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1. Introduction

Stochastic differential equations are an important tool to describe random phenomena, and
parameter estimation is a non-negligible problem in the study of stochastic differential equations. In
the past few decades, some scholars have studied the parameter estimation problem of stochastic
models. For example, Bishwa [1] presented the estimation of the unknown parameters in stochastic
differential models based on continuous and discrete observations and examined asymptotic properties
of several estimators under maximum likelihood, minimum contrast and Bayesian methods. Genon-
Catalot [2] studied the asymptotic distribution of the maximum contrast estimator of a one-dimensional
diffusion process based on the sample path and gave the condition that the maximum contrast estimator
is asymptotically equivalent to the maximum likelihood estimator. Pasemann and Stannat [3] used the
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maximum likelihood method to study the parameter estimation problem of a class of semi-linear
stochastic evolution equations and gave the conditions of consistency and asymptotic normality
according to the growth and continuity of the nonlinear part. Cialenco et al. [4] studied the asymptotic
properties of maximum likelihood estimators for stochastic partial differential equations. Neuenkirch
and Tindel [5] derived the least squares estimator for stochastic differential equations with additive
fractional noise and verified its strong consistency. Fei [6] studied the consistency of least squares
estimation of parameters of stochastic differential equations under distributional uncertainty. Karimi
and McAuley [7] developed a Bayesian algorithm for estimating measurement noise variance,
disturbance strength, and model parameters in nonlinear stochastic differential equation models. Kan
et al. [8] studied the parameter estimation of linear stochastic systems using Bayesian methods. When
the system is observed discretely, Wei et al. [9] studied the problem of parameter estimation for square
radial Ornstein-Uhlenbeck processes driven by a-stable noise from discrete observations. Long [10]
performed parameter estimation for stochastic differential equations driven by small stable noise under
discrete observations. Wei [11] focused on the parameter estimation problem of the stochastic Lotka-
Volterra model driven by small Lévy noise, verifying the consistency of the estimator and the
asymptotic distribution of the estimation error.

Among them, the Lévy process is a natural noise model in the random process, but it has long-
term dependence. It is inappropriate to describe random fluctuations in many aspects only by the Lévy
process or even the general Markov process without aftereffect. Fractional Lévy noise, as an important
non-Gaussian noise, can more accurately reflect actual fluctuations. Because of this, more and more
scholars have devoted themselves to the qualitative analysis of stochastic differential equations driven
by fractional Lévy processes. Laskin et al. [12] explored fractional Lévy process probability density
functions and applied them in network traffic modeling. Lin et al. [13] studied the existence and joint
continuity of local time for multiparameter fractional Lévy processes. Bender et al. [14,15]
discussed a certain class of stochastic integrals of real-valued fractional Lévy processes and the finite
variation of fractional Lévy processes. Lu and Dai [16] explored the stochastic integration of pure
jump O-mean square-integrable fractional Lévy processes and their driven stochastic differential
equations. Bender et al. [17] listed maximum inequalities for fractional Lévy and related processes.
Shen et al. [18] studied the problem of parameter estimation for Ornstein-Uhlenbeck processes driven
by fractional Lévy processes. Bishwal [19] incorporated jumps and long memory into the volatility
process driven by fractional Lévy processes to obtain refined inference results like confidence interval.
Boniece et al. [20] studied sample path properties and stochastic integration with respect to fractional
Lévy processes. Rao [21] studied the problem of nonparametric estimation of linear multipliers of
stochastic differential equations driven by small noise fractional Lévy processes. Prakasa [22]
described and predicted trends in nonparametric estimation of stochastic differential equations driven
by fractional Lévy processes.

The Cox—Ingersoll-Ross (CIR) model, proposed in 1985 [23,24], is an extension of the Vasicek
model and solves the problem of possible negative interest rates. However, due to the observational
discontinuity and heavy tails of financial samples, the CIR model cannot capture these
characteristics [25], and it is necessary to replace the Brownian motion in the CIR model with other
processes. There have been some studies, such as Ma et al. [26], who studied the central limit theorem
of the least squares estimator of the CIR model driven by a-stable noise. Li and Ma [27] derived the
consistency of weighted least squares estimators in the CIR model. Yang [28] studied the maximum
likelihood estimation of discrete-observation CIR models with small a-stable noise. There are few
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studies on building CIR models driven by fractional Lévy processes and making statistical inferences,
and the equations in the existing literature contain only one unknown parameter. Inspired by the above
results, in this paper, we consider the model with two unknown parameters. Parameter estimation and
statistical inference are performed on stochastic financial models driven by fractional Lévy processes.
Research on the consistency of estimators, the asymptotic distribution of estimation errors, hypothesis
testing and other asymptotic properties can reflect the effectiveness of estimators and estimation
methods and can more accurately grasp the dynamic changes of assets. Therefore, this study has certain
practical value and significance.

2. Problem formulation and preliminaries

Definition 1. (Marquardt [29]) Let L={L(t),t € R} be a zero-mean two-sided Lévy process with

E[L(1)’]< and without a Brownian component. For fractional integration parameter d < (0, %) ,a

stochastic process

= [ [(t-5)’ ~(-5)’ IL(ds). t <R

T+

is called a fractional Lévy process, where X, =xVv 0.

In this paper, we study the parametric estimation problem for the Cox—Ingersoll-Ross model
driven by fractional Lévy processes described by the following stochastic differential equation:

dxfﬂa—ﬁxgﬁ+gjfhﬂ,temﬂmhﬂaé)

Xo =X,

(1

where ¢ and B are unknown parameters, and L! is a fractional Lévy process. Assume that this

i
process is observed at N regularly spaced time points {ti = 1=12,.., n}, ¢€[0,1].

To get the least squares estimators, we introduce the following contrast function:

2

‘2

pro( )= YJX, =X, ~ (= X, At

1 . . .
where At , =t -t = o Then, the least squares estimators ¢,. and /A,, are defined as follows:
pn,g(dn,g’ﬁn,g) = min pn,g(a’ﬂ) .

It is easy to obtain the least square estimators:
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3. Main results and proofs

Let X°=(X/,t>0) be the solution to the underlying ordinary differential equation under the

true values of the parameters:
dX? = (a - BXQ)dt, X > =X, . 4

Note that

X, =X, 2%05— B L X,ds+& JX.di | “

Bring the formula into (3), and a more explicit decomposition for ¢,, and Bn'g can be obtained:

ti ti
np Yi=1 fti—1 Xsds Z?=1Xt2i_1 np Z?:lXti_l fti—l Xsds Yizq Xt ,

&n,s =at n 2 n 2 B n 2 n 2
(Zi=1Xti_1) - n2i=1xti_1 (Zi=1Xti—1) - nZi:lxti—l
t; t
neXig X, [0 VXL X X, ne¥i [ VXIS XL, XZ
2 - 2
(Z?=1Xti_1) - n2?=1Xt2i_1 (Z?=1Xti_1) - nZ?letzi_l

n t; 1on 2 n t 1on

N B Xi=1 fti—1 Xsds ﬁzizlxti_l B Zi=1th-_1 fti—1 Xsdsﬁzizl Xt ,
=« —

1 | 1 |
(REaXe,) —nSiaXe,  (RELiXe,) —7ERa X2,

n ti dlyn n b dlyn 2
EZi=1Xti_1 ftil—l \/XSdLs;Zi=1Xti_1 521':1 ftil—l VXdesEEi=1Xti_1

2 2
1yn ) lyn 2 (1 n ) 1yn 2
(n2i=1 Xti—l n i=1Xti_1 n2i=1Xti—1 n i=1XEi_1

2

t; t
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n i=1 Xty di=1y n i=1 Xty L=y
ti1 tiq

A~
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Before giving the theorems, we need to establish some preliminary results.

Lemma 1. ([29]) Let |f|,|g|eH ,where H isthe completion of L'(R)nL*(R) with respect to the

norm g, = E[L*()] j (1°,)*(u)du . Then,

(- 2d)E[L2 (V)]
T(d)C(1—d)

2d-1

E[jR f(s)dL‘;jRg(s)dLg] = UR f)g(s)|t—s[* " dsdt.
Lemma 2. ([29]) Forany 0 < b, < b; <ay, 0<b, <a, <a,;, by —b, = a; — a,, there exists a
constant C that only depends on r and d such that

{Cler(a1+b1) _ er(a2+b2)||a1 _ b2|2d;r * 0
<
C|a1 - bzIZd,T =0

by ray
f f er(u+v) |u _ led—l dudv
b, ay

where r denotes a constant, and d is the fractional integration parameter of the fractional Lévy
process.

Lemma 3. When & —0,n — o, we have

sup
0<t<1

X, = X{|[—=>0.
Proof. Observe that

t t
Xt—xto:_ﬂjo(xs—xf)ds+gfo\/X_SdL§. ©

By using the Cauchy-Schwarz inequality, we obtain

2

2
X, — X?|? < 2p? + 2¢?

t
| Vg
0

t
f (Xs — XO)ds
0
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< ZBthotIXS - X2|ds + Zezoitttfl

According to Gronwall’s inequality, we get

Then,

2

Jy XsdLE

2

X, = Xx¢| < 2% sup|[ /X, dL (7)
0<t<1
sup|X, — Xf" <2¢¢”" sup J'tJXSdL‘j : ()
ost<1 ost<1[*0

By the Markov inequality and the results in Lemma 1 and Lemma 2, when f(s) = g(s) =1,
r = 0, for any given & >0, when & — 0, we have

where C is a constant.

P (\/Egeﬁz sup

O<t<1

[REX:EE >5)
]
i

dsdt

0<t<1

[

2d-1

<257%%"E [sup

< zazgzezﬁzE[

<2052e% [ [t

<2Cs %%
-0

Therefore, it is easy to check that

The proof is complete.

Lemma 4. When & —0,n — o, we have

Proof. Since

1t 1s clear that
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sup|X, - X?|—2—0. )
0<t<1
Yz s [l (x 0y
ng - ot '
1 x 2 _l : 0 2 1 . 2 0 2 1
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X7 I [l Xt (11)

1& 1< 1
For HZ(Xti —(Xt?fl)z) , according to Lemma 3 and the fact that HZ‘XH—P)MXP‘dt’
= =

when & —0,n— o0, we have

‘%i (Xtiz,1 - (Xt?,l)z)

1&
= HZ(X'[H + Xt(l)—l)(xtifl N Xt?fl)
i=1

A

< %Z‘Xtil - Xt(i)—l ‘ (‘XtH ‘ * ‘Xt?’l ‘)

< %Z (X, - X[ +2Ixe ||x,, - X2 ]
i=1
= %g‘xtil - Xt?,l 2 + Z%Z‘Xsl XtH — Xt?,l
< (sup|X, — Xf")2 +2sup|X, — Xf"lzn:‘xff
o<t<1 osts1 n=' -
—* 50

and therefore obtain
18 1 2
HZ x;ﬂ_mjo(xf) dt. (12)
i=1

The proof is complete.

Lemma 5. When & —0,n — o, we have

Proof.

and

Assume ggﬁl{ Xt} = X\ >0. According to Lemma 1, when & — 0,n — o0, it can be checked that
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Therefore, we obtain

N tiy

The proof is complete.

In the following theorem, the consistency of the least squares estimators is proved.

1

=—d A
Theorem 1. When & —0,n—o,en? — 0, the least squares estimators &, are
q

namely,
dn,g —P)a’lBAn,s —P)ﬂ .
Proof. According to Lemma 4 and Lemma 3, it is clear that

1$ 11, oot 1
1_H 2 th 1 ZX——)l—JO Xt dt-[OX_tOdt .

n 2 n
B ] rm () [T

When & —0,n — o0, it can be verified that

1 X 1
ﬁzj sds qu s ﬂjox—tgdtjoxfdt
and

ﬂzj X ds—>ﬁj X,dt .

consistent,

(13)

(14)

(15)

(16)

At the same time, according to Lemma 3, the limits of items 1 and 2 of the detailed decomposition

formula ¢ can be obtained.

ﬂzj Sd—ZX ﬂifxsds—Pm.

Since

(17)
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>0),

P(giZl: Ji X

by the Markov inequality,

>5) < P(gi‘f JX.dL
i= 17

i
t_4\/xfo|u;
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1y
<Co7?(en? )ZE[XM]
—0

When &-—0,n—>o0,en™ — 0, we obtain

g_znl:j:l\/xfdl_g —* 0. (18)
According to Lemma 5 and (18), it is obvious that
DY MR
1- 7.21: X Z—

| -1

P 50. (19)

Then, we have

n

=1 i—1 i—l

n 1 tl n
= JXd L < Z
EZX Jt &

=1 tim1 7t i=1

J JXsd 14
t;

i—-1

I/\

th 1

ti
f JXd L2
ti—

i=1 tl 1 tl 1

IA

| o JXed 1

Tl
€ izt

- | o xd 1.
Xt; ost<1 1Xti_4 i-1

By the Markov inequality, we obtain
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which implies that & xio
i=1

t|71

1
Zd
—P 50 as €—>0,n—>w,en? —0.

;
N JX.dL

According to Lemma 3, when & — 0,n — o, it is obvious that

Then, we have

£8Up |
0<t<1

(20)

SZJ */_ Ldllel—m (21)

i=1 t|1

1

Zd
Therefore, with the results of (17), (19) and (21), when & —0,n —>,en? — 0, we have

Using the same methods, it

Moreover,
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can be easily checked that

ﬁZj X, ds—P>,B, (22)
i=1 |1
AY [ x dslii—"wfx‘)dtfidt (23)
i=1 t|71 s n i=1 Xtifl 0 ! 0 Xto .

iy 1¢- 1
ﬁzf X ds=y =
EES PN (24)
1_fz Zn“i 1_1ix 1ii o
i T X, X

nll i= I’]il I1nl

t|1

Volume 8, Issue 5, 12168-12184.



12178

5t 1&G 1
YL
= >0.

R
i=1 tig
\/7de

i=1 '1x
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&

1
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Therefore, when ¢ —0,n—>o0,6n? —0, we have [ —P>,B.

n,e

The proof is complete.

1
z—d
Theorem 2. When €¢ - 0, n - oo,enz ~ — 0, ne - oo,

jfdl.d jrdej X ods

1— I XOdSI —ds

~a)

& (B, - B — S
1—'[0X5dsjox—gds

Proof. According to the explicit decomposition for ¢, , , it is obvious that

- t; .
1B2 1f = ds Z 1Xt1 1 5_1ﬁ2?=1fttil_1Xst

I:\/deLg J-o Xsods_J.o \/Fdl_g

8_1(&n,£ - O{) - 1

1 1
__\yn -\ 1o 1
1 nZL=1 Xti—l n i=1 Xt ] 1 nzi=1Xti—1 n
i
b n ot JXs grdlsm
pj it 1stdlg sl e 1alL —Sa X,
1 1 - T
1——2111 1 Xt 7=1E 1——2:1 1 Xe;_ 1n27l1 %
i
From Lemma 3, when ¢ —0,n— o0,ng — 0,
‘971132 _[ I X ds‘

X; \
tifl

—1 71ﬁ2(

X,|——0
XO ‘)tlslljtet| |

(25)

(26)
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Then, it is easy to check that

g’l,BZI X, ds —2—0.

i=1 |1

Combining with Lemma 4, we have

eflﬂZJ. ) X, dsiix

i —0,
1—2_1“x|1r1]| xl
and
g*lﬂif‘ Xds .
L.Z:X”n.lei_
Since

PN NI 3 NNFRTERS 3| NN

using Markov's inequality, for any given 6 >0, we have

th (%~ [x0ast| > )
< 67°E zr /X - X;’)du;
< s-zzn:ta jti fX; — [X0)dLd 2

<C6 "Oilfflmjtl Jtl (VX — \F)(\/_ f)lt—SIZd ldsdt

- 0.

Moreover,
[} xEa = [ xcas,
DINGETEE N

27

(28)

(29)

(30)
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It is obvious that
JXodLe - —de X ds
.[ J. / J.

1- J X°dsj—44ds

According to the detailed decomposition formula of ﬁn’g , we get

dej X 2ds .

N g_mif Xsdsiixl
e (f,,~B) = .2
' 1< 13 1 13 14 1
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n i 18 1 . | XS
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+
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and

Then, we have

Gig g*lﬂ

(€2)

(32)

(33)

(34)
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gil(ﬂ’\n,g_ﬂ) . 4 1 1 1
1—J.0Xs°dsj.oﬁds

(35)

The proof is complete.

4. Simulation

In this experiment, we use an iterative approach to generate a discrete sample (X, ,)i=1,.,n and
compute &, . and ,BA’n,S from the sample. We let x, = 0.01 and d = 0.02. The first column of the
table is the true value of the parameter (a, ). The size of the sample is represented as “Size n” and
given in the table. In Table 1, &€ = 0.1, and the size is increasing from 1000 to 5000. In Table 2, ¢ =
0.01, and the size is increasing from 10000 to 50000. The table lists the values of “@,, .”, “ﬁn,g” and
the absolute errors (AE) of least squares estimators.

The two tables indicate that the absolute error between the estimator and the true value depends
on the size of the true value samples for any given parameter. According to the simulation results,
when n is large enough, and ¢ is small enough, the estimator is very close to the true parameter
value. Ifwelet n gotoinfinityand & converge to zero, the estimator will converge to the true value.

Table 1. Least squares estimator simulation results of ¢ and f.

True Aver AE
(a. B) size n G Prs Gy 0| Boe— ,3‘

1000 1.2162 1.2061 0.2162 0.2061

(1,1 2000 1.0823 1.1071 0.0823 0.1071
5000 1.0421 1.0529 0.0421 0.0529
1000 2.2377 3.1907 0.2377 0.1907

(2,3) 2000 2.1193 3.1249 0.1193 0.1249
5000 2.0524 3.0693 0.0524 0.0693
1000 4.2556 5.2294 0.2556 0.2294

4,5) 2000 4.1372 5.1291 0.1372 0.1291
5000 4.0583 5.0487 0.0583 0.0487
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Table 2. Least squares estimator simulation results of o and f.

True Aver AE
(@, p) size n Ay, B, a,,—a B~ ,3‘

10000 1.1265 1.1182 0.1265 0.1182

(1,1) 20000 1.0372 1.0525 0.0372 0.0525
50000 1.0017 1.0012 0.0017 0.0012
10000 2.1373 3.1264 0.1373 0.1264

(2,3) 20000 1.9432 3.0473 0.0568 0.0473
50000 2.0026 3.0037 0.0026 0.0037
10000 4.1775 5.1643 0.1775 0.1643

4,5 20000 4.0413 5.0518 0.0413 0.0518
50000 4.0041 5.0032 0.0041 0.0032

5. Discussion

Fractional L&y noise, as an important non-Gaussian noise, can more accurately reflect actual
fluctuations. Because of this, more and more scholars have devoted themselves to the qualitative
analysis of stochastic differential equations driven by fractional L&y processes. Due to the
observational discontinuity and heavy tails of financial samples, the CIR model cannot capture these
characteristics, and it is necessary to replace the Brownian motion in the CIR model with fractional
Lé&y noise.

6. Conclusions

The purpose of this paper is to estimate the parameters of the CIR model driven by a fractional
Lévy process with discrete observations. First, the comparison function is introduced to obtain the
explicit expression of the least square estimator. Then, the consistency and asymptotic distribution of
the estimator are derived according to the Markov inequality, Gronwall inequality and Cauchy-
Schwarz inequality. The research topic can be extended to the parameter estimation problem for other
stochastic models driven by fractional Lévy process.
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