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Abstract: Individual-level interactions shape societal or economic processes, such as infectious
diseases spreading, stock prices fluctuating and public opinion shifting. Understanding how the
interaction of different individuals affects collective outcomes is more important than ever, as the
internet and social media develop. Social networks representing individuals’ influence relations
play a key role in understanding the connections between individual-level interactions and societal
or economic outcomes. Recent research has revealed how the topology of a social network affects
collective decision-making in a community. Furthermore, the traits of individuals that determine
how they process received information for making decisions also change a community’s collective
decisions. In this work, we develop stochastic processes to generate networks of individuals with two
simple traits: Being a conformist and being an anticonformist. We introduce a novel deterministic
voter model for a trait-attributed network, where the individuals make binary choices following simple
deterministic rules based on their traits. We show that the simple deterministic rules can drive
unpredictable fluctuations of collective decisions which eventually become periodic. We study the
effects of network topology and trait distribution on the first passage time for a sequence of collective
decisions showing periodicity.
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1. Introduction

Studying the dynamics of individual-level social interactions and the collective outcomes has
stimulated the development of various mathematical models in different fields. The discrete choice
models explain and forecast an individual’s choice from a set of alternatives [2], for example, which
college to attend [9] and which vehicle to purchase [25]. The voter model [13] and its generalization [4]
are simple stochastic processes describing opinion formation or decision making, which are also
applicable to study phase transition in statistical physics and to model the dynamics of language
death [1]. Evolution game theory provides a framework to study how individual-level interactions and
behaviors evolve over time [7]. It is natural to define these models describing individual-level social
interactions on networks. Recent research has shown that the network topology plays an important role
in shaping the collective outcomes. For example, how network topology shapes the transmission of
individuals’ behavior [14,19], and how contact network topology shapes the transmission of infectious
diseases [12, 22].

Various generalizations of the models have also hinted at the importance of individuals’ traits (e.g.,
physical and mental characteristics) in shaping the dynamics of social interactions and the collective
outcomes. The discrete choice model has been generalized to include factors reflecting the inclination
of an individual to conform to the choice of others [3] and interaction of individuals from different peer
groups [6] for studying their effects on the collective outcomes. The voter model has been generalized
to study the effects of conformity and anticonformity on polarization in opinion dynamics [15]. In
social physics and social psychology, understanding opinion formation has stimulated models studying
how individuals make decisions under pressures from others [16, 20, 24] and models analyzing how
proportions of individuals with different traits affect the equilibrium behavior in interactive decision
making [5, 10]. Recent research also generalizes the evolution game theory models to study how
individuals’ lifespans shape the dynamics of social interaction [8, 27].

Indeed, an individual in a community receives information when making a decision. The
information includes suggestions, preferences and decisions of trusted individuals and indices, such
as stock prices reflecting collective decisions of a community. Direct social interactions happen with
the information from trusted individuals, and indirect social interactions occur with the information
reflecting collective decisions. Individuals buying or selling stocks based on recommendations of
trusted individuals is an example of direct social interaction. In contrast, people trading their shares
determines stock prices, and individuals exchanging stocks based on the prices is an example of indirect
social interaction. How an individual processes the received information and makes a decision depends
on the individual’s traits. For example, there are individuals choosing to listen to music recommended
by their friends, and there also exist individuals who want to be distinctive and reject popular music,
which is defined by collective choices of a community. However, this seemingly deterministic process
is mainly modeled with randomness, for example, the voter model which includes selecting individuals
at random.

In this work, we introduce a deterministic voter model with trait-attributed individuals, which, to
the best of our knowledge, is new. This deterministic model allows us to study how the network
topology and individuals’ traits shape the dynamics of collective decision making without randomness.
Specifically, we develop two stochastic processes to generate networks of individuals with two traits:
Being a conformist and being an anticonformist. The individuals in a trait-attributed network make

AIMS Mathematics Volume 8, Issue 5, 12287–12320.



12289

binary choices based on deterministic trait-dependent rules. The model is a discrete-time and produces
time series called cumulative sequences, which reflect collective decisions of communities over time.
The cumulative sequence can represent, for example, stock prices, the community’s position on the
left-right political spectrum or the popularity of mainstream music. A rigorous mathematical proof
shows that based on the deterministic rules, every cumulative sequence eventually becomes periodic.
We study the effects of network topology and trait distribution on the first passage time for a cumulative
sequence showing periodicity. Lastly, we discuss the potential of this model being a framework
for studying individuals with different traits in a social network directly and indirectly interacting in
decision making.

2. Materials and methods

2.1. Model assumptions and basic definitions

We consider a community of n individuals. We assume that each individual makes a sequence of
choices from the binary state space Ω = {−1, 1} and that individuals’ sequences of choices have the
same length of t + 1 steps. So, the model is discrete-time, and we use “sequence” and “time series”
interchangeably. We use an integer 1 ≤ i ≤ n to represent an individual in the community and denote
the sequence of choices made by individual i as C(i, ·) = [c(i, 0), c(i, 1), . . . , c(i, t)]. The element c(i, k)
in the sequence, being either −1 or 1, is the choice of individual i at step k. The choices of all individuals
in the community at step k also form a sequence C(·, k) = [c(1, k), c(2, k), . . . , c(n, k)], which we call
the choice pattern of the community at step k. In particular, the choice pattern at step zero C(·, 0) is the
initial choices of the community. The time series of choice patterns C = [C(·, 0),C(·, 1), . . . ,C(·, t)] is
the community’s sequence of choice patterns.

We say that two individuals in a community are related if they influence each other in decision
making. We assume that influence in decision making is mutual, that there is no self influence and
that influence is indifferent with the same strength. With respect to these assumptions, we model a
community of individuals and how they are related in decision making by a social network N, which is
undirected and without loops or multiple edges. Each node in a social network represents an individual,
so we use “node” and “individual” interchangeably. An edge connecting two nodes in a social network
indicates a pair of related individuals. Two related individuals are neighbors of each other on a social
network.

Every individual in a community has a trait of either being a conformist or being an anticonformist
in decision making. The trait affects how an individual makes choices. In a community of n individuals,
the function f : {1, 2, . . . , n} → {conformist, anticonformist} assigning a trait to each individual defines
a trait distribution. We assume that every individual makes a choice simultaneously at every step and
that an individual’s choice at step k is determined by the choices of the individual’s neighbors at step
k − 1. We list explicit rules for an individual to make a choice at each step in Table 1.

Note that the rules are deterministic. So, with a given social network representing how a community
of individuals influence each other in decision making, the distribution of traits on the social network
and the initial choices of the community, each individual’s sequence of choices is determined.
Consider a community of n individuals. The collective choice of the community at step k is the
sum of choices over all individuals at step k and denoted by s(k) =

∑n
l=1 c(l, k). The time series

s = [s(0), s(1), s(2), . . . , s(t)] is the collective sequence of the community’s choices. Analogously, the
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cumulative choice of the community at step k is the cumulative sum of choices over all individuals
at step k and denoted by S (k) =

∑k
l=0 s(l), and the time series S = [S (0), S (1), S (2), . . . , S (t)] is the

cumulative sequence of the community’s choices.

Table 1. Rules for individual i to make a choice at step k.

Trait Step k − 1 Step k
Conformist More neighbors who chose −1 −1

More neighbors who chose 1 1
Equal numbers of neighbors who chose −1 and 1 c(i, k − 1)

Anticonformist More neighbors who chose −1 1
More neighbors who chose 1 −1

Equal numbers of neighbors who chose −1 and 1 c(i, k − 1)

2.2. Toric lattices and random networks

We use two simple classes of network topologies as models for the influence relations of a
community of individuals. We choose these simple network topologies because they allow better
understanding of how individuals with different traits are distributed in the network.

The first class is lattices with no boundary. We use this class of network topologies for visualizing
trait distributions. A toric lattice of size m is constructed, such that there exists a node at every integer
coordinate (x, y) in the plane for integers 0 ≤ x, y ≤ m − 1 and no node at other coordinates, so the
toric lattice has m2 nodes. Each node in a toric lattice is only related to the eight surrounding nodes,
and to make the lattice boundaryless, the nodes on a boundary of a lattice are related to some nodes
on the opposite boundary as in the example displayed in Supplementary Figure 1. See supplementary
material for more detail.

The degree of a node in a network is the number of edges incident to it. We are interested in
the mean value and the standard deviation of the degrees of nodes in a network, and we call the two
quantities the mean degree and the degree deviation of the network, respectively. Without ambiguity,
we denote the mean degree of a social network by µ and the network’s degree deviation byσ. The mean
degree of a social network, proportional to the network density [11], reflects the level of connectedness
of individuals in a community, and the degree deviation of a social network is known to represent
network heterogeneity [23].

We develop a generalized Erdös-Rényi model to generate random networks as another class of
network topologies. The generalized Erdös-Rényi model can generate random networks with a certain
number of nodes, a specific mean degree and a degree deviation regulated by a parameter. The model
allows us to study the effects of network size (number of nodes), network density (mean degree) and
network heterogeneity (degree deviation) on the collective and cumulative sequences of a community’s
choices with control. To generate a random network with n nodes and mean degree µ, we add
nµ/2 edges successively to pairs of nodes in the network as follows. Let η be the heterogeneity
parameter regulating the degree deviation of a network, and d(i) be the degree of the node representing
individual i, which we call node i for short. To select the two end nodes of an edge to be added, we
assign each node a weight which determines the probability of the node being selected. To select the
first end node, we assign a weight w(i) = (1 + d(i))η to node i when d(i) < n − 1 and w(i) = 0 to the
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node when d(i) ≥ n − 1 to avoid multiple edges, then the probability of node i being selected as the
first end node is p(i) = w(i)/

∑n
l=1 w(l). Suppose that node i is selected as the first end node. To select

the second end node, we assign node i a weight v(i) = 0 to avoid loops and v( j) = 0 to node j when
node j is a neighbor of node i or d( j) ≥ n − 1 to avoid multiple edges; otherwise, we assign node j a
weight v( j) = (1 + d( j))η. Similarly, the probability of node j being selected as the second end node is
q( j) = v( j)/

∑n
l=1 v(l).

Note that, when η = 0, each possible edge of the network to be generated has the same probability to
be added, so the model generates Erdös-Rényi random networks with n nodes and nµ/2 edges. When
η < 0, nodes with a high degree are less likely to be selected as an end node, so the generated networks
are more regular with low degree deviation. When η > 0, nodes with a high degree are more likely to
be selected as an end node, so the generated networks are more centralized or star-like with high degree
deviation. In Supplementary Figure 2, we show the relations between the heterogeneity parameter and
degree deviations of generated random networks, as the heterogeneity parameter regulates the degree
deviations of the generated networks.

2.3. Trait distribution

Let N be a social network representing a community of individuals and their relations in decision
making. We attribute the traits of being a conformist and being an anticonformist to the nodes in N
and call the resulting network a trait-attributed network or simply an attributed network denoted by N′.
We characterize trait distributions with two quantities: the number of anticonformists r in a community
and a parameter measuring the extent of mixing for individuals with different traits which is defined as
the average number of conformist neighbors over all anticonformists. We call the second quantity of
an attributed network the mixing parameter and denote it by χ.

We develop the following stochastic process to attribute traits to nodes of a social network so that
the mixing parameter can vary in a wide range. Consider a network N with n nodes. To attribute
r anticonformists and n − r conformists to the nodes of N, we initially attribute all nodes in N as
conformists and then successively select r nodes to be anticonformists with an attributing parameter
α regulating the mixing parameter χ. To select r anticonformists, we assign each node in the network
weights, which determine the probability of the node being selected. To select the k-th anticonformist,
we assign a weight u(i, k) = 0 when node i is an anticonformist and a weight u(i, k) = αm if node i has
m anticonformist neighbors, then the probability for node i to be selected as the k-th anticonformist is
p(i, k) = u(i, k)/

∑n
l=1 u(l, k).

Note that if the attributing parameter α = 1, then the anticonformists are uniformly selected at
random. If α > 1, the anticonformists are clustered and the mixing parameter is low. For 0 < α < 1,
the mixing parameter is high and the anticonformists are scattered. See Supplementary Figure 3 for
examples of attributed toric lattices with scattered and clustered anticonformists. In Supplementary
Figure 3, we also show the relations between the attributing parameter α and the mixing parameter χ,
as both parameters concern the distribution of individuals with different traits in a network.
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2.4. First passage time and predictability of cumulative sequences

In the supplementary material, we show that every collective sequence of choices eventually enters
a unique period by a rigorous mathematical proof. Hence, every cumulative sequence eventually shows
a unique repeated pattern. The eventual period and the repeated pattern are determined by the topology
and the trait distribution of the attributed network and initial choices of the community.

Without ambiguity, we call both the unique period of the collective sequence and the repeated
pattern of the corresponding cumulative sequence the eventual period of the sequences. We denote the
eventual period of a cumulative sequence by P, and the length of an eventual period P is the number of
steps that it spans, which is denoted by L(P). The change in the cumulative sequence over the period
P is the period gain denoted by ∆P. More specifically, the period gain is the difference between the
values of the cumulative sequence at the beginning step and the ending step of one complete eventual
period. We define the gradient of the eventual period by ∇P = |∆P| /L(P), which we use to describe
the asymptotic behavior of cumulative sequences. We call the subsequence of a cumulative sequence
before its first eventual period the pre-period subsequence and denote the pre-period subsequence
by Q. The length of a pre-period subsequence Q, denoted by L(Q), is the number of steps that the
subsequence Q spans. See supplementary material for examples and more detail about eventual periods
and pre-period subsequences.

We study the first passage time for the cumulative (collective) sequence of a community’s choices
showing periodicity. Specifically, the first passage time F of a cumulative (collective) sequence is
defined to be F = L(Q) + L(P) + τ. Here, τ indicates the small amount of time required to recognize
the completion of the first eventual period. We study the probability for the first passage time being
no greater than t + 1 steps. We say that the cumulative (collective) sequence of a community’s choices
is predictable if its first passage time F ≤ t + 1, otherwise the cumulative (collective) sequence
is unpredictable. For experiments in this paper, we set t = 10000 and τ = 50 unless otherwise
stated. To efficiently determine if a cumulative (collective) sequence is predictable without recording
and comparing choice patterns, we develop a heuristic method. The heuristic method can determine
predictability with an average accuracy over 99.4%. See supplementary material for more detail about
the heuristic method and its accuracy.

In addition, we are interested in the following two classes of predictable cumulative sequences. We
say that a predictable cumulative sequence is escalating if its eventual period has a gradient ∇P > 1,
and that a predictable cumulative sequence is oscillating if its eventual period has a gradient ∇P = 0.

2.5. Summary of parameters and experiments

There are three factors regulating the deterministic process: The network topology, the trait
distribution and the initial choices of a community of individuals. With the three factors pre-specified,
the model generates a unique cumulative sequence of the community’s choices. In Table 2, we
summarize the parameters controlling the three factors and their values used in experiments for
examining the effects of the three factors on the probability of cumulative sequences being predictable.

Each parameter has a default value in the experiments: n = 100, µ = 8, η = 0, r = 50%n, α = 0.8
and initial choices being −1 for all individuals. In experiments analyzing the effects of the number of
nodes, n takes 100 data points from 2 to 200 in increments of 2. In experiments studying the effects of
the mean degree, µ takes 101 data points from 0 to 50 in increments of 0.5. In experiments examining
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the effects of the heterogeneity parameter, η takes 101 data points from −80 to 20 in increments of 1
and 101 data points from −2 to 8 in increments of 0.1. In experiments analyzing the effects of the
number of anticonformists, r takes 101 data points from 0%n to 100%n in increments of 1%n and
we round r to the smaller integer if r is not an integer. In experiments studying the effects of the
attributing parameter, α takes 79 data points from 0.05 to 2 in increments of 0.025. For each data
point in these experiments, we generate 10000 random networks with other parameters taking default
values and compute the proportion of predictable cumulative sequences, which we call the probability
of predictable sequences. Furthermore, we also compute the proportions of escalating (∇P > 1) and
oscillating (∇P = 0) predictable cumulative sequences and call the proportions the probability of
escalating sequences and the probability of oscillating sequences, respectively.

In experiments analyzing the effects of initial choices, we randomly generate initial choices, such
that each individual has a probability of 0.5 to choose −1 or 1. We vary the network topology
parameters and the trait distribution parameters independently in their ranges and use the data points for
the parameters as described above. We generate 100 attributed random networks for each data point,
and for each random network, we generate cumulative sequences with 100 random initial choices. For
each attributed random network, we compute the proportion of initial choices that produce cumulative
sequences with the same predictability as the majority of cumulative sequences produced by the 100
initial choices. We scale the ranges for each parameter listed in Table 2 to the same range of [0, 1]
linearly for comparison.

Table 2. Summary of parameters and their values used in experiments.

Factor Parameter Experiments
Network
topology

Trait
distribution

Initial
choices

Network topology Number of
nodes (n)

[2, 200] 100 100

Mean degree
(µ)

[0, 50] 8 8

Heterogeneity
parameter (η)

[−80, 20] 0 0

Trait distribution Number of
anticonformists

(r)

50%n [0, 100] 50

Attributing
parameter (α)

0.8 (0, 2] 0.8

Initial choices Initial choices −1 for all −1 for all Uniformly
at random
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In addition, we use a Twitch user-user network of gamers who stream in Portuguese (PT) as a real
social network topology for our study [17, 21]. The network has 1912 nodes, with a mean degree
of 32.74 and a degree deviation of 55.85. We attribute traits of being a conformist and being an
anticonformist to the nodes of the real social network and study the effects of the trait distribution
on the probability of cumulative sequences being predictable. In the experiments, the number of
anticonformists takes 192 data points varying from 0%n to 100%n and the attributing parameter takes
192 data points varying from 0.05 to 2. For each data point, we generate 100 trait distributions and
compute the proportion of predictable cumulative sequences as the probability of cumulative sequences
being predictable.

3. Results

3.1. Cumulative sequences

We study the cumulative sequence of a community’s choices. The cumulative sequences can be
considered as indices reflecting the changes of a community’s collective decisions or opinions in
a matter over time, for example, stock prices or a community moving left or right on the political
spectrum.

We display the cumulative sequences of a trait-attributed toric lattice and a trait-attributed random
network in Figure 1. We observe that the future movements of the cumulative sequences cannot be
predicted with the subsequences from past steps, and the cumulative sequences resemble random
walks. Specifically, the 10000-step long cumulative sequences in panel E of Figure 1 cannot be
predicted from the 100-step long subsequences in panel A and panel C.

As discussed in Section 2.4, if we do not terminate the process, every cumulative sequence will
enter its unique eventual period. So, a cumulative sequence consists of two parts: The pre-period
subsequence which can have a length of zero and the eventual period. See Supplementary Figure 4 for
an example of pre-periods subsequences and eventual periods. The observed unpredictable cumulative
sequences in the first t = 10000 steps can be part of the pre-period subsequence, part of the eventual
period or a mixture of the pre-period subsequence and the beginning of the eventual period.

In the rest of the section, we focus on the first passage time for a cumulative sequence showing
periodicity. We analyze the effects of network topology and the trait distribution on the first passage
time. Specifically, we study the probability of a cumulative sequence being predictable in the first
t = 10000 steps of the process by simulations. Furthermore, we compute the probabilities of a
predictable cumulative sequence being escalating and oscillating. Here, the escalating and oscillating
predictable cumulative sequences can be interpreted if we consider the cumulative sequences as the
changes of communities’ positions on the left-right political spectrum. The escalating predictable
cumulative sequences with ∇P > 1 indicate the communities are fast extremizing, and the oscillating
predictable cumulative sequences with∇P = 0 suggest the communities have constant internal conflicts
without any movement. The unpredictable cumulative sequences, however, show movements without
extremizing or constant internal conflicts. These can be observed more clearly with homogeneous
attributed networks displayed in Supplementary Figure 5. See supplementary material for more detail.
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Social network and trait distribution

Conformist
Anticonformist

Figure 1. Simple deterministic processes generate unpredictable cumulative sequences.

Figure 1 shows the first 100 steps of the cumulative sequence of choices (panel A) of the community
represented by the attributed toric lattice of size m = 10 generated with r = 50 and α = 0.7 (panel B),
and the first 100 steps of the cumulative sequence of choices (panel C) of the community represented
by the attributed random network generated with n = 100, µ = 8, η = 0, r = 50 and α = 0.9 (panel
D). The first 10000 steps of the cumulative sequences (panel E) are displayed in panels A and C. The
initial choices for both attributed networks are −1 for all individuals. To summarize, future movements
of a cumulative sequence can not be predicted with subsequences from past steps. Loosely speaking,
the process produces “chaotic” results.
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3.2. The effects of network topology

The relation between the number of individuals in a community and the probability of predictable
sequences displayed in panel A of Figure 2 shows that smaller communities have a higher probability
of predictable sequences and that the probability decreases as the number of individuals increases.
This suggests that smaller communities are more likely to extremize or internally conflict in collective
decision making. Larger communities are less likely to extremize or internally conflict, even though
all individuals are non-rational conformists and anticonformists and making no independent choices.
Furthermore, smaller communities with more anticonformists are prone to internal conflicts, while
smaller communities with more conformists are more likely to extremize; see Supplementary Figure 6.

The relation between the mean degree and the probability of predictable sequences displayed in
panel B of Figure 2 indicates that the probability of predictable cumulative sequences is high for
communities with either a low or a high mean degree (density), and is low for communities with a
medium mean degree. According to the rules listed in Table 1, an individual who is not related to
any other individual in decision making chooses the initial choice at every step. Communities with
a low mean degree have many such isolated individuals, implying that they have one-step attractors
and that the predictable cumulative sequences are more likely to be escalating. When the mean
degree in the network is high, according to the mean field theory, the effect of all other individuals
on one single node can be given by an average quantity, so that the cumulative sequence can soon
enter its eventual period. Supplementary Figure 7 suggests that high-density communities with more
anticonformists are prone to internal conflicts, while high-density communities with more conformists
are more likely to extremize. Moreover, high-density communities with scattered anticonformists are
more probable to internal conflict. These results suggest a possible explanation of more frequent
conflicts and extremization as more individuals are being connected by various internet social media
and influencing each other in decision making.

The heterogeneity parameter regulates the degree deviation of generated networks; see
Supplementary Figure 2 for relations between the two quantities. When η = −80, the generated
network is regular (every node in the network has the same degree and σ = 0) with a near-one
probability, and when η = 8, the generated network is centralized or star-like; see panel E and F
in Figure 2 for examples of regular and star-like networks. Regular networks have high probabilities of
predictable sequences, which depends on other parameters; see panel C in Figure 2 and Supplementary
Figure 8. Specifically, the probability of predictable sequences are relatively low for regular networks
with more individuals (n = 150), a higher density (µ = 12) or more scattered anticonformists (α = 0.6).
Moreover, the predictable cumulative sequences are more likely to be escalating for regular networks
unless more than 80% of the individuals are anticonformists; see panel C in Figure 3. Star-like
networks have near-one probabilities of predictable sequences regardless of other parameters; see panel
D in Figure 3 and Supplementary Figure 8. If a star-like network has more anticonformists, then the
predictable cumulative sequences are escalating, and if a star-like network has more conformists, then
the predictable cumulative sequences are oscillating; see panel E in Figure 3. These results indicate that
communities of only non-rational conformists and anticonformists with star-like network topologies
are prone to extremizing or internal conflicts in collective decision making, and the random networks
generated with η slightly below zero having the lowest probabilities of predictable sequences. These
results hint the benefit of network (e.g., internet) decentralization.
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Figure 2. Effects of the three network topology parameters on the probability of predictable
sequences.

Figure 2 shows the relations between the probabilities of predictable, escalating and oscillating
sequences and the number of individuals (nodes) n (panel A), the mean degree µ (panel B) and the
heterogeneity parameter η from −80 to 20 (panel C) and from −2 to 8 (panel D); each data point
is computed with 10000 random networks and their corresponding cumulative sequences with initial
choices −1 for all individuals; smooth fitted curves are added for visualization. A regular random
network generated with n = 100, µ = 8, η = −80, r = 50 and α = 0.8 is displayed in panel E. A
star-like random network generated with n = 100, µ = 8, η = 8, r = 50 and α = 0.8 is displayed in
panel F. To summarize, small networks, networks with extreme mean degrees (density), regular and
centralized networks are more likely to have predictable cumulative sequences.
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Figure 3. Effects of the two trait distribution parameters on the probability of predictable
sequences.

Figure 3 shows the relations between the probabilities of predictable, escalating and oscillating
sequences and the number of anticonformists r for networks with n = 100, µ = 8, η = 0 and α = 0.8
(panel A), regular networks with η = −80 (panel C) and star-like networks with η = 8 (panel E), and
the relations between the probabilities and the attributing parameter α for networks with n = 100,
µ = 8, η = 0 and r = 50 (panel B), for regular networks with η = −80 (panel D) and star-like
networks with η = 8 (panel F). Each data point is computed with 10000 random networks and their
corresponding cumulative sequences with initial choices −1 for all individuals. Smooth fitted curves
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are added for visualization. To summarize, the effects of trait distribution parameters on the cumulative
sequences depend on network topologies, and networks with extreme number of anticonformists and
networks with clustered conformists and anticonformists are more likely to have predictable cumulative
sequences.

3.3. The effects of trait distribution

Figure 3 and Supplementary Figure 9 show that communities with fewer than 20% of the individuals
being anticonformists have near-one probabilities of predictable sequences, and the cumulative
sequences are escalating. Communities with more than 80% of the individuals being anticonformists
also have near-one probabilities of predictable sequences, and in most of the settings, more predictable
cumulative sequences are oscillating when more than 90% of the individuals are anticonformists.

The attributing parameter controls how conformists and anticonformists mix on a social network.
The relations between the attributing parameter and the mixing parameter are displayed in
Supplementary Figure 3, where panels A and B show examples of attributed networks with excessively
scattered and clustered individuals with different traits. Figure 3 and Supplementary Figure 10 show
that communities with excessively clustered or scattered conformists and anticonformists have high
probabilities of predictable sequences, and the predictable cumulative sequences of communities with
excessively clustered conformists and anticonformists are more likely to escalate than to oscillate
in all studied parameter settings except when the network topology is star-like. Star-like networks
have constant mixing parameters as the attributing parameters varies as displayed in panel E of
Supplementary Figure 3, and the predictable cumulative sequences being oscillating for any attributing
parameter displayed in panel F of Figure 3 is due to the number of anticonformists.

These results suggest that communities with even proportions of conformists and anticonformists
are less likely to extremize or internally conflict. In addition to the proportions of individuals with
different traits, how conformists and anticonformists are mixed in the social network and interact also
plays an important role in determining the probability of escalating and oscillating sequences. If a
community has even proportions of conformists and anticonformists, but they are excessively clustered,
then the community is also prone to extremizing.

3.4. The effects of initial choices

Initial choices do not affect the predictability of cumulative sequences generated by an attributed
network by much. Figure 4 shows the proportions of random initial choices that generate cumulative
sequences with the same predictability as the majority of cumulative sequences produced by different
initial choices on a trait-attributed network. Panel A in Figure 4 shows how the the proportions change
with respect to the three network topology parameters, and panel B shows how the proportions change
with respect to the two trait distribution parameters. On average, over 85% initial choices generate
cumulative sequences that have the same predictability as the majority of cumulative sequences
generate with an attributed network and different initial choices. However, the cumulative sequences
are sensitive to initial choices. The cumulative sequences generated with different initial choices
displayed in panels C and D of Figure 4 show different trajectories, though we can observe that the
two sets of cumulative sequences have distinguishable characteristics determined by the trait-attributed
networks.
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Figure 4. Effects of initial choices on the probability of predictable sequences.

Figure 4 shows the average proportions of initial choices that generate cumulative sequences
of majority predictability for varying network topology parameters (panel A) and trait distribution
parameters (panel B). Each data point represents the mean proportion of 100 random initial choices
over 100 random networks, and the error bars show 95% confidence interval of the mean. Five
cumulative sequences of the same predictability produced by five random initial choices are displayed
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in panel C. Three unpredictable and two predictable cumulative sequences produced by five random
initial choices are displayed in panel D. Complete eventual periods are displayed between vertical lines,
and pre-period subsequences are before the first vertical line. The two sets of cumulative sequences
are produced by two attributed networks generated with n = 100, µ = 8, η = 0, r = 50 and α = 1.
To summarize, most of the cumulative sequences generated with the same trait-attributed network and
different initial choices have the same predictability.

3.5. Real social network

For the real social network with n = 1912 individuals, if we set the attributing parameter in its
default value (α = 0.8), then the probability of predictable sequences has the lowest value when the
number of anticonformists is around r = 1400; see panel A of Figure 5. This is different from random
networks, where the probability of predictable sequences has the lowest value around r = 50%n; see
panel A of Figure 3. In Supplementary Figure 12, we show the relations between the trait distribution
parameters and the probability of predictable sequences with Watts-Strogatz small-world networks [26]
instead of the random networks. If the attributing parameter is set to be α = 0.8, the probability of
predictable sequences has the lowest value when r > 50%n for Watts-Strogatz small-world networks;
see panel D of Supplementary Figure 12. Here, the results for Watts-Strogatz small-world networks
are more similar to the real social network, compared with random networks.

If we set the number of anticonformists to be at default value r = 50%n, then the probability
of predictable sequences has the lowest value when α = 1, i.e., when the anticonformists are
uniformly distributed in the network. See panels C and D of Figure 5. In both cases (r = 1400
and r = 50%n = 956), the predictable cumulative sequences generated by the real social network are
almost all escalating. We visualize an attributed network in the first case (r = 1400) in panel F and
its degree distribution in panel H of Figure 5. The cumulative sequence of the attributed network in
the first case (r = 1400) are displayed in panels E and G. With 1400 anticonformists, the community’s
unpredictable collective decisions are driven by small constant internal conflicts. See supplementary
material for more detail.

Figure 5 shows the relations between the probability of predictable, escalating and oscillating
sequences and the number of anticonformists r with α = 0.8 (panel A), the attributing parameter
α with r = 1400 (panel B), the number of anticonformists r with α = 1 (panel C) and the attributing
parameter αwith r = 956 (panel D); each data point is computed with 100 attributions on the real social
network with initial choices −1 for all individuals; smooth fitted curves are added for visualization. The
trait-attributed real social network generated with r = 1400 and α = 0.8 is displayed in panel F, and
its degree distribution is displayed in panel H. The first 100 steps and the first 10000 steps of the
cumulative sequence of the attributed real social network is displayed in panel E and G, respectively.
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Figure 5. Effects of the trait distribution parameters on the probabilities of predictable
sequences with a real social network.

4. Conclusions

We have developed stochastic processes to generate networks of individuals with two different
traits: Being a conformist and being an anticonformist. The stochastic processes have parameters that
control the size, density and heterogeneity of the network topology and the number and distribution
of anticonformists in the network. We have further introduced a deterministic voter model for
the generated trait-attributed networks to model a community of individuals with different traits
interactively making decisions. We have used the cumulative sequence to reflect the collective
decisions made by the community over time. We have provided a rigorous mathematical proof to
show that under the trait-dependent rules of the deterministic voter model (Table 1), every trait-
attributed network and a set of initial choices generate a cumulative sequence that eventually becomes
periodic. The future movements of a cumulative sequence that does not show periodicity can not
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be predicted by subsequences from past steps, while the future movements of cumulative sequence
that shows periodicity is predictable. The predictable cumulative sequences either escalate to an
extreme or are constantly oscillating, which can be interpreted as collective decisions of extremizing
or internally conflicting communities. We have studied the effects of network topology and trait
distribution on the first passage time for a cumulative sequence showing periodicity. Furthermore,
we have analyzed the conditions for a predictable cumulative sequence to be escalating and oscillating.
We have found that smaller communities, high-density communities, communities with centralized
structures, communities with uneven proportions of individuals with different traits and communities
with excessively clustered anticonformists and conformists are more likely to extremize or have
internal conflicts.

The introduced deterministic voter model can also be considered as a cellular automaton on a
graph as discussed in [18], where only the cells in our model have two different types (traits).
Our model, being deterministic, allows us to study the factors that drive fluctuations in collective
decision making without randomness. We have used simple network topologies so that we can better
understand how trait distribution affect the dynamics of collective decision making. It is known that
simple network topology limits the dynamics of collective decision making [14, 19]. The fact that we
observe unpredictable cumulative sequences with trait-attributed toric lattices shows the importance of
individuals’ traits in shaping the dynamics of collective decision making. To keep the model as simple
as possible, we have made other unrealistic assumptions. Social influence should have directions and
varied strength, and there would also be some self-influence in reality. We can introduce the traits of
being an influencer and being a fan to the model. We have assumed that if there are equal numbers of
neighbors who chose −1 and 1 in the previous step, the individual would keep the preceding choice.
In reality, individuals with traits of being conservative incline to keep the preceding choice, while
progressive individuals may want to try a different choice. We have only focused on direct social
interactions and only used the information of neighbors’ choices, but not indirect interactions with
individuals making decisions with respect to the indices reflecting collective decisions of a community.
For example, we can introduce individuals making decisions for utility maximization. People do not
make decisions at the same time, and we have only used the information from the last step. In reality,
individuals can make decisions based on history information. There could also be honest and dishonest
individuals who would release false information to the neighbors. These possibilities show the potential
of our model as a framework for analyzing how individuals of different traits directly and indirectly
interact in decision making.

We used discrete-time models, which have limitations such as being incapable of capturing
collective decision-making associated with a continuum of options. In addition, the values of
parameters that we chose were limited. Networks mainly have 100 individuals, and the random
network generator can not generate all possible networks. We defined the predictable cumulative
sequences with ∇P > 1 to be escalating, which can be adjusted for different standards. Cumulative
sequences eventually show repeated patterns, but in reality, people move, connections form and break,
and the network topology changes over time. Moreover, individuals change personalities over time
and have different traits for different matters, and the trait distribution will not be unchanged either.
Therefore, the cumulative sequence of a large ever-changing community can keep being unpredictable
and never show repeated patterns.
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Implementation

Code and data for simulations and analyses conducted in this paper are available at https://
github.com/pliumath/social-interaction.
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Supplementary material

Toric lattices and random networks

The toric lattices are boundaryless. A node on a boundary of a lattice is related to some nodes on
the opposite boundary. Specifically, for the toric lattice of size m, the node at (x, y) is related to the
eight surrounding nodes: the eastern node at ((x+1) mod m, y), the northern node at (x, (y+1) mod m),
the western node at ((x−1) mod m, y), the southern node at (x, (y−1) mod m), the northeastern node at
((x+1) mod m, (y+1) mod m), the northwestern node at ((x−1) mod m, (y+1) mod m), the southwestern
node at ((x − 1) mod m, (y − 1) mod m) and the southeastern node at ((x + 1) mod m, (y − 1) mod m).
See Supplementary Figure 1 for an example.
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Supplementary Figure 1. The toric lattice of size 4 and the neighbors of two individuals.

In Supplementary Figure 1, the 8 neighbors of individual 1 displayed in red are individuals 2, 4, 5,
6, 8, 13, 14, and 16 displayed in yellow (panel A). The 8 neighbors of individual 11 displayed in green
are individuals 6, 7, 8, 10, 12, 14, 15, and 16 displayed in blue (panel B).

The model generating random networks has three parameters: The number of nodes n, the mean
degree µ and the heterogeneity parameter η regulating the degree deviation σ. In Supplementary
Figure 2, we show the relations between the heterogeneity parameter and the degree deviation. We
generate random networks of 100 nodes with mean degree µ = 4, µ = 8 and µ = 12 and η ranging from
−100 to 100. Each data point in Supplementary Figure 2 represents the average degree deviation over
1000 random networks generated with corresponding parameters, and the variance for each data point
is smaller than 0.1.

Supplementary Figure 2 shows the relations between average degree deviations of random networks
of 100 nodes generated with mean degree µ = 4, µ = 8 and µ = 12, and the heterogeneity parameter η
ranging from −100 to 100 in increments of 2 (panel A), from −10 to 10 in increments of 0.2 (panel B),
from −5 to 5 in increments of 0.1 (panel C) and from −2 to 2 in increments of 0.04 (panel D). Each data
point represents the average degree deviation of 1000 random networks generated with corresponding
parameters. The variance for each data point is smaller than 0.1.
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Supplementary Figure 2. Relations between the heterogeneity parameter and degree
deviations of generated random networks.

Trait distribution

The process attributing traits to a network topology with the attributing parameter α, which
regulates the mixing parameter χ, defined to be the average number of conformist neighbors over all
anticonformists. Supplementary Figure 3 shows the relations between the attributing parameter and the
mixing parameter of random networks. Panel A shows an attributed toric lattice of size 10 generated
with half of the nodes being anticonformists (r = 50) and the attributing parameter α = 0.001. The
attributed toric lattice has scattered anticonformists with the mixing parameter χ = 5.52, which means,
on average, an anticonformist has 5.52 conformist neighbors. Panel B shows an attributed toric lattice
of size 10 generated with half of the nodes being anticonformists (r = 50) and the attributing parameter
α = 10. The attributed toric lattice has clustered anticonformists with the mixing parameter χ = 1.44.
Panel C displays the relations between the attributing parameter and the mixing parameter for random
networks generated with different numbers of individuals n = 50, n = 100 and n = 150. Each data
point represents an attributed random network generated with other parameters set to µ = 8, η = 0,
r = 50%n and the initial choices being −1 for all individuals. The relations are linear in general. For
n = 100, we have a fitted curve y = −1.13x + 5.25 with R2 = 0.91; for n = 50, we have a fitted
curve y = −1.03x + 5.19 with R2 = 0.84; for n = 150, we have a fitted curve y = −1.16x + 5.27
with R2 = 0.94. Panel D displays the relations between the attributing parameter and the mixing
parameter for random networks generated with different mean degrees µ = 4, µ = 8 and µ = 12. Each
data point represents an attributed random network generated with other parameters set to n = 100,
η = 0, r = 50 and the initial choices being −1 for all individuals. For µ = 8, we have a fitted
curve y = −1.13x + 5.25 with R2 = 0.91; for µ = 4, we have a fitted curve y = −0.67x + 2.75 with
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R2 = 0.88; for µ = 12, we have a fitted curve y = −1.48x + 7.64 with R2 = 0.92. Panel E displays the
relations between the attributing parameter and the mixing parameter for random networks generated
with different heterogeneity parameters η = −80, η = 0 and η = 8. Each data point represents an
attributed random network generated with other parameters set to n = 100, µ = 8, r = 50 and the
initial choices being −1 for all individuals. For η = 0, we have a fitted curve y = −1.13x + 5.25 with
R2 = 0.91; for η = −80, we have a fitted curve y = −1.33x + 5.53 with R2 = 0.93; for η = 8, we
have a fitted curve y = −0.03x + 4.12 with R2 = 0.17. Panel F displays the relations between the
attributing parameter and the mixing parameter for random networks generated with different numbers
of anticonformists r = 30, r = 50 and r = 70. Each data point represents an attributed random network
generated with other parameters set to n = 100, µ = 8, η = 0 and the initial choices being −1 for all
individuals. For r = 50, we have a fitted curve y = −1.13x + 5.25 with R2 = 0.91; for r = 30, we have
a fitted curve y = −0.89x + 6.61 with R2 = 0.72; for r = 70, we have a fitted curve y = −1.04x + 3.55
with R2 = 0.94.

Supplementary Figure 3. Relations between the attributing parameter and the mixing
parameter of attributed networks.
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In Supplementary Figure 3, attributed toric lattices generated with scattered anticonformists and
clustered anticonformists are displayed in panel A and B, respectively. The rest of the figure
shows the relations between the attributing parameter and the mixing parameter of random networks
generated with different numbers of individuals (panel C), different mean degrees (panel D), different
heterogeneity parameters (panel E) and different number of anticonformists (panel F). Each data point
represents a random network generated with corresponding parameters. For each set of parameters,
10000 random networks (data points) are generated. Grey data points represent random networks
with predictable cumulative sequences, and colored data points represent random networks with
unpredictable cumulative sequences. In particular, the purple data points represent the networks with
unpredictable cumulative sequences that are determined to be predictable by the heuristic method.

First passage time and predictability of cumulative sequences

We argue that every collective sequence of choices eventually enters a unique period. For a
community of n individuals, there are 2n unique choice patterns. Note that the deterministic process
defined in Section 2.1 is memoryless in the sense that the choice pattern at step k only depends on the
choice pattern at step k − 1. Moreover, each choice pattern determines a unique succeeding choice
pattern. If the deterministic process has more than 2n steps, then the sequence of choice patterns
must have identical elements C(·, k) = C(·, l) due to the pigeon hole principle. Since the process
is deterministic, identical subsequences of choice patterns follow C(·, k) and C(·, l), and periodicity
appears in the sequence of choice patterns, hence in the collective sequence of the community’s
choices. Thus, given the network topology, the trait distribution and initial choices for a community of
individuals, the collective sequence eventually enters a unique period determined by the three factors.

Recall that the length L(P) of the eventual period P and the length L(Q) of the pre-period
subsequence Q of a cumulative sequence are defined to be the numbers of steps that P and Q span,
respectively. The period gain ∆P of the eventual period is the change in cumulative sequence over the
period P. The gradient of the eventual period is defined to be ∇P = |∆P| /L(P). In Supplementary
Figure 4, we show the eventual periods and the pre-period subsequences of cumulative sequences of
choices of two communities. Panel A shows the first 10000 steps of the cumulative sequence of choices
of the community represented by the attributed toric lattice displayed in panel B. The attributed toric
lattice has size m = 10, and the trait distribution is generated with r = 50 and α = 0.37. The initial
choices of the community are −1 for all individuals. In panel A, the first 10000 steps of the cumulative
sequence do not contain a complete eventual period, so the cumulative sequence is unpredictable.
Actually, the pre-period subsequence Q displayed in panel C before the first vertical line has length
L(Q) = 11010. If we extend the length of the process to t = 160000, we see three complete eventual
periods of the cumulative sequence displayed in panel C. The eventual period P showed in panel C has
length L(P) = 47115, period gain ∆P = −474 and gradient ∇P = 0.01. Similarly, The attributed toric
lattice displayed in panel E has size m = 10, and the trait distribution is generated with r = 50 and
α = 0.7. The initial choices of the community are −1 for all individuals. Panel D and panel F show
the pre-period subsequence Q of length L(Q) = 17749, and the eventual period P has length L(P) = 1,
period gain ∆P = −8 and gradient ∇P = 8.

In Supplementary Figure 4, the first three panels show the first 10000 steps of the cumulative
sequence (panel A) of the attributed network generated with m = 10, r = 50 and α = 0.37 (panel
B) and the first 160000 steps of the cumulative sequence (panel C). The last three panels show the
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100 steps of collective sequence (panel D) near the appearance of the first eventual period for the
attributed network generated with m = 10, r = 50 and α = 0.7 (panel E) and the first 20000 steps of
the cumulative sequence (panel F). The complete eventual periods are displayed between vertical lines,
and the pre-period subsequences are before the first vertical line in panels C and F. The green nodes
represent conformists and the red nodes represent anticonformists in panels B and D.

Supplementary Figure 4. Eventual periods and pre-period subsequences of cumulative
sequences.

To efficiently determine if a collective sequence s = [s(0), s(1), . . . , s(t)] is predictable without
recording and comparing choice patterns, we develop the heuristic method as follows. We extract the
subsequence s′ = [s(t + 1 − τ), . . . , s(t − 1), s(t)] consisting of the last τ elements in s and search for
subsequences of s with τ consecutive elements that are identical to s′. If s′ is the only subsequence, then
the heuristic method determines the collective sequence and the corresponding cumulative sequence
to be unpredictable. If there are more than one subsequences in s that are identical to s′, then the
heuristic method determines the collective sequence and the corresponding cumulative sequence to be
predictable.
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We argue that the heuristic method faithfully determines every predictable collective sequence. Let
s be a predictable collective sequence and s′ be the subsequence of s consisting of the last τ elements.
By definition, there exists at least one complete eventual period in the first t + 1 − τ steps of s. If there
exists one eventual period in the first t + 1 − τ steps, then what follows must be in the eventual period.
Hence, s′ must be in the eventual period, and there exists at least one subsequence in the first t + 1 − τ
steps that is identical to s′. Therefore, the heuristic method faithfully determines s to be predictable.
If s is unpredictable, that is, there exists no eventual period in the first t + 1 − τ steps, then there may
still be subsequences in the first t + 1 − τ steps that are identical to s′. This is because different choice
patterns may have the same sum of choices. So, the heuristic method may incorrectly determine s to
be predictable and underestimate the probability of cumulative sequences being unpredictable.

In Supplementary Figure 3, we show the unpredictable collective sequences that are incorrectly
determined by the heuristic method as predictable ones with purple data points. In panel C, there
are 75 data points with incorrect predictability for n = 100, 70 for n = 50 and 65 for n = 150. In
panel D, there are 124 data points with incorrect predictability for µ = 4 and 21 for µ = 12. In panel
E, there are 8 data points with incorrect predictability for η = −80 and 0 for η = 8. In panel F, there
are 136 data points with incorrect predictability for r = 30 and 22 for r = 70. On average, 0.58%
of the unpredictable collective sequences are incorrectly determined to be predictable by the heuristic
method.

Homogeneous attributed networks

Random networks of all conformists and toric lattices with homogeneously clustered
conformists and anticonformists generate predictable cumulative sequences escalating to an extreme
with ∇P > 1. In contrast, random networks of all anticonformists and toric lattices with
homogeneously mixed conformists and anticonformists generate predictable cumulative sequences
oscillating with ∇P = 0.

We can deduce the cumulative sequences for the four homogeneous attributed networks displayed
in Supplementary Figure 5. The toric lattice of size m = 10 displayed in panel B is attributed with
r = 50, and the conformists and anticonformists are homogeneously separated into two clusters. Each
anticonformist in the interior of the cluster has 8 anticonformist neighbors, and each anticonformist
on the boundary of the cluster has 5 anticonformist neighbors and 3 conformist neighbors. The
cluster of conformists also have the same patterns. When the initial choices are −1 for all individuals,
the two clusters cannot affect each other, so all anticonformists will change at every step, and all
conformists will keep choosing −1 at every step. Therefore, the attributed network generates an
escalating cumulative sequence displayed in panel A with ∇P = 50, as the collective sequence consists
of alternating 0 and −100. The toric lattice of size m = 10 displayed in panel D is attributed with r = 50,
and the individuals with different traits are homogeneously mixed, such that every anticonformist
has 6 conformist neighbors and 2 anticonformist neighbors, and symmetrically, every conformist has 6
anticonformist neighbors and 2 conformist neighbors. Suppose that the initial choices are −1 for all
individuals. At step 1, the anticonformists will choose 1, and the conformists will keep −1; at step 2,
the anticonformists will keep 1, and the conformists will choose 1; at step 3, the anticonformists
will choose −1, and the conformists will keep 1; at step 4, the anticonformists will keep −1, and
the conformists will choose −1, which is the same choice pattern as the initial choices. Thus, the
attributed network generates an oscillating cumulative sequence displayed in panel C with ∇P = 0.
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The connected random network displayed in panel F has 100 conformist individuals. When the initial
choices are −1 for all individuals, all conformists will keep choosing −1 at every step, and the attributed
network generates an escalating cumulative sequence displayed in panel E with ∇P = 100. The
connected random network displayed in panel H has 100 anticonformist individuals. When the initial
choices are −1 for all individuals, all anticonformists will change their choices at every step, and the
attributed network generates an oscillating cumulative sequence displayed in panel G with ∇P = 0.

Supplementary Figure 5 shows the escalating cumulative sequence (panel A) of the toric lattice
with homogeneously clustered conformists and anticonformists (panel B), the oscillating cumulative
sequence (panel C) of the toric lattice with homogeneously mixed conformists and anticonformists
(panel D), the escalating cumulative sequence (panel E) of the random network of all conformists
(panel F), and the oscillating cumulative sequence (panel G) of the random network of all
anticonformists (panel H). The initial choices for the four networks are −1 for all individuals.

Social network and trait distribution

Conformist
Anticonformist

Supplementary Figure 5. Homogeneous attributed networks and the corresponding
cumulative sequences.
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Results in alternative settings

We investigate the effects of the three network topology parameters and the two trait distribution
parameters on the probability of predictable, escalating and oscillating sequences in different settings.
See Supplementary Figures 6–10. The number of individuals has a default value n = 100. In
investigating effects of the other four parameters, we set n = 50 and n = 150. The mean degree
has a default value µ = 8. In investigating effects of the other four parameters, we set µ = 4 and
µ = 12. The heterogeneity parameter has a default value η = 0. In investigating effects of the other
four parameters, we set η = −80 and η = 8. The number of anticonformists has a default value of
r = 50%n. In investigating effects of the other four parameters, we set r = 40%n and r = 70%n.
The attributing parameter has a default value of α = 0.8. In investigating effects of the other four
parameters, we set α = 0.6 and α = 1.

We also generated random networks with parameters n = 1912, µ = 32.74 and η = 1.19 that
resembles the parameters of the real social network. We choose η = 1.19, so that the generated random
networks have degree deviation near σ = 55.85. In Supplementary Figure 11, we display the relations
and an attributed real social network with r = 956 and α = 1 and its cumulative sequence.

In addition, we analyze how the network topology parameters and the trait distribution parameters
affect the cumulative sequences for Watts-Strogatz small-world networks. The Watts-Strogatz model
has a parameter β regulating the topology of generated networks instead of the parameter η in our
random graph model. We take values for the parameter β from the interval (0, 1] and set the default
value for β to be β = 0.15. Supplementary Figure 12 shows the relations between the parameters
and the probabilities of predictable, escalating and oscillating sequences. In panel A, the number of
individuals n takes value in the interval [22, 200] instead of [2, 200] because Watts-Strogatz small-
world networks with a small number of nodes can have loops. The results are in general similar to the
random networks. With the parameter β set art β = 0.15, we observe that probability of predictable
sequences has the lowest value when r > 50%n; see panel D of Supplementary Figure 12. This is
different from the random network, whose probability of predictable sequences has the lowest value
around r = 50%n.

Supplementary Figure 6 shows the relations between the probability of predictable, escalating and
oscillating sequences and the number of individuals n for random networks with µ = 4 (panel A) and
µ = 12 (panel B), networks with η = −80 (panel C) and η = 8 (panel D), networks with r = 40 (panel
E) and r = 70 (panel F) and networks with α = 0.6 (panel G) and α = 1 (panel H). Each data point
is computed with 10000 random networks and their corresponding cumulative sequences with initial
choices −1 for all individuals. Smooth fitted curves are added for visualization.
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Supplementary Figure 6. Effects of the number of individuals on the probability of
predictable sequences in different settings.

Supplementary Figure 7 shows the relations between the probability of predictable, escalating and
oscillating sequences and the mean degree µ for random networks with n = 50 (panel A) and n = 150
(panel B), networks with η = −80 (panel C) and η = 8 (panel D), networks with r = 40 (panel E)
and r = 70 (panel F) and networks with α = 0.6 (panel G) and α = 1 (panel H). Each data point
is computed with 10000 random networks and their corresponding cumulative sequences with initial
choices −1 for all individuals. Smooth fitted curves are added for visualization.
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Supplementary Figure 7. Effects of the mean degree on the probability of predictable
sequences in different settings.

Supplementary Figure 8 shows the relations between the probability of predictable, escalating and
oscillating sequences and the heterogeneity parameter η for random networks with n = 50 (panel A)
and n = 150 (panel B), networks with µ = 4 (panel C) and µ = 12 (panel D), networks with r = 40
(panel E) and r = 70 (panel F) and networks with α = 0.6 (panel G) and α = 1 (panel H). Each data
point is computed with 10000 random networks and their corresponding cumulative sequences with
initial choices −1 for all individuals. Smooth fitted curves are added for visualization.
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Supplementary Figure 8. Effects of the heterogeneity parameter on the probability of
predictable sequences in different settings.

Supplementary Figure 9 shows the relations between the probability of predictable, escalating and
oscillating sequences and the attributing parameter α for random networks with n = 50 (panel A) and
n = 150 (panel B), networks with µ = 4 (panel C) and µ = 12 (panel D) and networks with r = 40
(panel E) and r = 70 (panel F). Each data point is computed with 10000 random networks and their
corresponding cumulative sequences with initial choices −1 for all individuals. Smooth fitted curves
are added for visualization.
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Supplementary Figure 9. Effects of the number of anticonformists on the probability of
predictable sequences in different settings.

Supplementary Figure 10 shows the relations between the probability of predictable, escalating and
oscillating sequences and the number of anticonformists r for random networks with n = 50 (panel A)
and n = 150 (panel B), networks with µ = 4 (panel C) and µ = 12 (panel D) and networks with α = 0.6
(panel E) and α = 1 (panel F). Each data point is computed with 10000 random networks and their
corresponding cumulative sequences with initial choices −1 for all individuals. Smooth fitted curves
are added for visualization.
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Supplementary Figure 10. Effects of the attributing parameter on the probability of
predictable sequences in different settings.

Supplementary Figure 11 shows the relations between the probability of predictable, escalating and
oscillating sequences and the number of anticonformists r with α = 0.8 (panel A), the attributing
parameter α with r = 1400 (panel B), the number of anticonformists r with α = 1 (panel C) and the
attributing parameter α with r = 956 (panel D) for random networks with η = 1.19; each data point is
computed with 100 attributions on the real social network with initial choices −1 for all individuals;
smooth fitted curves are added for visualization. The trait-attributed real social network generated with
r = 50%n = 956 and α = 1 is displayed in panel F, and its degree distribution is displayed in panel
H. The first 100 steps and the first 10000 steps of the cumulative sequence of the attributed real social
network is displayed in panel E and G, respectively.

AIMS Mathematics Volume 8, Issue 5, 12287–12320.



12319

Degree distribution

0 200 400 600 800
Degree

100

101

102

103

N
u

m
b

er
 o

f 
n

od
es

H

Supplementary Figure 11. Effects of the trait distribution parameters on random networks
generated with parameters resembling the real social network.

Supplementary Figure 12 shows the relations between the probabilities of predictable, escalating
and oscillating sequences and the number of individuals (nodes) n (panel A), the mean degree µ

(panel B), the Watts-Strogatz parameter β (panel C), the number of anticonformists r (panel C) and
the attributing parameter α (panel E) with all other parameters set at default values; each data point
is computed with 10000 Watts-Strogatz small-world networks and their corresponding cumulative
sequences with initial choices −1 for all individuals; smooth fitted curves are added for visualization.
A Watts-Strogatz small-world network generated with n = 100, µ = 8, β = 0.15, r = 50, and α = 0.8
is displayed in panel F.
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Supplementary Figure 12. Effects of network topology parameters and trait distribution
parameters on the probability of predictable sequences for Watts-Strogatz small-world
networks.
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