
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(5): 11973–12008.
DOI: 10.3934/math.2023605
Received: 29 January 2023
Revised: 01 March 2023
Accepted: 06 March 2023
Published: 21 March 2023

Research article

Decision support algorithm under SV-neutrosophic hesitant fuzzy rough
information with confidence level aggregation operators

Muhammad Kamran1, Rashad Ismail2,3,*, Shahzaib Ashraf1, Nadeem Salamat1,*, Seyma Ozon
Yildirim4 and Ismail Naci Cangul4

1 Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology,
Rahim Yar Khan 64200, Pakistan

2 Department of Mathematics, Faculty of Science and Arts, King Khalid University, Muhayl Assir
61913, Saudi Arabia

3 Department of Mathematics and Computer, Faculty of Science, Ibb University, Ibb 70270, Yemen
4 Department of Mathematics, Bursa Uludag University, Gorukle 16059, Turkey

* Correspondence: Email: nadeem.salamat@kfueit.edu.pk, rismail@kku.edu.sa.

Abstract: To deal with the uncertainty and ensure the sustainability of the manufacturing industry, we
designed a multi criteria decision-making technique based on a list of unique operators for single-
valued neutrosophic hesitant fuzzy rough (SV-NHFR) environments with a high confidence level.
We show that, in contrast to the neutrosophic rough average and geometric aggregation operators,
which are unable to take into account the level of experts’ familiarity with examined objects for a
preliminary evaluation, the neutrosophic average and geometric aggregation operators have a higher
level of confidence in the fundamental idea of a more networked composition. A few of the essential
qualities of new operators have also been covered. To illustrate the practical application of these
operators, we have given an algorithm and a practical example. We have also created a manufacturing
business model that takes sustainability into consideration and is based on the neutrosophic rough
model. A symmetric comparative analysis is another tool we use to show the feasibility of our proposed
enhancements.

Keywords: confidence level; neutrosophic information; aggregation operators; hesitant information;
rough sets; decision-making
Mathematics Subject Classification: 03B52, 03E72

http://http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023605


11974

List of abbreviation used in manuscript

Name Abbreviation
Confidence Level CL
single-valued neutrosophic set NMG
Fuzzy Set FS
Membership degree MD
intuitionistic fuzzy set IFS
intuitionistic fuzzy number IFN
Non Membership degree NMD
Hesitant Fuzzy Set HFS
Pythagorean fuzzy sets PyFSs
Single-Valued neutrosophic weighted geometric SV-NWG
Neutrosophic rough weighted averaging NRWA
Neutrosophic rough weighted geometric NRWG
Neutrosophic hesitant fuzzy rough weighted geometric NHFRG
Neutrosophic hesitant fuzzy rough weighted averaging NHFRWA
Abstention degree AD
Decision Making DM
Aggregation Operators AOs
classical set theory CST
Indeterminacy membership degree IMD
Rough Set RS
Single-Valued neutrosophic weighted averaging SV-NWA
Multiple criteria decision making MCDM
Neutrosophic Rough set NRS
T-Spherical hesitant fuzzy weighted averaging T-SHFWA
T-Spherical hesitant fuzzy weighted geometric T-SHFWG
Picture FSs PFSs
Neutrosophic set NS

1. Introduction

Environmental challenges are now more prevalent in our daily lives than ever before. One of
several subcategories that fall under the broad heading of sustainable development is sustainable
manufacturing. Throughout the production process, other social and environmental issues also
surface. These production-related challenges may be overcome via sustainable manufacturing
techniques. Manufacturing that is environmentally responsible and resource-efficient is the goal of
sustainable manufacturing. As a result of their good financial standing, these lodgings are also
secure for their residents, employees, and customers. The choice of appropriate indicators for
tracking the sustainability of manufacturing, an assessment method for detecting weak regions, and
system upgrades to reinforce the sustainable manufacturing process are the four main elements of
a manufacturing plan. A technology system’s total performance can be assessed, or at least two
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technology systems can be compared, using indicators for technology evaluation. Instead of compiling
a general set of indications appropriate for all purposes. As a method for making decisions, multi-
criteria analysis collects information on a range of indicators or criteria to determine how various
goals might be most effectively achieved. With different units placed next to one another, indicators
can be evaluated. Multi-criteria analysis has a well-established field called fuzzy set theory, which
provides answers to issues that traditional multi-criteria analysis has hitherto been unable to address.
The techniques described in [1, 2] have been crucial for managing information in practical situations.
Moreover, the frameworks in [3, 4] only define objects using membership degree (MD) and non
membership degree (NMD). The information in many real-life issues, however, could not be fully
characterised by only MD and NMD due to the occurrence of various types of abstention and refusal
circumstances, such as when voting or expressing one’s viewpoint. Because of this, these intuitionistic
fuzzy sets (IFSs) [5], Pythagorean fuzzy sets (PyFSs) [6], and q rung orthopair fuzzy sets (qROFSs) [7]
either couldn’t entertain these events or did so while suffering significant information loss. Cuong
obtained four degrees: an MD, an abstention degree (AD), an NMD, and a refusal degree (RD) [8]
in order to formalise picture FSs (PFSs) and explicate a situation with greater accuracy and less
information loss [9]. Although while PFSs could identify more information loss, MD, AD, and NMD
still had restrictions that prevented the decision-makers from openly expressing their opinions. To
overcome these restrictions, Mahmood et al. developed the idea of PFSs into spherical FSs (SFSs) and
finally T-spherical FSs (TSFSs) [10, 11]. Decision-makers could therefore assign these MD, AD, and
NMD according to their own preferences. Fuzzy sets (FSs) [12] are an efficient approach that generalise
classical set theory (CST) [13], in which items have an MD that belongs to [0, 1]. Similar to CST [14],
FSs’ functions and relations can be explained. Since its introduction in 1965, FSs has been used in
a range of situations and industries. Among the disciplines where FSs are applied include artificial
intelligence [15], medicine [16], statistics [17], medical diagnosis [18, 19], and clustering [20, 21].

Researchers who study aggregation operators (AOs) such as Fahmi et al. [22] proposed cubic fuzzy
Einstein AOs and their application to DM problems. An intuitionistic fuzzy set (IFS) with the structure
of MD and NMD was created by Atanassov [5]. IFS applies the limitation that the sum (MD, NMD)
belongs to [0, 1]. IFS is a highly helpful framework that can provide a two-dimensional scenario in
problem-solving scenarios, it has been highlighted. Based on this concept, numerous scholars have
developed IFS methodologies and applications in a variety of fields [23–25]. Although there are
many theories for dealing with ambiguous information and knowledge [26], they are only partially
successful in handling complex real-world situations. Smarandache [27] as stating that by combining
unconventional analysis and a tri-component set, which sparked the creation of the neutrosophic set
theorizing. The three membership functions that make up a NS are MD, depending on whether the
output of each function is a real standard subset or a non-standard subset of the input data that is
subset of the nonstandard unit interval ]0, 1+[. indeterminacy membership degree (IMD) and NMD
are used. The use of NSs in applications possess a track record of achievement in the disciplines of
cluster analysis and image processing [32, 33]. By condensing NSs, Wang et al. [27] proposed single-
valued NS (SV-NS). Instead, SV-NSs can be viewed as a development of intuitionistic fuzzy sets with
three independent membership functions and function values contained in the unit closed interval [5].
SV-NSs [34–36] raise a novel, well-liked research issue. In [37], a generalisation of fuzzy logics,
the neutrosophic idea was applied to logics and numerous crucial components were looked explored.
Neutrosophic rough sets (NRSs) [38] are a brand-new hybrid mathematical structure that deals with
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ambiguous and incomplete information and investigates certain operations and their attributes using
combined rough set (RS) theory [39]. The constructive technique [40] was used to create a variety
of rough set models, such as arbitrary binary relation-based rough sets, covering-based rough sets,
and rough fuzzy sets. Shao et al. [41] defined the single-valued neutrosophic hesitant fuzzy set (SV-
NHFS) principle, which is a generalisation of the SV-NFSs. There are three other techniques for
handling incorrect information: rough sets, HFS, and SV-NSs. To simultaneously take advantage
of the advantages of both, a hybrid model of SV-NSs and rough sets is needed. The approximate
representation of each SV-NS in the system, as well as the extension and reduction of the single-valued
neutrosophic information system, have all been the focus of numerous studies. In order to do this, we
examine a broad framework used in the current research to analyse single-valued neutrosophic rough
sets and suggest creating such single-valued neutrosophic rough sets by combining rough sets and HFS.
We will formally investigate the hybrid model using axiomatic and proactive methods [42, 43]. The
goal of this study is to use multicriteria decision-making to improve the sustainability of manufacturing
work cells. To do this, two actions have been identified:

(a) As a component of a decision-making process, define and characterise a matrix, decide on and put
into practise an acceptable weighting mechanism, and decide on and put into practise a suitable
ranking system.

(b) Describe a representative work cell and use the environmental and sustainable analytical approach
to illustrate the procedure.

There are various sorts, but the weighted and un-weighted categories are the two most common. The
weighted decision matrix assigns different weights, whereas the un-weighted one assumes that all
criteria are equally important. A set of options can be compared against a set of criteria using the
potent quantitative tool known as the weighted decision matrix. When you have to select the best
alternative and must carefully analyze a wide variety of variables, it is a really helpful tool that you
may utilize. But the percentage of times you anticipate coming close to the same estimate if you
repeat your experiment or re-sample the population in the same way is known as the confidence level.
The upper and lower bounds of the estimate you anticipate finding at a particular level of confidence
make up the confidence interval. We propose many new aggregation operators (AOs), including the
CL-SV-NHFRG and CL-SV-NHFRA, for the underlying pretexts:

(1) Decision-makers are given more leeway with SV-NHFRS due to the combined idea of SV-NS,
HFS, and RS.

(2) SV-NHFRS makes use of upper and lower approximation spaces, in contrast to SV-NRS.

(3) The familiarity of specialists with the objects under investigation cannot be taken into account for
first review by SV-NWA and SV-NWG aggregation operators, but it can be by CL-SV-NHFRA
and CL-SV-NHFRG AOs.

(4) This article seeks to address more complex and advanced data due to the clarity of the CL-
SV-NHFRA and CL-SV-NHFRG operators and the fact that they cover the decision-making
technique.

(5) All shortcomings are addressed in the suggested work.
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Consequently, the following are the research’s findings:

(i) To begin the formation of new AOs such as CL-SV-NHFRG and CL-SV-NHFRA.

(ii) We’ve specified attributes for the suggested aggregating operations.

(iii) Multi-criteria decision-making (MCDM) is a technique developed to handle the increasingly
complicated data.

(iv) A real-world implementation of the algorithm has been provided, along with an SV-NHFRS-based
method to enhance the sustainability of manufacturing operations that has also been demonstrated.

The structure of this article is as follows. In part 2, the fundamental ideas behind FS, NS, RS,
SV-NRS, as well as a few fundamental operational laws, are reviewed. We introduce two brand-new
aggregation operators in Section 3: CL-SV-NHFRWA and CL-SV-NHFRWG. In Section 4, a decision-
making approach based on the proposed AOs is built, along with a solution to a numerical problem and
numerical examples. We arrive at a conclusion in Section 5.

2. Preliminaries

The section will go over the core ideas for NSs, SV-NSs, SV-NRSs, scoring functions (SF), and
accuracy functions (AF).

Definition 1. Addressing a certain set ω. A FS [12] Z in ω is presented as

Z = {〈ξ,ΛZ (ξ)〉 |ξ ∈ ω} ,

for each ξ ∈ ω, the MD ΛZ : ω→ ω specifies the degree to which the element ξ ∈ Z, where ΛZ ∈ [0, 1] .

Definition 2. Addressing a certain set ω. An IFS [5] B in ω is presented as

B = {〈[, ξ ([) , η ([)〉 |[ ∈ ω} ,

for each [ ∈ ω, ξ is the MD and η is the NMD to the IFS B, respectively, where (ξ ([) , η ([)) ∈ [0, 1] be
the unit interval. Moreover, it is required that 0 ≤ (ξ ([) + η ([)) ≤ 1, for each [ ∈ ω.

Definition 3. Addressing a certain set ω and ϑ ∈ ω. A NS [27] [ in ω is denoted as MD ξ[(ϑ), an IMD
η[(ϑ) and a NMD £[(ϑ). ξ[(ϑ), η[(ϑ) and £[(ϑ) are real standard and non-standard subset of ]0−,1+[
and

ξ[(ϑ), η[(ϑ), £[(ϑ) : ω −→
]
0−,1+[ .

Definition 4. The representation of neutrosophic set (NS) [ is mathematically defined as:

[ = {〈ϑ, ξ[(ϑ), η[(ϑ), £[(ϑ))〉 |ϑ ∈ ω},

where
0− < ξ[(ϑ) + η[(ϑ) + £[(ϑ) ≤ 3+.

Definition 5. (See [28]) Addressing a certain set ω and ϑ ∈ ω. A SV-NS [ in ω is defined as MD ξ[(ϑ),
an IMD η[(ϑ) and a NMD £[(ϑ).
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ξ[(ϑ), η[(ϑ) and £[(ϑ) are real standard and non-standard subset of [0, 1] , and

ξ[(ϑ), η[(ϑ), £[(ϑ) : ω −→ [0, 1] .

The representation of SV-NS [ is mathematically defined as:

[ = {〈ϑ, ξ[(ϑ), η[(ϑ), £[(ϑ))〉 |ϑ ∈ ω},

where
0 < ξ[(ϑ) + η[(ϑ) + £[(ϑ) ≤ 3.

Definition 6. [30] For a fixed set Y, the S V − NHFS F is mathematically represented as follows:

F = {
〈
[, ξ~λ([), η~λ([), £~λ([)

〉
|[ ∈ Y},

where ξ~λ([), η~λ([) and £~λ([) are sets of some values in [0, 1], called the hesitant MD, hesitant IMD
and hesitant NMD sequentially where ~ shows the hesitant grade that must be satisfied the following
properties:

∀[ ∈ Y,∀µλ([) ∈ ξ~λ([),∀λλ([) ∈ ξ~λ([),

and
∀νλ([) ∈ £~λ([) with

(
max

(
ξ~λ([)

))
+

(
min

(
η~λ([)

))
+

(
min

(
η~λ([)

))
≤ 3,

and (
min

(
ξ~λ([)

))
+

(
min

(
η~λ([)

))
+

(
max

(
£~λ([)

))
≤ 3.

For simplicity, we will use a pair λ = (ξ~λ , η~λ , £~λ) to mean S V − NHFS .

Definition 7. (See [44]) Assume η be a universal set and } is relation on η. A set valued mapping is
defined as

}∗ : η→ M(η) by }∗(ρ) = {a ∈ η|(ρ, a) ∈ }},

for ρ ∈ η where }∗(ρ) is referred to as the element’s ρ successor neighborhood in connection to relation
}. The pair (η, }) is called (crisp) space of resemblance. Now for any set κ ⊆ η, the lower approximation
(LA) and upper approximation (UA) of κ with respect to space of resemblance (η, }) is defined as:

}(κ) = {ρ ∈ η|}∗(ρ) ⊆ κ};

}(κ) = {ρ ∈ η|}∗(ρ) ∩ κ , φ}.

The pair
(
}(κ), }(κ)

)
is called fuzzy RS where both }(κ), }(κ) : M(η) → M(η) are upper and lower

approximation operators.

Definition 8. (See [45]) Assume universal set Ü and let % ∈ S V − NHFRS (Ü × Ü) be S V − NF
relation. then

(i) % is reflexive if

ξ%(ψ, ψ) = 1, η%(ψ, ψ) = 1 and £%(ψ, ψ) = 1,∀ψ ∈ Ü;

(ii) % is symmetric if

∀(ψ, ξ) ∈ (Ü × Ü), ξ%(ψ, ξ) = ξ%(ξ, ψ), η%(ψ, ξ) = η%(ξ, ψ)
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and

£%(ψ, ξ) = £%(ξ, ψ);

(iii) % is transitive if ∀(ψ, t) ∈ (Ü × Ü),

ξ%(ξ, t) ≥ ∨ψ∈Ü[ξ%(ξ, ψ) ∧ ξ%(ψ, t)],
η%(ξ, t) = ∧ψ∈Ü[η%(ξ, ψ) ∨ η%(ψ, t)],

and
£%(ξ, t) = ∧ψ∈Ü[£%(ξ, ψ) ∨ £%(ψ, t)].

Definition 9. Assume universal set Ü and let % ∈ S V − NHFRS (Ü × Ü) be S V − NF relation. the
pair (Ü, %) represent a S V − NF space of resemblance. Assume ς be any subset of S V − NS (Ü) i.e.,
ς ⊆ S V−NS (Ü). Then on the bases of S V−NF approximation space (Ü, %), then the lower and upper
approximations of ς are represented as %(ς) and %(ς) given as following:

%(ς) = {
〈
ψ, ξ%(ς)(ψ), η%(ς)(ψ), £%(ς)(ψ)

〉
|ψ ∈ Ü},

%(ς) = {〈ψ, ξ%(ς)(ψ), η%(ς)(ψ), £%(ς)(ψ)〉|ψ ∈ Ü},

where

ξ%(ς)(ψ) = ∨t∈Ü[ξ%(ψ,>) ∨ ξ%(>)],
η%(ς)(ψ) = ∧>∈Ü[η%(ψ,>) ∧ η%(>)],
£%(ς)(ψ) = ∧>∈Ü[£%(ψ,>) ∧ £%(>)],
ξ%(ς)(ψ) = ∧>∈Ü[ξ%(ψ,>) ∧ ξ%(>)],
η%(ς)(ψ) = ∧>∈Ü[η%(ψ,>) ∧ η%(>)],
£%(ς)(ψ) = ∨>∈Ü[£%(ψ,>) ∨ £%(>)].

Such that
0 < ξ%(ς)(ψ) + η%(ς)(ψ) + £%(ς)(ψ) ≤ 3,

and
0 < ξ%(ς)(ψ) + η%(ς)(ψ) + £%(ς)(ψ) ≤ 3.

As %(ς) and %(ς) are S V − NFS s, so %(ς), %(ς) : S V − NFS (Ü) −→ S V − NFS (Ü) are LA and UA
operators. So the pair

%(ς) = (%(ς), %(ς)) = {ψ, 〈(ξ%(ς)(ψ), η%(ς)(ψ), £%(ς)(ψ)), (ξ%(ς)(ψ), η%(ς)(ψ), £%(ς)(ψ))|ψ ∈ Ü}

is called S V − NF rough set. For simplicity it can be denoted as
%(ς) = (%(ς), %(ς)) = ((ξ

~ς
, η
~ς
, £~ς), (ξ~ς , η~ς , £~ς)) are known as S V − NF rough number (S V −

NFRN).

Definition 10. Let F = {(ξ
~ς
, η
~ς
, £~ς), (ξ~ς , η~ς , £~ς)} be a SV-neutrosophic hesitant rough number (SV-

NHFRN). Then, SF and AF are describe as:
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S c =
1
6

{
3 + ξ

~ς
+ ξ~ς − η~ς

− η~ς − £~ς − £~ς
}
, S ∈ [0, 1]

Ac =
1
6

{
3 + ξ

~ς
+ ξ~ς + η

~ς
+ η~ς − £~ς + £~ς

}
, A ∈ [0, 1].

Definition 11. For two SV-NHFRNs

B =

{(
ξ
~1
, η
~1
, £~1

)
,
(
ξ~1
, η~1

, £~1

)}
and

Y =

{(
ξ
~2
, η
~2
, £~2

)
,
(
ξ~2
, η~2

, £~2

)}
.

The outcomes are as follows:

(1) If S (B) > S (Y) then B > Y;

(2) If S (B) < S (Y) then B < Y;

(3) If S (B) = S (Y) then;

(i) If A(B) > A(Y) then B > Y;

(ii) If A(B) < A(Y) then B < Y;

(iii) If A(B) = A(Y) then B = Y.

3. CL-single-valued neutrosophic hesitant fuzzy rough (CL-SV-NHFR) aggregation operators

Here, we first talk about CI-SV-NHFRWA AOs. We also go over the fundamental characteristics of
the operators.

3.1. CL-SV-NHFR weighted average (CI-SV-NHFRWA) aggregation operators

We first discuss CL-SV-NHFR weighted average (CI-SV-NHFRWA) AO.

Definition 12. Let fς =

((
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

))
, ς = 1, 2, . . . , n be a collection of SV-NHFRNs

and Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.

Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the weight vectors (WV s) for SV-NHFRNs with the condition∑n
ς=1 ως = 1. Then, the mapping CL − S V − NHFRWA : Fn → F operator is given as CL − S V −

NHFRWA {
(f1,Ξ1), (f2,Ξ2),
. . . , (fn,Ξn)

}
= ⊕n

ς=1ως

(
Ξςfς

)
=

{
ω1 (Ξ1f1) ⊕ ω2 (Ξ2f2)⊕

ω3 (Ξ3f3) ⊕ . . . ⊕ ωn (Ξnfn)

}
.

It is called the CL-SV-NHFRWA operator.
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Theorem 1. Let fς =

((
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

))
, ς = 1, 2, . . . , n be a collection of SV-NHFRNs

and Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.
Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the WV s for SV-NHFRNs with the condition

∑n
ς ως = 1. Then

CL − S V − NHFRWA

{
(f1,Ξ1), (f2,Ξ2),
. . . , (fn,Ξn)

}
=




(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)
,(∏n

ς=1

(
η
~ς

)Ξςως
)
,
(∏n

ς=1

(
£~ς

)Ξςως
)


(
1 −

∏n
ς=1

(
1 − ξ~ς

)Ξςως
)
,(∏n

ς=1

(
η~ς

)Ξςως
)
,
(∏n

ς=1

(
£~ς

)Ξςως
)




Proof. For n = 2, we have

CL − S V − NHFRWA ((f1,Ξ1), (f2,Ξ2)) = ω1 (Ξ1f1) ⊕ ω2 (Ξ2f2) .

Using the SV-NHFRN operating laws, we obtain

Ξ1f1 =


(
1 −

(
1 − ξ

~1

)Ξ1

,
(
η
~1

)Ξ1

,
(
£~1

)Ξ1

)
,

1 −
(
1 − ξ~1

)Ξ1
,
(
η~1

)Ξ1
,
(
£~1

)Ξ1


=


(
Υ1, ℘1

,Θ1

)
,(

ϑ1, ℘1,Ω1

)  .
Then

ω1 (Ξ1f1) =


(
1 −

(
1 − Υ1

)Ξ1
,
(
℘

1

)Ξ1
,
(
Θ1

)Ξ1
)
,(

1 −
(
1 − ϑ1

)Ξ1
,
(
℘1

)Ξ1 ,
(
Ω1

)Ξ1
)



=




(
1 −

[
1 −

{
1 −

(
1 − ξ

~1

)Ξ1
}]ω1

)
,(

ηΞ1

~1

)ω1

,
(
£Ξ1
~1

)ω1

 ,
(
1 −

[
1 −

{
1 −

(
1 − ξ

Ξ1

~1

)Ξ1
}]ω1

)
,(

ηΞ1
~1

)ω1
,
(
£

Ξ1

~1

)ω1





=




(
1 −

(
1 − ξ

~1

)Ξ1ω1
)
,(

η
~1

)ω1Ξ1

,
(
£~1

)ω1Ξ1

 ,
(
1 −

(
1 − ξ~1

)Ξ1ω1
)
,(

η~1

)ω1Ξ1
,
(
£~1

)ω1Ξ1




.
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Likewise, we can observe that

Ξ2f2 =




(
1 −

(
1 − ξ

~2

)Ξ2ω2
)
,(

η
~2

)ω2Ξ2

,
(
£~2

)ω2Ξ2

 ,
(
1 −

(
1 − ξ~2

)Ξ2ω2
)
,(

η~2

)ω2Ξ2
,
(
£~2

)ω2Ξ2




.

Then,

CL − S V − NHFRWA = ((f1,Ξ1), (f2,Ξ2)) = ω1 (Ξ1f1) ⊕ ω2 (Ξ2f2)

=






(
1 −

(
1 − ξ

~1

)Ξ1ω1
)

+

(
1 −

(
1 − ξ

~2

)Ξ2ω2
)

−

(
1 −

(
1 − ξ

~1

)Ξ1ω1
)
−

(
1 −

(
1 − ξ

~2

)Ξ2ω2
)

 ,{(
η
~1

)ω1Ξ1
(
η
~2

)ω2Ξ2
}
,
{(

£~1

)ω1Ξ1
(
£~2

)ω2Ξ2
}


,




(
1 −

(
1 − ξ~1

)Ξ1ω1
)

+

(
1 −

(
1 − ξ~2

)Ξ2ω2
)

−

(
1 −

(
1 − ξ~1

)Ξ1ω1
)
−

(
1 −

(
1 − ξ~2

)Ξ2ω2
)

 ,{(
η~1

)ω1Ξ1
(
η~2

)ω2Ξ2
}
,
{(

£~1

)ω1Ξ1
(
£~2

)ω2Ξ2
}





.

Thus,

CL − S V − NHFRWA {(f1,Ξ1), (f2,Ξ2)}

=


{(

1 −
∏2

ς=1

(
1 − ξ

~ς

)Ξςως
)
,

(∏2
ς=1

(
η
~ς

)Ξςως
)
,
(∏2

ς=1

(
£~ς

)Ξςως
)}
,{(

1 −
∏2

ς=1

(
1 − ξ~ς

)Ξςως
)
,
(∏2

ς=1

(
η~ς

)Ξςως
)
,
(∏2

ς=1

(
£~ς

)Ξςως
)}

 .
Suppose that the result is valid for n = †, that is

CL − S V − NHFRWA
{
(f1,Ξ1), (f2,Ξ2), . . . , (f†,Ξ†)

}
=


{(

1 −
∏†

ς=1

(
1 − ξ

~ς

)Ξςως
)
,

(∏†

ς=1

(
η
~ς

)Ξςως
)
,
(∏†

ς=1

(
£~ς

)Ξςως
)}

{(
1 −

∏†

ς=1

(
1 − ξ~ς

)Ξςως
)
,
(∏†

ς=1

(
η~ς

)Ξςως
)
,
(∏†

ς=1

(
£~ς

)Ξςως
)}

 .
Then, for n = † + 1, we get

CL − S V − NHFRWA
{
(f1,Ξ1), (f2,Ξ2), . . . , (f†,Ξ†), (f†+1,Ξ†+1)

}

=




{(

1 −
∏†

ς=1

(
1 − ξ

~ς

)Ξςως
)
,

(∏†

ς=1

(
η
~ς

)Ξςως
)
,

(∏†

ς=1

(
η
~ς

)Ξςως
)}
,{(

1 −
∏†

ς=1

(
1 − ξ~ς

)Ξςως
)
,
(∏†

ς=1

(
η~ς

)Ξςως
)
,
(∏†

ς=1

(
η~ς

)Ξςως
)}

⊕


(
1 −

(
1 − ξ

~†+1

)Ξ†+1ω†+1
)
,(

η
~†+1

)ω†+1Ξ†+1

,
(
£~ς

)ω†+1Ξ†+1

 ,


(
1 −

(
1 − ξ~†+1

)Ξ†+1ω†+1
)
,(

η~†+1

)ω†+1Ξ†+1
,
(
£~†+1

)ω†+1Ξ†+1
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=






(
1 −

∏†

ς=1

(
1 − ξ

~ς

)Ξςως
)

+

(
1 −

(
1 − ξ

~ς

)Ξ†+1ω†+1
)

−

(
1 −

∏†

ς=1

(
1 − ξ

~ς

)Ξςως
)
−

(
1 −

(
1 − ξ

~ς

)Ξ†+1ω†+1
)

 ,{∏†

ς=1

(
η
~ς

)Ξςως

,
(
η
~ς

)ω†+1Ξ†+1
}
,
{∏†

ς=1

(
£~ς

)Ξςως

,
(
£~ς

)ω†+1Ξ†+1
}


,




(
1 −

∏†

ς=1

(
1 − ξ~ς

)Ξςως
)

+

(
1 −

(
1 − ξ~ς

)Ξ†+1ω†+1
)

−

(
1 −

∏†

ς=1

(
1 − ξ~ς

)Ξςως
)
−

(
1 −

(
1 − ξ~ς

)Ξ†+1ω†+1
)

 ,{∏†

ς=1

(
η~ς

)Ξςως

, η~ς

}
,
{∏†

ς=1

(
£~ς

)Ξςως

, £~ς
}




=


{(

1 −
∏†+1

ς=1

(
1 − ξ

~ς

)Ξςως
)
,

(∏†+1
ς=1

(
η
~ς

)Ξςως
)
,
(∏†+1

ς=1

(
£~ς

)Ξςως
)}
,{{

1 −
∏†+1

ς=1

(
1 − ξ~ς

)Ξςως
}
,
{∏†+1

ς=1

(
η~ς

)Ξςως
}
,
{∏†+1

ς=1

(
£~ς

)Ξςως
}}

 .
Hence the result is valid for n = † + 1. Therefore, the result is valid for any number of SV-

NHFRNs. �

Theorem 2. For the collection of SV-NHFRNsfς =

((
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

))
where ς = 1, 2, . . . , n

and Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.

Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the WV s for SV-NHFRNs with the condition
∑n
ς ως = 1.

CI-SV-NHFRWA AOs then possess the following characteristics:

(1) Idempotency If for all (fς,Ξς) = (f,Ξ), i.e., ξ = ξ
~ς
, ξ = ξ~ς , η~ς

= η, η~ς = η, £~ς = £, and

£~ς = £, Ξς = Ξ, then

CL − S V − NHFRWA ((f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)) = Ξf.

Proof. If (fς,Ξς) = (f,Ξ), then by using Theorem 1, we get

CL − S V − NHFRWA
{
(f~1 ,Ξ1), (f~2 ,Ξ2), . . . , (f~n ,Ξn)

}
=


{(

1 −
∏n

ς=1

(
1 − ξ

~ς

)Ξως
)
,

(∏n
ς=1

(
η
~ς

)Ξςως
)
,
(∏n

ς=1

(
£~ς

)Ξως
)}
,{(

1 −
∏n

ς=1

(
1 − ξ~ς

)Ξως
)
,
(∏n

ς=1

(
η~ς

)Ξως
)
,
(∏n

ς=1

(
£~ς

)Ξως
)}


=


{(

1 −
(
1 − ξ

~ς

)Ξ
∑n
ς=1 ως

)
,

((
η
~ς

)Ξ
∑n
ς=1 ως

)
,
((

£~ς
)Ξ

∑n
ς=1 ως

)}
,{(

1 −
(
1 − ξ~ς

)Ξ
∑n
ς=1 ως

)
,

((
η~ς

)Ξ
∑n
ς=1 ως

)
,

((
η~ς

)Ξ
∑n
ς=1 ως

)}


=


{(

1 −
(
1 − ξ

~ς

)Ξ
)
,
(
η
~ς

)Ξ

,
(
£~ς

)Ξ
}
,{(

1 −
(
1 − ξ~ς

)Ξ
)
,
(
η~ς

)Ξ
,
(
η~ς

)Ξ
}

 = Ξf.
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�

(2) Boundedness Let

f−ς =


(
min ξ

~ς
,min η

~ς
,min £~ς

)
,(

max ξ~ς ,max η~ς ,max η~ς
)

 , and f+
ς =


(
max ξ

~ς
,max η

~ς
,max £~ς

)
,(

min ξ~ς ,min η~ς ,min £~ς
)

 .
Then, for all ως, we have

f−ς ≤ CL − S V − NHFRWA
{

(f1,Ξ1), (f2,Ξ2),
. . . , (fn,Ξn)

}
≤ f+

ς .

Proof. For every ς,

min(ξ
~ς

) ≤ ξ
~ς
≤ max(ξ

~ς
) =⇒ 1 −max(ξ

~ς
) ≤ 1 − ξ

~ς
≤ 1 −min(ξ

~ς
).

Now for every ω, we get
 n∏
ς=1

(
1 −max

(
ξ
~ς

))(max Ξς)ως
 ≤

 n∏
ς=1

(
1 − ξ

~ς

)Ξςως

 ≤
 n∏
ς=1

(
1 −min

(
ξ
~ς

))(min Ξς)ως



=⇒


((

1 −max
(
ξ
~ς

))(max Ξς)∑n
ς=1 ως

)
≤

 n∏
ς=1

(
1 − ξ

~ς

)Ξςως

 ≤ ((
1 −min

(
ξ
~ς

))(min Ξς)∑n
ς=1 ως

)
=⇒


(
1 −

(
1 −min

(
ξ
~ς

))(min Ξς))
≤

(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)

≤

(
1 −

(
1 −max

(
ξ
~ς

))(max Ξς)ως
ξ
~ς

)
≤

(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)
≤

(
ξ
~ς

)
 .

Similarly, for every ς,

min(ξ~ς) ≤ ξ~ς ≤ max(ξ~ς) =⇒ 1 −max(ξ~ς) ≤ 1 − ξ~ς ≤ 1 −min(ξ~ς).

Now for every ω, we get


 n∏
ς=1

(
1 −max

(
ξ~ς

))(max Ξς)ως
 ≤

 n∏
ς=1

(
1 − ξ~ς

)Ξςως

 ≤
 n∏
ς=1

(
1 −min

(
ξ~ς

))(min Ξς)ως



=⇒

((1 −max
(
ξ~ς

))(max Ξς)∑n
ς=1 ως

)
≤

 n∏
ς=1

(
1 − ξς

)Ξςως

 ≤ ((
1 −min

(
ξ~ς

))(min Ξς)∑n
ς=1 ως

)
=⇒


(
1 −

(
1 −min

(
ξς

))(min Ξς)
)
≤

(
1 −

∏n
ς=1

(
1 − ξς

)Ξςως
)

≤

(
1 −

(
1 −max

(
ξς

))(max Ξς)ως ξmin
fςΞς

)
≤

(
1 −

∏n
ς=1

(
1 − ξς

)Ξςως
)
≤ ξmax

fςΞς

 .
Similarly, 

(
min(η

~ς
) ≤ η

~ς
≤ max(η

~ς
)
)

⇔ min(η
~ς

)min Ξς ≤
∏n

ς=1

(
η
~ς

)Ξςως

≤ max(η
~ς

)max Ξς
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=⇒

(η~ς)fςΞς ≤ n∏
ς=1

(
η
~ς

)Ξςως

≤

(
η
~ς

)fςΞς
and


(
min

(
η~ς

)
≤ η~ς ≤ max

(
η~ς

))
⇔ min(η~ς)

min Ξς ≤
∏n

ς=1

(
η~ς

)Ξςως
≤ max(η~ς)

max Ξς


=⇒

(η~ς)fςΞς ≤ n∏
ς=1

(
η~ς

)Ξςως
≤

(
η~ς

)fςΞς .
Also,  min(£~ς) ≤ £~ς ≤ max(£~ς)

⇔ min(£~ς)
min Ξς ≤

∏n
ς=1

(
£~ς

)Ξςως
≤ max(£~ς)

max Ξς


=⇒

(£~ς)fςΞς ≤ n∏
ς=1

(
£~ς

)Ξςως
≤

(
£~ς

)fςΞς
and

 min
(
£~ς

)
≤ £~ς ≤ max

(
£~ς

)
⇔ min(£~ς)

min Ξς ≤
∏n

ς=1

(
£~ς

)Ξςως
≤ max(£~ς)

max Ξς


=⇒

(£~ς)fςΞς ≤ n∏
ς=1

(
£~ς

)Ξςως
≤

(
£~ς

)fςΞς .
If

CL − S V − NRWA
{

(f1,Ξ1), (f2,Ξ2),
. . . , (fn,Ξn)

}
= f =


(
ξ
~ς
, η
~ς
, £~ς

)
,(

ξ~ς , η~ς , £~ς
)

 ,
then from the above analysis, we get

{(
ξ
~ς
≤ ξ

~ς
≤ ξ

~ς

)
,

((
ξ~ς

)fςΞς
≤

(
ξ~ς

)fςΞς
≤

(
ξ~ς

)fςΞς)}
,{((

η
~ς

)fςΞς
≤

(
η
~ς

)fςΞς
≤

(
η
~ς

)fςΞς )
,

((
η~ς

)fςΞς
≤

(
η~ς

)fςΞς
≤

(
η~ς

)fςΞς)}
,{((

£~ς
)fςΞς

≤
(
£~ς

)fςΞς
≤

(
£~ς

)fςΞς )
,

((
£~ς

)fςΞς
≤

(
£~ς

)fςΞς
≤

(
£~ς

)fςΞς)}

.

Then, by using the definition of SF, we can conclude that

f−ς ≤ CL − S V − NHFRWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)} ≤ f+
ς .

�
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(3) Monotonicity Let

f∗ς =

{(
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

)}
( ς = 1, 2, 3, ..., n)

be another collection of SV-NHFRNs such that


{(
ξ
~ς
≤ ξ

~ς

)
,
((
η
~ς

)
≥

(
η
~ς

))
,
((

£~ς
)
≥

(
£~ς

))}
,{((

ξ~ς

)
≤

(
ξ~ς

))
,
((
η~ς

)
≥

(
η~ς

))
,
((

£~ς
)
≥

(
£~ς

))}


for all ως. Then

CL − S V − NHFRWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}
≤ CL − S V − NHFRWA

{
(f∗1,Ξ1), (f∗2,Ξ2), . . . , (f∗n,Ξn)

}
.

Proof. Since 
{((
ξ
~ς

)
≤

(
ξ
~ς

))
,
((
η
~ς

)
≥

(
η
~ς

))
,
((

£~ς
)
≥

(
£~ς

))}
,{((

ξ~ς

)
≤

(
ξ~ς

))
,
((
η~ς

)
≥

(
η~ς

))
,
((

£~ς
)
≥

(
£~ς

))}


for all ς, 

{(
1 − ξ

~ς
≤ 1 − ξ

~ς

)}
=⇒

{(∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)
≤

(∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)}

=⇒

{(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)
≤

(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)}


,

similarly, 
{(

1 − ξ~ς ≤ 1 − ξ~ς
)}

=⇒

{(∏n
ς=1

(
1 − ξ~ς

)Ξςως
)
≤

(∏n
ς=1

(
1 − ξ~ς

)Ξςως
)}

=⇒

{(
1 −

∏n
ς=1

(
1 − ξ~ς

)Ξςως
)
≤

(
1 −

∏n
ς=1

(
1 − ξ~ς

)Ξςως
)}

 ,
also  n∏

ς=1

(
η
~ς

)Ξςως

≥

n∏
ς=1

(
η
~ς

)Ξςως
 ,

 n∏
ς=1

(
η~ς

)Ξςως

≥

n∏
ς=1

(
η~ς

)Ξςως

 ,
and  n∏

ς=1

(
£~ς

)Ξςως

≥

n∏
ς=1

(
£~ς

)Ξςως

 ,
 n∏
ς=1

(
£~ς

)Ξςως

≥

n∏
ς=1

(
£~ς

)Ξςως

 .
If

CL − S V − NHFRWA
{

(f1,Ξ1), (f2,Ξ2),
. . . , (fn,Ξn)

}
=


(
ξ
~ς
, η
~ς
, £~ς

)
,(

ξ~ς , η~ς , £~ς
)

 = f

and

CL − S V − NHFRWA
{

(f∗1,Ξ1), (f∗2,Ξ2),
. . . , (f∗n,Ξn)

}
=


(
ξ
~ς
, η
~ς
, £~ς

)
,(

ξ~ς , η~ς , £~ς
)

 = f.
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Then we get S F (f) ≤ S F (f∗) .
We have two cases: �

Case 1: If S F (f) < S F (f∗) , applying SF we obtained

CL − S V − NHFRWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}
< CL − S V − NHFRWA

{
(f∗1,Ξ1), (f∗2,Ξ2), . . . , (f∗n,Ξn)

}
.

Case 2: If S F (f) = S F (f∗) , applying SF we obtained

S F (f) =


1
6


3 +

(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)

+

(
1 −

∏n
ς=1

(
1 − ξ~ς

)Ξςως
)

−

(∏n
ς=1

(
η
~ς

)Ξςως
)
−

(∏n
ς=1

(
η~ς

)Ξςως
)
−

(∏n
ς=1

(
£~ς

)Ξςως
)
−

(∏n
ς=1

(
£~ς

)Ξςως
)


 .

S F (f∗) =


1
6


3 +

(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)

+

(
1 −

∏n
ς=1

(
1 − ξ~ς

)Ξςως
)

−

(∏n
ς=1

(
η
~ς

)Ξςως
)
−

(∏n
ς=1

(
η~ς

)Ξςως
)
−

(∏n
ς=1

(
η
~ς

)Ξςως
)
−

(∏n
ς=1

(
η~ς

)Ξςως
)


 .

Since we have{(
ξ
~ς
≤ ξ

~ς

)
,
(
η
~ς
≥ η

~ς

)
,
(
£~ς ≥ £~ς

)
,
(
ξ~ς ≤ ξ~ς

)
,
(
η~ς ≥ η~ς

)
,
(
£~ς ≥ £~ς

)}
for all ς, we have1 − n∏

ς=1

(
1 − ξ

~ς

)Ξςως
 =

1 − n∏
ς=1

(
1 − ξ

~ς

)Ξςως
 ,1 − n∏

ς=1

(
1 − ξ~ς

)Ξςως

 =

1 − n∏
ς=1

(
1 − ξ~ς

)Ξςως

 , n∏
ς=1

(
η
~ς

)Ξςως
 =

 n∏
ς=1

(
η
~ς

)Ξςως
 ,

 n∏
ς=1

(
η~ς

)Ξςως

 =

 n∏
ς=1

(
η~ς

)Ξςως

 , n∏
ς=1

(
£~ς

)Ξςως

 =

 n∏
ς=1

(
£~ς

)Ξςως

 ,
 n∏
ς=1

(
£~ς

)Ξςως

 =

 n∏
ς=1

(
£~ς

)Ξςως

 .
Now applying the definition of AF, we get

AC (f) =


1
6


3 +

(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)

+

(
1 −

∏n
ς=1

(
1 − ξ~ς

)Ξςως
)

+

(∏n
ς=1

(
η
~ς

)Ξςως
)

+
∏n

ς=1

((
η~ς

)Ξςως
)

+

(∏n
ς=1

(
£~ς

)Ξςως
)

+
∏n

ς=1

((
£~ς

)Ξςως
)
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=


1
6


3 +

(
1 −

∏n
ς=1

(
1 − ξ

~ς

)Ξςως
)

+

(
1 −

∏n
ς=1

(
1 − ξ~ς

)Ξςως
)

+

(∏n
ς=1

(
η
~ς

)Ξςως
)

+

(∏n
ς=1

(
η~ς

)Ξςως
)

+

(∏n
ς=1

(
η
~ς

)Ξςως
)

+

(∏n
ς=1

(
η~ς

)Ξςως
)




= AC (f∗) .

Thus,

CL − S V − NHFRWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}
< CL − S V − NHFRWA

{
(f∗1,Ξ1), (f∗2,Ξ2), . . . , (f∗n,Ξn)

}
.

3.1.1. CL-SV-NHFR ordered weighted average (CL-SV-NHFROWA) aggregation operators

In this part, a CL-SV-NHFROWA operator’s fundamental definition is given. We’ll also go into
great detail about the main attributes of this operator.

Definition 13. Let fς =

{(
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

)}
, ς = 1, 2, . . . , n be a family of SV-NHFRNs and

Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.

Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the WV s for SV-NHFRNs with the condition
∑n
ς ως = 1.

Then, the mapping CL − S V − NHFROWA : Fn → F operator is given as

CL − S V − NHFROWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}
=

{
ω1

(
Ξε(1)fε(1)

)
⊕ ω2

(
Ξε(2)fε(2)

)
⊕ ω3

(
Ξε(3)fε(3)

)
... ⊕ ωn

(
Ξε(n)fε(n)

)}
,

where (ε (1) , ε (1) ε (2) , ε (3) , ..., ε (n)) is the permutation of (ς = 1, 2, . . . , n) such that for all ς,
f

ε(ς−1) ≥ fε(ς) .

Theorem 3. Let
fς =

((
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

))
, ς = 1, 2, . . . , n

be a collection of SV-NHFRNs and Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.
Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the WV s for SV-NHFRNs with the condition

∑n
ς ως = 1.

Then

CL − S V − NHFROWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}

=


{(

1 −
∏n

ς=1

(
1 − ξ

~ς

)Ξ
ε(ς)ως

)
,

(∏n
ς=1

(
η
~ς

)Ξε(ς)ως
)
,
(∏n

ς=1

(
£~ς

)Ξε(ς)ως
)}
,{(

1 −
∏n

ς=1
(
1 − ξε(ς)

)Ξε(ς)ως
)
,

(∏n
ς=1

(
η~ς

)Ξε(ς)ως
)
,

(∏n
ς=1

(
£~ς

)Ξε(ς)ως
)}

 . (3.1)

Proof. The proof is comparable to the Theorem 1 demonstration. �

Here, we examine the traits of the CI-SV-NHFROWA operator.

(1) Idempotency
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If for all ς (fς,Ξς) = (f,Ξ), i.e., ξ~ς = ξ, ξ
~ς

= ξ, η
~ς

= η, η~ς = η, , £~ς = £ and £~ς = £, Ξς = Ξ, then

CL − S V − NHFROWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)} = Ξf.

(2) Boundedness: Let f−ς =


(
ξ
~ς
, η
~ς
, £~ς

)
,(

ξ~ς , η~ς , £~ς
)

 and f+
ς =


(
ξ
~ς
, η
~ς
, £~ς

)
,(

ξ~ς , η~ς , £~ς
)

 .
Then, for all ως,

f−ς ≤ CL − S V − NHFROWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)} ≤ f+
ς .

(3) Monotonicity: Let f∗ς =

{(
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

)}
( ς = 1, 2, 3, ..., n) be another collection of

SV-NHFRNs such that

{(
ξ
~ς
≤ ξ

~ς
, η
~ς
fς ≥ η~ςf

∗
ς
, £~ς ≥ £~ς

)
,
(
ξ~ς ≤ ξ~ς , η~ς ≥ η~ς , £~ς ≥ £~ς

)}
for all ως. Then

CL − S V − NHFROWA {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}
≤ CL − S V − NHFROWA

{
(f∗1,Ξ1), (f∗2,Ξ2), . . . , (f∗n,Ξn)

}
.

3.2. CL-single-valued neutrosophic hesitant fuzzy rough geometric aggregation operators

In this section, we discuss CI-SV-NR geometric AOs. We’ll look into the essential qualities of the
operators as well.

3.2.1. CL-SV-NHFR weighted geometric (CL-SV-NHFRWG) aggregation operator

Definition 14. fς =

((
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

))
, ς = 1, 2, . . . , n be a collection of SV-NHFRNs and

Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.

Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the WV s for SV-NRNs with the condition
∑n
ς ως = 1. Then, the

mapping CL − S V − NHFRWA : Fn → F operator is given as CL-SV-NRWG operator,

{(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)} = ⊕n
ς=1

(
f

Ξς
ς

)ως
=

(
fΞ1

1

)ω1
⊕

(
fΞ2

2

)ω2
⊕

(
fΞ3

3

)ω3
... ⊕

(
fΞn

n

)ωn
.

It is called the CL-SV-NHFRWG operator.

Theorem 4. Let fς =

((
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

))
, ς = 1, 2, . . . , n be a collection of SV-NRNs and

Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.
Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the WV s for SV-NHFRNs with the condition

∑n
ς ως = 1. Then

CL − S V − NHFRWG

CL − S V − NHFRWG ((f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn))

=


{(∏n

ς=1

(
ξ
~ς

)Ξςως
)
,

(
1 −

∏n
ς=1

(
1 − η

~ς
ς

)Ξςως
)
,
(
1 −

∏n
ς=1

(
1 − £~ς

)Ξςως
)}

{(∏n
ς=1

(
ξ~ς

)Ξςως
)
,
(
1 −

∏n
ς=1

(
1 − η~ς

)Ξςως
)
,
(
1 −

∏n
ς=1

(
1 − £~ς

)Ξςως
)}

 . (3.2)
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Proof. For n = 2, we have

CL − S V − NHFRWG ((f1,Ξ1), (f2,Ξ2)) =
(
f

Ξς
ς

)ω1
⊕

(
fΞς

2

)ω2
.

By using the operational laws for SV-NHFRNs, we get

fΞ1
1 =


(
ξ
~ς
,

(
1 −

(
1 − η

~ς
1

)Ξ1
)
,
(
1 −

(
1 − £~ς

)Ξ1
))
,(

ξ~ς

)Ξ1

,
(
1 −

(
−1 − η~ς

)Ξ1
)
,
(
1 −

(
−1 − £~ς

)Ξ1
)


=

{(
Υ1, ξ1

,Θ1

)
,
(
ϑ1, ξ1,Ω1

)}
.

Then

(
fΞ1

1

)ω1
=


((

Υ
Ξ1
1

)
,
(
1 −

(
1 − ξ

1

)Ξ1
)
,
(
1 −

(
1 − Θ1

)Ξ1
))
,((

ϑ
Ξ1

1

)
,
(
1 −

(
1 − ξ1

)Ξ1
)
,
(
1 −

(
1 −Ω1

)Ξ1
)) 

=




(
ξ
~1

)ω1

,

(
1 −

[
1 −

{
1 −

(
1 − η

~1

)Ξ1
}]ω1

)
,(

1 −
[
1 −

{
1 −

(
1 − £~1

)Ξ1
}]ω1

)
 ,

((
ξ~1

)Ξ1
)ω1

,
(
1 −

[
1 −

{
1 −

(
1 − η~1

)Ξ1
}]ω1

)
,(

1 −
[
1 −

{
1 −

(
1 − £~1

)Ξ1
}]ω1

)



=


((
ξ
~1

)Ξ1ω1

,

(
1 −

(
1 − η

~1

)Ξ1ω1
)
,
(
1 −

(
1 − £~1

)Ξ1ω1
))
,((

ξ~1

)Ξ1ω1
,
(
1 −

(
1 − η~1

)Ξ1ω1
)
,
(
1 −

(
1 − £~1

)Ξ1ω1
))

 .
Likewise, we can observe that

(
fΞ2

2

)ω2
=


((
ξ
~ς

)
,

(
1 −

(
1 − η

~ς
2

)Ξ2ω2
)
,
(
1 −

(
1 − £~ς

)Ξ2ω2
))
,((

ξ~ς

)
,
(
1 −

(
1 − η~ς

)Ξ2ω2
)
,
(
1 −

(
1 − £~ς

)Ξ2ω2
))

 .
Now,

CL − S V − NHFRWG = ((f1,Ξ1), (f2,Ξ2)) =
(
fΞ1

1

)ω1
⊕

(
fΞ2

2

)ω2

=




(
ξ
~1

)Ξ1ω1
(
ξ
~2

)Ξ2ω2

,

(
1 −

(
1 − η

~1

)Ξ1ω1
) (

1 −
(
1 − η

~2

)Ξ2ω2
)
,(

1 −
(
1 − £~1

)Ξ1ω1
) (

1 −
(
1 − £~2

)Ξ2ω2
)

 ,
(
ξ~ς

) (
ξ~ς

)
,
(
1 −

(
1 − η~1

)Ξ1ω1
) (

1 −
(
1 − η~2

)Ξ2ω2
)
,(

1 −
(
1 − £~1

)Ξ1ω1
) (

1 −
(
1 − £~2

)Ξ2ω2
)




.
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Thus, In light of that,

CL − S V − NHFRWG {(f1,Ξ1), (f2,Ξ2)}

=


{(∏2

ς=1

(
ξ
~ς

)Ξςως
)
,

(
1 −

∏2
ς=1

(
1 − η

~ς
ς

)Ξςως
)
,
(
1 −

∏2
ς=1

(
1 − £~ς

)Ξςως
)}
,{(∏2

ς=1

(
ξ~ς

)Ξςως
)
,
(
1 −

∏2
ς=1

(
1 − η~ς

)Ξςως
)
,
(
1 −

∏2
ς=1

(
1 − £~ς

)Ξςως
)}

 .
Suppose that the result is valid for n = †, that is

CL − S V − NHFRWG
{
(f1,Ξ1), (f2,Ξ2), . . . , (f†,Ξ†)

}
=


{(∏†

ς=1

(
ξ
~ς

)Ξςως
)
,

(
1 −

∏†

ς=1

(
1 − η

~ς

)Ξςως
)
,
(
1 −

∏†

ς=1

(
1 − £~ς

)Ξςως
)}
,{(∏†

ς=1

(
ξ~ς

)Ξςως
)
,
(
1 −

∏†

ς=1

(
1 − η~ς

)Ξςως
)
,
(
1 −

∏†

ς=1

(
1 − £~ς

)Ξςως
)}

 .
Then, for n = † + 1, we get

CL − S V − NHFRWG
{
(f1,Ξ1), (f2,Ξ2), . . . , (f†,Ξ†), (f†+1,Ξ†+1)

}
=


{(∏†

ς=1

(
ξ
~ς

)Ξςως
)
,

(
1 −

∏†

ς=1

(
1 − η

~ς

)Ξςως
)
,
(
1 −

∏†

ς=1

(
1 − £~ς

)Ξςως
)}
,{(∏†

ς=1

(
ξ~ς

)Ξςως
)
,
(
1 −

∏†

ς=1

(
1 − η~ς

)Ξςως
)
,
(
1 −

∏†

ς=1

(
1 − £~ς

)Ξςως
)}

 ⊕
{((

ξ
~†+1

)Ξ†+1ω†+1
)
,

(
1 −

(
1 − η

~†+1

)Ξ†+1ω†+1
)
,

(
1 −

(
1 − £~ς

)Ξ†+1ω†+1
)}
,{((

ξ~†+1

)Ξ†+1ω†+1
)
,
(
1 −

(
1 − η~†+1

)Ξ†+1ω†+1
)
,

(
1 −

(
1 − £~†+1

)Ξ†+1ω†+1
)}



=



((∏†

ς=1

((
ξ
~ς

)Ξςως
))

+

((
ξ
~†+1

)Ξ†+1ω†+1
) (∏†

ς=1

((
ξ~ς

)Ξςως
)) ((

ξ~†+1

)Ξ†+1ω†+1
))
,

((
1 −

∏†

ς=1

(
1 − η

~ς

)Ξςως
)

+

(
1 −

(
1 − η

~†+1

)Ξ†+1ω†+1
))

((
1 −

∏†

ς=1

(
1 − η~ς

)Ξςως
)

+

(
1 −

(
1 − η~†+1

)Ξ†+1ω†+1
))

 ,
((

1 −
∏†

ς=1

(
1 − £~ς

)Ξςως
)

+

(
1 −

(
1 − £~ς

)Ξ†+1ω†+1
))

((
1 −

∏†

ς=1

(
1 − £~ς

)Ξςως
)

+

(
1 −

(
1 − £~ς

)Ξ†+1ω†+1
)) 


=


{(∏†+1

ς=1

((
ξ
~ς

)Ξςως
))
,

(
1 −

∏†+1
ς=1

(
1 − η

~ς

)Ξςως
)
,
(
1 −

∏†+1
ς=1

(
1 − £~ς

)Ξςως
)}
,{(∏†+1

ς=1

((
ξ~ς

)Ξςως
))
,
(
1 −

∏†+1
ς=1

(
1 − η~ς

)Ξςως
)
,
(
1 −

∏†+1
ς=1

(
1 − £~ς

)Ξςως
)}

 .
As a result, the statement holds true for n = † + 1. The results are therefore generalizable to any

number of SV-NHFRNs. �

3.2.2. CL-single-valued neutrosophic hesitant fuzzy rough ordered weighted geometric
(CL-SV-NHFROWG) aggregation operator

In this section, we go over a CL-SV-NHFROWG operator’s fundamental definition. We also go into
great detail about the fundamental characteristics of these operators.
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Definition 15. Let fς =

{(
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

)}
, ς = 1, 2, . . . , n be a family of SV-NHFRNs and

Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.

Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the WV s for SV-NHFRNs with the condition
∑n
ς ως = 1. Then, the

mapping CL − S V − NHFROWA : Fn → F operator is given as

CL − S V − NHFROWG {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}

=

{(
fΞε(1)

ε(1)

)ω1
⊕

(
fΞε(2)

ε(2)

)ω2
⊕

(
fΞε(2)

ε(2)

)ψ2
... ⊕

(
fΞε(n)

ε(n)

)ωn
}
,

where where (ε (1) , ε (1) ε (2) , ε (3) , ..., ε (n)) is the permutation of (ς = 1, 2, . . . , n) such that for all ς,
f

ε(ς−1) ≥ fε(ς) .

Definition 16. Let fς =

{(
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

)}
, ς = 1, 2, . . . , n be a family of SV-NHFRNs and

Ξς be the CL of fς with 0 ≤ Ξς ≤ 1.

Theorem 5. Let ω = (ω1, ω2, ω3 . . . ., ωn)T be the WV s for SV-NHFRNs with the condition
∑n
ς ως = 1.

Then,

CL − S V − NHFROWG {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}

=


{(∏n

ς=1

(
ξ
~ς

)Ξ
ε(ς)ως

)
,

(
1 −

∏n
ς=1

(
1 − η

~ς
ε(ς)

)Ξ
ε(ς)ως

)
,
(
1 −

∏n
ς=1

(
1 − £~ς

)Ξ
ε(ς)ως

)}
,{(∏n

ς=1

(
ξ~ς

)Ξ
ε(ς)ως

)
,
(
1 −

∏n
ς=1

(
1 − η~ς

)Ξ
ε(ς)ως

)
,
(
1 −

∏n
ς=1

(
1 − £~ς

)Ξ
ε(ς)ως

)}
 . (3.3)

Proof. Proof is similar as the proof of Theorem 3. �

We next discuss the properties of the CL-SV-NHFROWG operator.

(1) Idempotency If ∀ ς, (fς,Ξς) = (f,Ξ), i.e., ξ
~ς

= ξ
~ς
, ξ~ς = ξ~ς , η~ς

= η
~ς
, η~ς = η~ς , £~ς = £~ς and

£~ς = £~ς , Ξς = Ξ, then

CL − S V − NHFROWG {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)} = Ξf.

(2) Boundedness Let
f−ς =

{
min
fςΞς

,
(
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

)}
and

f+
ς =

{
max
fςΞς

,
(
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς , η~ς , £~ς

)}
.

Then, for all ως,

f−ς ≤ CL − S V − NHFROWG {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)} ≤ f+
ς .

(3) Monotonicity Let

f∗ς =

((
ξ
~ς
, η
~ς
f∗ς , £~ς

)
,
(
ξ~ς , η~ς , £~ς

))
( ς = 1, 2, 3, ..., n)

be another family of SV-NHFRNs such that{(
ξ
~ς
≤ ξ

~ς

)
,
(
η
~ς
fς ≥ η~ςf

∗
ς

)
,
(
£~ς ≥ £~ς

) (
ξ~ς ≤ ξ~ς

)
,
(
η~ς ≥ η~ς

)
,
(
£~ς ≥ £~ς

)}
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for all ως. Then

CL − S V − NHFROWG {(f1,Ξ1), (f2,Ξ2), . . . , (fn,Ξn)}
≤ CL − S V − NHFROWG

{
(f∗1,Ξ1), (f∗2,Ξ2), . . . , (f∗n,Ξn)

}
.

4. Decision-making strategy based on CL-SV-NHFR AOs

With the help of MCDM, the optimal solution that satisfies their criteria can be selected successfully.
In this section, we’ll look at how the most current operators are used. We therefore created an MCDM
algorithm to illustrate the usefulness and effectiveness of the proposed work.

Suppose that Ω∗ = {Ω1,Ω2,Ω3, ...,Ωn} indicate the assortment of options and Ĉ ={
Ĉ1, Ĉ2, Ĉ3, ..., Ĉn

}
indicate the group of criteria. Also, Assume that ω = (ω1, ω2, ω3 . . . ., ωn)T be

the SV-NHFRNs’ WV s with the restriction
∑n
ς ως = 1.

Assume experts give SV-NHFRNs their CLs detailing how they rank each alternative in relation to
each criterion. (

fs
ς j

)
m×n

=

{((
ξ
~ς
, η
~ς
, £~ς

)
,
(
ξ~ς j

, η~ς j
/Λ

s
~ς j
, £~ς

)
,Ξs

ς j

)}
.

In order to employ the concept of CL, experts must state that they are familiarized with the assessed
alternatives and must assign the CL with the value Ξı

ς j

(
0 ≤ Ξı

ς j ≤ 1
)
. We must now take the following

actions:

Step 1: Construct the SV-NHFRNs and CL data that the expert has provided, and then determine their
assessment of the presence as

[Mı]m×n =

((
ξ
~ς
, η
~ς

ı
ς, £~ς

)
,
(
ξ~ς , η~ς , £~ς

)
,Ξı

ς j

)
.

Step 2: Utilizing the CL-SV-NHFRWA or CL-SV-NHFRWG concept to integrate each expert’s
individual matrix into a collective judgement matrix [M]m×n . That is,

fς j = CL − S V − NHFRWA
{
(f1

ς j,Ξ
1
ς j), (f

2
ς j,Ξ

2
ς j), . . . , (f

ı
ς j,Ξ

ı
ς j)

}
=


{(

1 −
∏[

ı=1

(
1 − ξ

~ς

)Ξı
ς j
†ς
)
,

(∏[
ı=1

(
η
~ς

)Ξı
ς j
†ς
)
,
(∏[

ı=1

(
£~ς

)Ξı
ς j
†ς
)}
,{(

1 −
∏[

ς=1

(
1 − ξ~ς

)Ξı
ς j
†ς
)
,
(∏[

ı=1

(
η~ς

)Ξı
ς j
†ς
)
,
(∏[

ı=1

(
£~ς

)Ξı
ς j
†ς
)}


or

fς j = CL − S V − NHFRWG
{
(f1

ς j,Ξ
1
ς j), (f

2
ς j,Ξ

2
ς j), . . . , (f

ı
ς j,Ξ

ı
ς j)

}
=


{(∏[

ı=1

(
ξ
~ς

)Ξı
ς j
†ς
)
,

(
1 −

∏[
ı=1

(
1 − η

~ς

)Ξı
ς j
†ς
)
,
(
1 −

∏[
ı=1

(
1 − £~ς

)Ξı
ς j
†ς
)}
,{(∏[

ı=1

(
ξ~ς

)Ξı
ς j
†ς
)
,
(
1 −

∏[
ς=1

(
1 − η~ς

)Ξı
ς j
†ς
)
,
(
1 −

∏[
ς=1

(
1 − £~ς

)Ξı
ς j
†ς
)}

 .
Step 3: Aggregating the matrix’s alternate execution using the SV-NHFRWA or SV-NHFRWG

operator [M]m×n as
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fς = S V − NHFRWA
(
fς1,fς2, ...,fςn

)
=


{(

1 −
∏n

j=1

(
1 − ξ

~ς

)ω j
)
,
(∏n

j=1

(
η
~ς

)ω j
)
,
(∏n

j=1

(
£~ς

)ω j
)}
,{(

1 −
∏n

j=1

(
1 − ξ~ς

)ω j
)
,
(∏n

j=1

(
η~ς

)ω j
)
,
(∏n

j=1

(
£~ς

)ω j
)}


or

fς = S V − NHFRWG
(
fς1,fς2, ...,fςn

)
=


{(∏n

j=1

(
ξ
~ς

)ω j
)
,
(
1 −

∏n
j=1

(
1 − η

~ς

)ω j
)
,
(
1 −

∏n
j=1

(
1 − £~ς

)ω j
)}
,{(∏n

j=1

(
ξ~ς

)ω j
)
,
(
1 −

∏n
j=1

(
1 − η~ς

)ω j
)
,
(
1 −

∏n
j=1

(
1 − £~ς

)ω j
)}

 .
Step 4: Calculate the score values for each choice using SF, and then rank the results.

Then, score function (SF) and accuracy function (AF) are given by

S c =
1
6

{
3 + ξ

~ς
+ ξ~ς − η~ς

− η~ς − £~ς − £~ς
}
, S ∈ [0, 1]

Ac =
1
6

{
3 + ξ

~ς
+ ξ~ς + η

~ς
+ η~ς − £~ς + £~ς

}
, A ∈ [0, 1].

All the steps of the algorithm are shown in Figure 1.

Figure 1. Flow chart of the decision-making algorithm.

4.1. Numerical example

Leaders can arrange their thoughts to make long-term decisions by using strategies such as
analysis of strengths, weaknesses, opportunities, and threats. Formal approaches of decision-making
assist leaders in avoiding typical fallacies like extrapolation or sunk-cost bias. Every level of a
corporation makes decisions, from the routine ones that lower-level employees make every day to
the more significant management decisions that may take years to consider. Every manufacturer’s
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existence revolves around planning, which is also the secret to efficient resource and inventory
management. Even lean and engineer-to-order manufacturers need to establish plans for the materials
and resources (equipment, capacity, people, and skills) to be on hand to meet client demands. Demand
management, forecasting, master scheduling, material planning (MRP), and capacity planning are
all incorporated into the manufacturing planning process, which also includes production control,
inventory management, and procurement. Applications for execution in purchasing and production
make sure that all tasks are coordinated and finished on time, maximizing the effective use of
resources. On-time delivery, content customers, and low prices are the end results. This ‘closed loop’
of coordinated planning and execution also maintains coordination in the face of shifting demand,
unforeseen disruptions, and other difficulties.

Here, we talk about a planning issue for the manufacturing sector and choose the best, longest-
lasting aspect. The weight values are

ω = (0.28, 0.14, 0.36, 0.22)T that are effected on the informations. Here are some of the most crucial
things to take into account before starting a manufacturing business. We will choose the most important
Thing that is necessary for the first stage, and we will also determine how these factors can be ranked.
Demand for your product; Business location; Competition from other manufacturers; Setup costs.

Waste reduction, material efficiency, resource efficiency, and eco-efficiency were identified to be
the four main strategies and know as hesitant points. The key traits of these sustainable manufacturing
strategies were identified through an analysis of the literature.

There are four major techniques that are as given below:
Ω1 = Demand for your product: Over the past ten years, on-demand manufacturing, also known

as cloud manufacturing, has evolved and is starting to transform the supply chain sector. The global
cloud manufacturing market is anticipated to reach roughly $112 billion by 2024, rising at an incredible
19.8 percent yearly, according to MarketWatch [46], driven by the explosive rise of e-commerce and
altering customer preferences. In a technique known as “on-demand manufacturing” products are only
made in the quantities and at the times needed. Contrarily, traditional manufacturing necessitates the
production of vast numbers of goods, which must then be held in facilities until they are prepared for
export. On-demand manufacturing generally eliminates the need to retain expensive inventory and
provides more options to manufacture unique, specialized items because of its increased flexibility and
capacity to produce one-off orders. The amount of people looking for your goods, their willingness to
pay for it, and the quantity of your product that is offered to customers by both your business and your
rivals are some of the elements that affect market demand. Demand for goods and services overall may
change throughout time; typically, it does.

Ω2 = Business location: When choosing a site for their firm, manufacturers and producers of
physical goods should take into consideration a wide range of criteria. The efficiency with which a firm
develops, produces, and reaches its prospective client base while minimizing costs and maintaining
the greatest quality of production and distribution is, as in every business, the key to success. The
size and scope of the manufacturing plant they foresee, the manufacturing process, and what local
and environmental implications the manufacturing process would include, would be a starting point
for businesses involved in production and manufacturing. These organizations should also take
into account the strength of the local supply chain, the availability of human resources, and other
support services needed to guarantee constant, continuous, and sustainable production with the fewest
interruptions.
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Ω3 = Competition from other manufacturers: Over the past few years, American managers
have been increasingly cognizant of the critical role that top-notch manufacturing competence plays
in the country’s competitive performance. The need to increase productivity, product quality, and new
product innovation is currently at the top of the list of priorities for many corporations. All of this is
advantageous. To comprehend how their manufacturing organizations are contributing to overarching
strategy goals and the numerous types of contributions those firms may be required to make, managers
still lack a powerful descriptive framework.

Ω4 = Setup costs: Setup costs in manufacturing are the expenses needed to prepare machinery to
handle a different batch of products. Therefore, in activity-based costing, setup costs are viewed as
batch-level costs. Setup fees are seen as non-value-added expenses that have to be kept to a minimum.
Materials, labour, and overhead are the three main areas of costs in the manufacturing industry. There
are no indirect costs. In other words, while the foreman’s salary and supplies are included, neither the
corporate accountant’s salary nor those of the accountant’s office are.

The various hesitancies are listed above. The information is gathered from experts. The information
gathered from the four specialists is presented in Table 1 through Table 4. The combined table is
Table 5. The information that was gathered by using the innovative operators is shown in Tables 6
and 8. Tables 7 and 9 include the data that was acquired after the scoring function was used to determine
the outcomes for the current MADM. The Table 10 shows the aggregated values for validity test and
Table 11 is alternative ranking for validity test.

Step 1.

Table 1. Expert-1 information.

(a)
Ĉ1 Ĉ2

Ω1


[{

(0.5, 0.7, 0.4) , (0.4, 0.5) ,
(0.3, 0.7, 0.2, 0.6)

}
, 0.4

]
,[{

(0.2, 0.7) , (0.5, 0.9, 0.2, 0.5) ,
(0.3, 0.9, 0.3)

}
, 0.8

]



[{

(0.4, 0.7, 0.1) ,
(0.5, 0.7) , (0.4)

}
, 0.7

]
,[{

(0.1, 0.4, 0.9) ,
(0.5, 0.7, 0.3) , (0.4, 0.5)

}
, 0.6

]


Ω2


[{

(0.2) , (0.9, 0.1, 0.4, 0.4) ,
(0.3, 0.5)

}
, 0.7

]
,[{

(0.9, 0.4, 0.5) ,
(0.6, 0.9, 0.4) , (0.8)

}
, 0.9

]



[{

(0.5, 0.7, 0.8) ,
(0.7, 0.8) , (0.3, 0.6)

}
, 0.3

]
,[{

(0.4, 0.6, 0.2) ,
(0.5) , (0.9, 0.4)

}
, 0.8

]


Ω3


[{

(0.3, 0.6, 0.7) , (0.9) ,
(0.7, 0.7, 0.3)

}
, 0.6

]
,[{

(0.8, 0.1) , (0.3, 0.7, 0.7) ,
(0.3, 0.5, 0.7)

}
, 0.3

]



[{

(0.3) , (0.5, 0.9) ,
(0.8, 0.2)

}
, 0.6

]
,[{

(0.5) , (0.3, 0.6, 0.7) ,
(0.2, 0.5, 0.8)

}
, 0.3

]


Ω4


[{

(0.4, 0.2) , (0.5) ,
(0.4, 0.7, 0.3)

}
, 0.6

]
,[{

(0.8) , (0.3, 0.5, 0.6) ,
(0.3, 0.1)

}
, 0.9

]



[{

(0.6, 0.8, 0.2) ,
(0.5) , (0.2, 0.4)

}
, 0.7

]
,[{

(0.4, 0.7) , (0.4, 0.9) ,
(0.6, 0.8, 0.3)

}
, 0.8

]
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(b)
Ĉ3 Ĉ4

Ω1


[{

(0.9, 0.2, 0.6) ,
(0.7) , (0.4, 0.6)

}
, 0.7

]
,[{

(0.8, 0.6) , (0.4, 0.5, 0.9) ,
(0.4, 0.9)

}
, 0.8

]



[{

(0.8, 0.5) , (0.4, 0.4) ,
(0.5, 0.3)

}
, 0.7

]
,[{

(0.4, 0.6) , (0.4, 0.9, 0.6) ,
(0.5, 0.5)

}
, 0.6

]


Ω2


[{

(0.5, 0.6, 0.5) ,
(0.4, 0.9, 0.4) , (0.4)

}
, 0.5

]
,[{

(0.3, 0.4, 0.7) , (0.4, 0.6, 0.3) ,
(0.4, 0.8, 0.1)

}
, 0.9

]



[{

(0.7, 0.1) , (0.3, 0.4)
, (0.4, 0.5, 0.9)

}
, 0.7

]
,[{

(0.4, 0.1, 0.4, 0.5) ,
(0.5, 0.1, 0.8) , (0.4, 0.5)

}
, 0.5

]


Ω3


[{

(0.4, 0.9, 0.7) , (0.4) ,
(0.7, 0.4, 0.9)

}
, 0.9

]
,[{

(0.5, 0.7, 0.5) ,
(0.6) , (0.3, 0.7, 0.7)

}
, 0.4

]



[{

(0.3, 0.9, 0.1) ,
(0.2, 0.4, 0.7) , (0.6)

}
, 0.8

]
,[{

(0.3, 0.5, 0.4) ,
(0.3, 0.7) , (0.2)

}
, 0.9

]


Ω4


[{

(0.9, 0.1) ,
(0.7, 0.7, 0.4) , (0.9)

}
, 0.5

]
,[{

(0.1, 0.4, 0.7) ,
(0.9, 0.7, 0.5) , (0.5, 0.7)

}
, 0.8

]



[{

(0.3, 0.7, 0.5) ,
(0.3) , (0.4, 0.6, 0.3)

}
, 0.7

]
,[{

(0.6, 0.4, 0.4, 0.9) ,
(0.3, 0.2) , (0.3)

}
, 0.6

]


Table 2. Expert-2 information.

(a)
Ĉ1 Ĉ2

Ω1


[{

(0.9, 0.4, 0.7) ,
(0.3, 0.4) , (0.6)

}
, 0.9

]
,[{

(0.8, 0.2, 0.4) , (0.4, 0.4) ,
(0.4, 0.9, 0.5)

}
, 0.5

]



[{

(0.4, 0.6, 0.8, 0.5) ,
(0.6, 0.4) , (0.8, 0.5)

}
, 0.9

]
,[{

(0.7) , (0.5, 0.9, 0.6, 0.4) ,
(0.10.5, 0.9)

}
, 0.8

]


Ω2


[{

(0.4, 0.8) , (0.4, 0.9, 0.7, 0.3) ,
(0.4, 0.2)

}
, 0.7

]
,[{

(0.6, 0.6, 0.7) , (0.4, 0.9) ,
(0.5, 0.9, 0.1, 0.6)

}
, 0.9

]



[{

(0.6, 0.4, 0.1) , (0.1, 0.3, 0.8) ,
(0.7, 0.6, 0.8)

}
, 0.6

]
,[{

(0.8) , (0.2, 0.1, 0.9) ,
(0.7, 0.5, 0.4)

}
, 0.9

]


Ω3


[{

(0.1, 0.9, 0.8) , (0.4, 0.3, 0.4) ,
(0.7, 0.8, 0.1)

}
, 0.9

]
,[{

(0.4, 0.7, 0.6) , (0.5, 0.6) ,
(0.4, 0.7, 0.9)

}
, 0.5

]



[{

(0.4, 0.8, 0.1) ,
(0.5, 0.4, 0.9) , (0.6, 0.7)

}
, 0.4

]
,[{

(0.8, 0.7) , (0.9, 0.3, 0.7) ,
(0.2, 0.5)

}
, 0.2

]


Ω4


[{

(0.8, 0.1, 0.5, 0.3) ,
(0.7, 0.7, 0.4) , (0.9)

}
, 0.6

]
,[{

(0.2, 0.5, 0.7) , (0.9, 0.3, 0.7, 0.5) ,
(0.4, 0.4, 0.7)

}
, 0.8

]



[{

(0.8, 0.9, 0.6) ,
(0.3, 0.4) , (0.6, 0.7, 0.3)

}
, 0.9

]
,[{

(0.4, 0.4) , (0.5, 0.2, 0.6) ,
(0.3, 0.5, 0.7)

}
, 0.2

]
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(b)
Ĉ3 Ĉ4

Ω1


[{

(0.8, 0.2, 0.7, 0.3) , (0.3, 0.2, 0.7) ,
(0.9, 0.1, 0.4, 0.5)

}
, 0.9

]
,[{

(0.2, 0.7, 0.6) , (0.4, 0.6, 0.9, 0.7) ,
(0.7, 0.9, 0.6, 0.5)

}
, 0.7

]



[{

(0.5, 0.7, 0.9) ,
(0.8, 0.6, 0.4) , (0.8, 0.6, 0.3)

}
, 0.9

]
,[{

(0.5, 0.6) , (0.9, 0.6) ,
(0.7, 0.6, 0.5)

}
, 0.6

]


Ω2


[{

(0.8, 0.4, 0.6, 0.5) ,
(0.5, 0.4, 0.8) , (0.4, 0.7)

}
, 0.7

]
,[{

(0.9, 0.3, 0.5, 0.7) , (0.4, 0.6) ,
(0.4, 0.8, 0.3, 0.6)

}
, 0.9

]



[{

(0.8, 0.1, 0.3) , (0.9, 0.3, 0.4) ,
(0.6, 0.5)

}
, 0.8

]
,[{

(0.5) , (0.5, 0.1) ,
(0.4, 0.5, 0.7)

}
, 0.5

]


Ω3


[{

(0.3, 0.4, 0.5, 0.7) , (0.4, 0.5, 0.8) ,
(0.3, 0.6, 0.5, 0.9)

}
, 0.2

]
,[{

(0.6, 0.8, 0.6) , (0.5, 0.7, 0.6) ,
(0.4, 0.7, 0.5, 0.6)

}
, 0.6

]



[{

(0.7, 0.8) , (0.1, 0.4, 0.7) ,
(0.6, 0.5, 0.3)

}
, 0.5

]
,[{

(0.9, 0.4) , (0.6, 0.7, 0.9) ,
(0.2, 0.7, 0.5)

}
, 0.9

]


Ω4


[{

(0.5, 0.9, 0.9, 0.3) ,
(0.4, 0.7, 0.7) , (0.9, 0.3)

}
, 0.8

]
,[{

(0.3, 0.4, 0.9) ,
(0.4, 0.7, 0.7) , (0.7, 0.6, 0.8)

}
, 0.6

]



[{

(0.1, 0.3, 0.7, 0.5) ,
(0.3, 0.4, 0.7) , (0.4)

}
, 0.8

]
,[{

(0.1, 0.7, 0.4, 0.9) ,
(0.3, 0.9) , (0.3, 0.2)

}
, 0.3

]


Table 3. Expert-3 information.

(a)
Ĉ1 Ĉ2

Ω1


[{

(0.9) , (0.6, 0.4) ,
(0.5, 0.4, 0.6)

}
, 0.1

]
,[{

(0.7, 0.6, 0.2) ,
(0.3, 0.5, 0.9) , (0.6, 0.9, 0.5)

}
, 0.9

]



[{

(0.5, 0.8, 0.7) ,
(0.4) , (0.9)

}
, 0.9

]
,[{

(0.6, 0.6) ,
(0.6) , (0.5)

}
, 0.6

]


Ω2


[{

(0.7, 0.6, 0.5, 0.4) ,
(0.4) , (0.4, 0.5)

}
, 0.7

]
,[{

(0.4, 0.7) , (0.3) ,
(0.4, 0.8)

}
, 0.5

]



[{

(0.8, 0.1) ,
(0.4) , (0.4, 0.5, 0.9)

}
, 0.7

]
,[{

(0.4, 0.5) , (0.5, 0.8, 0.8) ,
(0.7, 0.4, 0.5)

}
, 0.9

]


Ω3


[{

(0.4, 0.9, 0.7) ,
(0.4) , (0.7, 0.4, 0.9)

}
, 0.4

]
,[{

(0.5, 0.7, 0.5) ,
(0.6) , (0.3, 0.7, 0.7)

}
, 0.9

]



[{

(0.9, 0.1) , (0.2, 0.4) ,
(0.6, 0.5, 0.4)

}
, 0.7

]
,[{

(0.7, 0.7) , (0.7, 0.3, 0.7) ,
(0.6, 0.2)

}
, 0.9

]


Ω4


[{

(0.9, 0.1, 0.3) ,
(0.7, 0.8, 0.4, 0.7) , (0.9, 0.3)

}
, 0.9

]
,[{

(0.4, 0.9, 0.4, 0.7) ,
(0.6, 0.7, 0.9) , (0.9, 0.5, 0.7)

}
, 0.4

]



[{

(0.3, 0.7, 0.5) ,
(0.3) , (0.4, 0.6, 0.3)

}
, 0.3

]
,[{

(0.4, 0.9) , (0.6, 0.3, 0.2) ,
(0.3, 0.2)

}
, 0.8

]
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(b)
Ĉ3 Ĉ4

Ω1


[{

(0.6, 0.6) ,
(0.7, 0.9, 0.2, 0.4) , (0.6)

}
, 0.8

]
,[{

(0.8, 0.6, 0.6) ,
(0.5) , (0.7)

}
, 0.8

]



[{

(0.9, 0.8, 0.7) , (0.7, 0.5, 0.4) ,
(0.80.5, 0.3)

}
, 0.5

]
,[{

(0.3, 0.5, 0.6) ,
(0.1, 0.9, 0.6) , (0.5, 0.7, 0.2)

}
, 0.6

]


Ω2


[{

(0.9, 0.5, 0.6, 0.5) ,
(0.9, 0.4) , (0.4)

}
, 0.8

]
,[{

(0.7) , (0.6, 0.3) ,
(0.4, 0.8)

}
, 0.7

]



[{

(0.3, 0.7, 0.2) ,
(0.9, 0.3, 0.4) , (0.5, 0.9)

}
, 0.7

]
,[{

(0.5) , (0.8) ,
(0.6, 0.5, 0.4)

}
, 0.8

]


Ω3


[{

(0.5, 0.4, 0.9, 0.7) ,
(0.4, 0.6, 0.9) , (0.4, 0.9)

}
, 0.8

]
,[{

(0.7, 0.5) , (0.3, 0.6) ,
(0.8, 0.8, 0.7)

}
, 0.5

]



[{

(0.9, 0.6) , (0.2, 0.7, 0.9) ,
(0.8, 0.6)

}
, 0.8

]
,[{

(0.5, 0.9) , (0.8, 0.7) ,
(0.2, 0.7)

}
, 0.9

]


Ω4


[{

(0.5, 0.9, 0.1) ,
(0.7, 0.4) , (0.1, 0.9)

}
, 0.7

]
,[{

(0.5, 0.4, 0.9) , (0.9, 0.8, 0.5) ,
(0.5, 0.7, 0.6)

}
, 0.4

]



[{

(0.5) , (0.3, 0.9) ,
(0.6, 0.3)

}
, 0.9

]
,[{

(0.6, 0.9) , (0.3, 0.2, 0.5) ,
(0.3, 0.7)

}
, 0.6

]


Table 4. Expert-4 information.

(a)
Ĉ1 Ĉ2

Ω1


[{

(0.7, 0.2, 0.2, 0.6) , (0.7, 0.4) ,
(0.3, 0.9, 0.6)

}
, 0.2

]
,[{

(0.9, 0.7, 0.6) ,
(0.7, 0.9) , (0.4, 0.8)

}
, 0.9

]



[{

(0.3, 0.5, 0.7) ,
(0.7, 0.4) , (0.3)

}
, 0.8

]
,[{

(0.5, 0.4, 0.6) , (0.9, 0.6) ,
(0.8, 0.5, 0.4)

}
, 0.6

]


Ω2


[{

(0.3, 0.5, 0.8, 0.5) ,
(0.6, 0.9, 0.8) , (0.8, 0.4)

}
, 0.9

]
,[{

(0.7) , (0.4) ,
(0.5, 0.8, 0.3)

}
, 0.9

]



[{

(0.5, 0.3) ,
(0.1, 0.9, 0.4) , (0.5, 0.9)

}
, 0.9

]
,[{

(0.4, 0.5) ,
(0.5, 0.7, 0.8) , (0.4)

}
, 0.7

]


Ω3


[{

(0.9, 0.5) , (0.4, 0.8) ,
(0.7, 0.9)

}
, 0.8

]
,[{

(0.5, 0.9, 0.8) , (0.6, 0.6) ,
(0.4, 0.8, 0.7)

}
, 0.5

]



[{

(0.7, 0.9, 0.9) ,
(0.3, 0.8, 0.7) , (0.6, 0.7)

}
, 0.9

]
,[{

(0.3, 0.5) , (0.3, 0.7, 0.3) ,
(0.2, 0.6, 0.7)

}
, 0.5

]


Ω4


[{

(0.7, 0.9, 0.1) ,
(0.7, 0.7, 0.4) , (0.9)

}
, 0.5

]
,[{

(0.3, 0.8, 0.7) ,
(0.4, 0.3, 0.5) , (0.2, 0.5, 0.7)

}
, 0.9

]



[{

(0.7, 0.7, 0.9) ,
(0.3, 0.6) , (0.8, 0.6, 0.3)

}
, 0.3

]
,[{

(0.6, 0.9) , (0.3, 0.2, 0.6) ,
(0.3, 0.7)

}
, 0.8

]
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(b)
Ĉ3 Ĉ4

Ω1


[{

(0.6) , (0.8) ,
(0.5, 0.6, 0.3)

}
, 0.5

]
,[{

(0.9, 0.6) , (0.4, 0.1, 0.9) ,
(0.1, 0.9, 0.5)

}
, 0.8

]



[{

(0.6, 0.8, 0.5) ,
(0.5, 0.7, 0.4) , (0.8, 0.3, 0.6)

}
, 0.9

]
,[{

(0.6, 0.7, 0.6) , (0.7, 0.9) ,
(0.5, 0.8, 0.9)

}
, 0.7

]


Ω2


[{

(0.3, 0.6, 0.1) ,
(0.2, 0.9, 0.9) , (0.4, 0.7)

}
, 0.7

]
,[{

(0.9, 0.6, 0.7) ,
(0.5, 0.6, 0.3) , (0.7, 0.8, 0.1, 0.9)

}
, 0.9

]



[{

(0.4, 0.7, 0.1) ,
(0.9, 0.3, 0.4) , (0.5, 0.9)

}
, 0.7

]
,[{

(0.4, 0.5) , (0.1, 0.8) ,
(0.4, 0.5, 0.6)

}
, 0.2

]


Ω3


[{

(0.8, 0.2, 0.7) ,
(0.4, 0.1) , (0.4, 0.9)

}
, 0.9

]
,[{

(0.7, 0.6, 0.5) , (0.1, 0.6) ,
(0.4, 0.7, 0.4)

}
, 0.7

]



[{

(0.9, 0.3, 0.9) , (0.9, 0.2, 0.7) ,
(0.6, 0.3, 0.6)

}
, 0.8

]
,[{

(0.3, 0.4) , (0.3, 0.7, 0.5) ,
(0.2, 0.6, 0.4)

}
, 0.8

]


Ω4


[{

(0.8, 0.9, 0.1) , (0.7, 0.8) ,
(0.9, 0.3)

}
, 0.7

]
,[{

(0.6, 0.4, 0.7) , (0.7, 0.5) ,
(0.3, 0.5, 0.7)

}
, 0.8

]



[{

(0.9, 0.5, 0.7, 0.5) ,
(0.3, 0.7) , (0.6, 0.6, 0.3)

}
, 0.8

]
,[{

(0.3, 0.4, 0.6, 0.9) ,
(0.7, 0.3, 0.2) , (0.3, 0.1, 0.9)

}
, 0.9

]


Step 2.
Table 5. Integrated matrix of experts evaluations.

(a)
Ĉ1 Ĉ2

Ω1

{
{0.2487, 0.2896, 0.3271} ,
{0.2874, 0.2769, 0.3542}

} {
{0.4301, 0.2773, 0.3492} ,
{0.2896, 0.3662, 0.3849}

}
Ω2

{
{0.3453, 0.2978, 0.3476} ,
{0.3245, 0.3336, 0.3478}

} {
{0.3151, 0.3708, 0.3956} ,
{0.2977, 0.3796, 0.2740}

}
Ω3

{
{0.4153, 0.4605, 0.3789} ,
{0.3958, 0.3793, 0.2874}

} {
{0.2384, 0.3164, 0.2068} ,
{0.4316, 0.2952, 0.4146}

}
Ω4

{
{0.3654, 0.3564, 0.3367} ,
{0.3056, 0.3297, 0.3749}

} {
{0.2839, 0.3192, 0.2966} ,
{0.3627, 0.2749, 0.3867}

}

(b)
Ĉ3 Ĉ4

Ω1

{
{0.2868, 0.2904, 0.3716} ,
{0.2791, 0.3759, 0.2908}

} {
{0.2962, 0.2118, 0.4084} ,
{0.3298, 0.2895, 0.2864}

}
Ω2

{
{0.4239, 0.5364, 0.2797} ,
{0.3679, 0.3056, 0.2708}

} {
{0.2779, 0.2619, 0.2796} ,
{0.2473, 0.2978, 0.3567}

}
Ω3

{
{0.3167, 0.2855, 0.3716} ,
{0.2867, 0.1915, 0.3827}

} {
{0.4318, 0.2839, 0.2563} ,
{0.2879, 0.3729, 0.3919}

}
Ω4

{
{0.2194, 0.2556, 0.3756} ,
{0.3488, 0.2763, 0.2695}

} {
{0.3592, 0.2247, 0.3716} ,
{0.2376, 0.2639, 0.2769}

}
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Step 3a.

Table 6. Aggregated values appyling CL-SV-NHFRWA operator.

CL-PSV-NHFRWA AO Values Score Function Values

Ω1

{
{0.2098, 0.3718, 0.2849} ,
{0.2965, 0.6178, 0.5993}

}
0.2467

Ω2

{
{0.3659, 0.6713, 0.7289} ,
{0.5472, 0.6549, 0.8572}

}
0.2792

Ω3

{
{0.4387, 0.7583, 0.6475} ,
{0.5493, 0.6207, 0.7498}

}
0.3841

Ω4

{
{0.6523, 0.4596, 0.4196} ,
{0.3976, 0.6594, 0.6757}

}
0.3079

Step 4a.

Table 7. Ranking of the alternatives.

AO Score Ranking
CL-PSV-NHFRWA S (Ω3) > S (Ω4) > S (Ω2) > S (Ω1) Ω3

Step 3b.

Table 8. Aggregated values applying CL-SV-NHFRWG AO.

CL-PSV-NHFRWG AO Values Score Function Values

Ω1

[
{0.2098, 0.3718, 0.2849} ,
{0.2965, 0.6178, 0.5993}

]
0.4893

Ω2

[
{0.3659, 0.6713, 0.7289} ,
{0.5472, 0.6549, 0.8572}

]
0.6276

Ω3

[
{0.4387, 0.7583, 0.6475} ,
{0.5493, 0.6207, 0.7498}

]
0.7936

Ω4

[
{0.6523, 0.4596, 0.4196} ,
{0.3976, 0.6594, 0.6757}

]
0.6816

Step 4b.

Table 9. Ranking of the alternatives.

AOs Score Ranking
CL-PSV-NHFRWG S (Ω3) > S (Ω4) > S (Ω2) > S (Ω1) Ω3

AIMS Mathematics Volume 8, Issue 5, 11973–12008.



12002

4.2. Validity test

The proficiency and validity of the aforementioned test are used in this part [47] to evaluate the
sufficiency and validity of our established strategy. The following details about the SV-NPHFR are
enclosed:

Step 1. At this point, we provide the appropriate alternative in place of the less desirable portion of
the alternative, maintaining the same similar positions for each selection criterion.

Step 2. We now determine the total preference values for each alternative under the weighted criterion
using the provided set of SV-neutrosophic hesitant fuzzy rough aggregation operators.

Step 3. After then, use the score function to get the outcome.

Step 4. Rank the alternative.

Table 10. Aggregated values of updated information in validity test.

Aggrigated Values CL-PSV-NHFRWG AO CL-PSV-NHFRWA AO

Ω1

[
{0.2294, 0.2938, 0.2347} ,
{0.3264, 0.5193, 0.4153}

]
0.3978 3426

Ω2

[
{0.3144, 0.4523, 0.5419} ,
{0.2442, 0.4289, 0.6272}

]
0.4583 3242

Ω3

[
{0.3457, 0.6173, 0.5465} ,
{0.4253, 0.4157, 0.5468}

]
0.5642 4754

Ω4

[
{0.4324, 0.3286, 0.2916} ,
{0.2646, 0.5654, 0.5472}

]
0.4726 4126

Table 11. Ranking of the alternatives in validity test

AOs Score Ranking
CL-PSV-NHFRWG S (Ω3) > S (Ω4) > S (Ω2) > S (Ω1) Ω3

CL-PSV-NHFRWA S (Ω3) > S (Ω4) > S (Ω1) > S (Ω2) Ω3

4.3. Compression evaluation

The goal of this section of the essay is to contrast our innovative research with some existing
procedures in order to show how better and reliable it is. The following part will compare and
contrast our work with that of operators from the SV-NWA [48], SV-NWG [48], SV-NWA Dombi (SV-
NDWA) [49], SV-NWG Dombi (SV-NDWG) [49], SV-NRWA [50], SV-NRWG [50], T-SHFWA [51],
T-SHFWG [51], SV-NHFRA and SV-NHFRG [35] AOs. Table 12 provides the overall analysis of
the comparison study. Since both positive and negative features are present in our data, all other
methodologies are unable to provide us with adequate findings. If the CL is ignored, we are unable
to compare our findings to those of earlier research. Due the this resin our comparison part is so
simple. Decision confidence, or the sense of having made a choice correctly or erroneously, is a crucial
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component of subjective experience during decision-making. It rises for right selections and falls for
wrong ones as the difficulty of the task lowers. We add the validity test to test our validation. We can
see from the analysis that

Table 12. Comparative analysis.

AOs Result Ranking
SV-NWA Incapable of access No outcome
SV-NWG Incapable of access No outcome

SV-NDWA Incapable of access No outcome
SV-NDWG Incapable of access No outcome
SV-NRWA Incapable of access No outcome
SV-NRWG Incapable of access No outcome
T-SHFWA Incapable of access No outcome
T-SHFWG Incapable of access No outcome

SV-NHFRWA Outcomes S (Ω3) > S (Ω2) > S (Ω4) > S (Ω1)
SV-HFRWG Outcomes S (Ω4) > S (Ω3) > S (Ω1) > S (Ω2)

CL-SV-NHFRWA Outcomes S (Ω3) > S (Ω4) > S (Ω2) > S (Ω1)
CL-SV-NHFRWG Outcomes S (Ω3) > S (Ω4) > S (Ω2) > S (Ω1)

4.4. Advantages

This section explains the benefits of the suggested work over the current work. These are the benefits
of our work:

(i) It is said and demonstrated that SV-NHFRS is preferable to IFS, PyFS, and SV-NS as an illustration
of how several CL are taken into account while determining the optimal choice.

(ii) CL-SV-NHFRS AOs are more adaptable than IFS, PyFS, and SV-NS Einstein, Dombi aggregation
operators.

(iii) Every concern raised in the literature can be addressed by proposed operators, however current
operators are unable to do so when the data is presented in SV-NHFRSs.

(iv) As a realistic and helpful technique for modeling various uncertainties in typical MCDM
scenarios, SV-NHFRSs were used. By dividing the concept of CL into three parts, it is possible
to define indefinite and incomplete MCDM information properly.

(v) The application of CL could significantly increase the computational effectiveness of information
fusion in MCDM information fusion approaches. Moreover, it may be possible to model choice
risks using information fusion techniques.

(vi) A recent advancement in fuzzy set theory is the use of SV-NHFR sets, which can more properly
handle uncertainty in practical settings. As a result, the suggested approach is better suited than
current ways to address real-world and engineering decision-making issues.

(vii) Also, Table 10 shows that the results derived using the various methodologies available do not
take the qualities into consideration during the study. In other words, all of these methods tested
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their hypotheses with the assumption that decision-makers have total faith in the items under
study. These kinds of requirements are, however, only partially realized in practise.

(viii) A specific instance of the proposed operators is the existing aggregation operators. As a result,
we draw the conclusion that compared to the existing aggregation operators, the ones provided
are more broad in nature and more suited to address real-world problems.

5. Conclusions

We deal with sophisticated and difficult data every day. To work more efficiently and compute
thorough information, we developed methodologies and tools for this type of data. Aggregation incurs
expenditures just to reduce the volume of data to a single value. The SV-NHFRS was created as a potent
combination of an SV-NRS and HFS for situations where each item has a range of possible values that
are dictated by MD, indeterminacy, and non-MD. The operators CL-SV-NHFRWA, CL-SV-NHFRWG,
CL-SV-NHFROWG, and CL-SV-NHFROWA are given advice on this page. Also proposed was a novel
MADM approach based on the CL-SV-NHFRWA and CL-SV-NHFRWG operators. Further details
about the advantages of these tactics are provided below.

(a) At first, idempotency, commutativity, boundedness, and monotonicity are covered as basic
principles and characteristics of the CL-SV-NHFRWG and CL-SV-NHFRWA operators.

(b) Second, the flexibility of the suggested AOs is demonstrated by the conversion of the CL-SV-
NHFRWA and CL-SV-NHFRWG operators to the earlier AOs for SV-NHFSs.

(c) Third, when compared to existing methods for solving MADM problems in an SV-NHF context,
the results produced by the CL-SV-NHFRWA and CL-SV-NHFRWG operators are reliable and
accurate, proving their applicability in real-world situations.

(d) Fourth, compared to existing methodologies, which are unable to account for the interrelationships
of attributes in real-world applications, the MADM techniques proposed in this paper are also
capable of recognising more correlation between attributes and alternatives. This shows that they
have a higher accuracy and a larger setpoint. This demonstrates that even more linkages between
features may be found utilizing the MADM approaches described in this research.

(e) Fifth, in order to discover a practical method, the suggested AOs are also employed in practise to
look at symmetrical analysis.

(f) Sixth, the proposed AOs may be used in future studies on customised individual consistency control
consensus problems, consensus building with non-cooperative behaviour management decision-
making problems, and two-sided matching decision-making with multi-granular and incomplete
criteria weight information. The levels of participation, abstention, and nonmembership are
irrelevant for the purpose of this investigation of the limitations imposed by suggested AOs. A
novel hybrid structure of prioritised, interactive AOs is being implemented on this side of the
proposed AOs.

(g) Seventh, we will examine the theoretical basis of CL-SV-NHFSs for Einstein operations in
upcoming work using advanced decision-making methodologies like as TOPSIS, VIKOR,
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TODAM, GRA, and EDAS. We’ll also go over the ways in which these techniques are used
in a number of disciplines, including soft computing, robotics, horticulture, intelligent systems,
social sciences, finance, and human resource management.
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