the growth factors g f decrease as
the cell population increases, and (c) both gamma functions, γh and γc, decrease as the total cell
population reaches a steady-state.
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Exponential growth of mutated cell populations:
For this case study, we selected a mutation rate of m = 0.2 and used death rates of µph = µqh =

0.0014 and µpc = µqc = 0.0010. Additionally, we altered several other parameters, including ν1,c =

0.045, ρ1,c = 1.0, ρ2,c = 30, σ1,c = 0.040 and σ2,c = 0.45. Figure 5 shows the cell density distribution
of healthy and mutated proliferating and quiescent cells, respectively. Both healthy subpopulations
exhibit the trends of reaching a trivial steady-state with time. However, the mutated cell populations
pc(a, t) and qc(a, t) increase exponentially, mimicking cancerous behavior. Figure 6 illustrate the total
number of cells, growth factors, and the switching function from quiescent to proliferating phase,
γi(N), respectively. The total cell population, which comprises healthy and mutated proliferating and
quiescent cell populations, exhibits an exponential increase in cell number over time. The growth
factors are initially maximum due to the low cell count and gradually decline until reaching extremely
low levels. Finally, the transition functions γh and γc also decline as the cell population grows.

(a) Proliferating healthy cells (b) Proliferating mutated cells

(c) Quiescent healthy cells (d) Quiescent mutated cells

Figure 5. Cell number density distribution of different cell populations in macroscale.
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Figure 6. Dynamics of entire cell population, growth factors, and γ transitions: (a) The total
cell population N(t) exhibits exponential growth. (b) As the cell population increases, the growth
factors g f decrease. (c) Both gamma functions, γh and γc, decrease as the total cell population
increases.

The proposed model has some limitations that should be considered. Firstly, exclusion of cell
heterogeneity, that is a essential aspect to account for cellular noise. Additionally, the feedback model
that is comprised of growth factors is fairly simple straight forward, and to characterize the activation
of the Cyclin D complex, all signaling pathways should be considered. Moreover, at the microscale,
it would have been necessary to model cell cycle dynamics separately for healthy and mutated cell
populations to investigate their respective compartments’ more heterogeneous behavior. Moreover,
while the Cyclin-CDKCDK4/6 are crucial for the G1 to S phase transition, the model overlooks the
other restriction point that detects DNA damage in the S phase.

6. Conclusions

This reserch presents non-linear, multiscale modeling of physiologically-structured healthy and
mutated quiescent and proliferating cells in relation to cell cycle dynamics. We modeled reversible
transitioning from quiescent to proliferating cells and vice versa. We checked the wellposedness of
the model, derive non-trivial equilibrium solutions and find spectral criteria for local stability. We also
performed numerical simulations to study the impact of Cyclin D − CDK4/6 complex on the transition
between two sub-populations. Furthermore, we predict that the Cyclin’ complex plays an important
role in the reversible transition, and any abnormality in this transition can result in cancer.
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