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Abstract: In this paper, the new general solution for a class of higher-order impulsive fractional
differential equations (IFDEs) involving the Riemann-Liouville (R-L) type Hadamard fractional
derivative (FD) is presented. Specifically, the necessary and sufficient conditions of the solution
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1. Introduction

Fractional calculus is used as a powerful tool to describe the memory and hereditary properties of
various materials and processes [1-4]. Compared with the classical integer-order differential equation
models, the fractional-order differential equation models become more practical and realistic by the
effect of these characteristics of the FDs. As a matter of fact, in many engineering and scientific
disciplines, fractional differential equations (FDEs) all exist, among which include physics, chemistry,
biology, control theory, economics, signal and image processing, blood flow phenomena,
aerodynamics, biophysics, fitting of experimental data, and so on [1,3,4]. For further developments
about this topic, please refer to the references [5—10] and see the related references therein.

It is important to study the IFDE. The existence of solutions about various I'VPs for IFDEs included
with Caputo FDs or the R-L FDs was studied by authors in papers [11-17] recently. The solvability of
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various BVPs of impulsive DEs involved with the R-L FDs was researched in the references [18-25]
in the past few years.

However, we should notice that most of the works on this subject in the past were based on R-
L FDEs and Caputo FDEs. In 1892, another kind of FD was introduced by Hadamard, called the
Hadamard type FDE, which differs from the previous FDE in that the kernel about the integral and
derivative contains a logarithmic function of the arbitrary exponent. One similar property for both the
Hadamard and R-L FDs is based on the fact that the derivative of a constant is not equal to zero. That’s
because their definitions include the general derivatives beyond the integral.

Recently, some results have been achieved in the study of BVPs or IVPs for IFDEs, which involve
IFDEs with Hadamard derivative with a single starting point see the references [26-31]. For example,
the existence of solutions for a class of [VPs for impulsive Hadamard FDEs was established by Wang
etc in [29].

DY u(®) = f(t,u®),t € (L el\{t1, -+ st}

Hrceu(e) - HIou () = p e Ri=1,2,--- ,m, (1)

Hllljf’u(l) =uy € R,

where a € (0,1),7 D1, is the left-side Hadamard FD of order a with the single starting point 1 and Hy ]1;“
denotes left-side Hadamard fractional integral (FI) of order 1 — @. The existence of the solution was
proved by using the Banach contraction principle and Schauder’s fixed point theorem on the weight
spaces of piecewise continuous functions.

The following Cauchy problem with R-L Hadamard FD and the impulsive effect was studied in [31]:

HDu(t) = f(t,u(0), 1 € (t1,1:11,i = 0,1,2,--+ ,m,

ATDI u () = ¢i (u (1), i = 1,2, ,m,

(2)
AHI(%:QM (ti) = I,Z/i (I/l (l‘,‘)),i = 1,2’ ceem,

HDZ:lu(a) =u €R, Hlfjau(a) =u €R,

where « € (1,2],”D, is the R-L Hadamard FD of order =, “I*, is the Hadamard FI of order *,a =
th <t < -+ <ty < tyy; = e are the impulse points, f : (a,e] X R — R is a continuous function,
¢i- 0 € C(R, R). The jump conditions are defined by Au (1)) = u (") = u(t),i=1,2,--- ,m.

We find that some of the lemmas about the BVPs for IFDEs involving Hadamard FDs in [31] are
wrong (see Remarks 3.1 and 3.2 and the counterexample in Section 3), despite ideas in these documents
are very good. For this reason, the article gives the following new general solution for the FDE

HDY x(1) = g(1), ae. ,t € (t;, ;11,1 € Z7, 3)

where
(i) @ € (n—1,n) which n is a positive integer, Z;, = [b,b+1,b+2,---,c] with b,c being
nonnegative integers,
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)l =1<t < - <ty <ty =eandr,(i =1,2,---,m) are constants (i.e., impulse points),
qE€ Z’l"l,

(iii) g: (1,e] = R, g€ C°(1,e],|g(®)| < (Int)*(1 —In¢), ae,t€ (l,el,k>-1,1<0,1 +k+1>0,

(iv) “ D7, is the standard R-L Hadamard FD of order = with the starting point 7 = 1.

A function x : (1,e] — R is called a piecewise continuous solution of (3) if x| .. (i € Zg‘) is
continuous, lim,,+ (Int —In#)"* x(¢) is finite, 7 Di.x € L'(1,e] and satisfies (3) for almost all
te (1,e].

In Section 2, some definitions are given, and we establish the new expression of the general solution
of (3) in Theorem 2.1. In Section 3, we point some incorrect lemmas out in recently published papers
by remarks and counterexamples.

2. Main results

Let us recall some basic definitions of fractional calculus [1,25]. Then the main result will be
proved. Let the Gamma function and the Beta function be defined by

+00 1
I'a) = f x e *dx, B(p,q) = f (1 — x)P ' x4y,
0 0

respectively for @ > 0, p, g > 0. We denote log, t by In¢ for ¢ > 0.
Definition 2.1. [25] Let @ > O and h : (a,b) — R be a sufficiently good function. The left side
Hadamard FI of order a about /4 is given by

1

H ja _
Iho) = 5o

A
d
f(lnt s 2> a,
B s

provided that the right-hand side makes sense.
The left side Hadamard FD of order a € (n — 1, n) which n is a positive integer about 4 is given by

1 a\'l oty dsS
F—a (td_t) [L (Inf—1Ins) h(s)?] ,t>a,

provided that the right-hand side makes sense.

Let @ € (n— 1,n) with n being a positive integer, ¢ € Z"~'. The left side mixed Hadamard FD of

order « of & is given by
1 a\'l ds
t— Int—Ins)"*"h(s)—
F(n—a/)(dt) [j;(n ns) (s)s

provided that the right-hand side makes sense.

Remark 2.1. Let « € (n—1,n) which n is a positive integer. It is easy to know that "D h(t) = ¥ D h(t).
Remark 2.2. Let @ > O and & : (a,b) — R be a piecewise continuous function, i.e., 4 is continuous
on each subinterval (¢;,t.,,1( € Z]) = {0,1,2,--- ,ml,a =1t <t <ty < -+ <ty <ty =e) The

qDZ+ h(t) =

, 1> a,
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Hadamard FI of order @ > 0 of & at the point 7 € (¢, ;1] is given by

Hre h(t) = — @ f (Int —In s)*~ 1h(s)—

= Fil (lnt —1In S)(l 1 (lnt In s)a 1
i Zof S )= f T st

provided that each term of the right-hand side makes sense (it means ft _l”' (Int—1In s)“‘lh(s)%(i € Zy)

and ['(Int —In 5)*~'h(5)L exist ).

Leta >0and % : (a,b) > Rbea piecewise continuous function, i.e., & is continuous on each
subinterval (¢;,#,,](G € Z) = {0,1,2,- mha =1t <t <th <-+<t, <ty = e) The R-L
Hadamard FD of order « about the functlon h: (a,b) — R at the point ¢ € (¢, ;4] is given by

1 ) h(s) @
I'h—a) dt f (Int —Ins)e "+l

¢ “t (Int — In s)*! d "(Int—Ins)" " ds
Z( ) f T—a) X )_+(’E) T T O

1=

HD(t h([) _

where n — 1 < a@ < n, provided that each term of the right-hand side exists ( it means both
()" [ (nt—Insy-o-ln(s)L (i e Zy) and (1 4)" [[(nt —Tn s)"o"Th(s) %L exist).

Now, we establish the new expression of the general solution of (3).
Theorem 2.1 Suppose that (1)—(iv) hold. Then x is a solution of (3) if and only if there exist constants
ciwe€R (v=12,---,n, j=0,1,2,---,m) such that

a—1
x(t)—Zchv (nr—Ing)" IM ()— te(ttim],icZl, (4)

j=0 v=1

Proof. Step L. Suppose that x is a solution of (4). We prove that x is a piecewise continuous solution
of (3).

Since |g(f)] < (In#)*(1 —In¢) for all t € (1,e) and g is a continuous function on (1, e], we obtain
for t € (1, e] that

(ln t—In tj)n_a

I ) ds
fl Ta-i) 8 (5) s

"t (ni-ln 5)*! ds
< (lnt—lntj) \ W'g(SNT

(lnt—lnt) ll%(lns)k(l —Ins)'&

IA

[ a+l—i—1
(Inr—tng)"" [ RERLTT (1n e by 12 = )

a-itktl [T AT
(lnt— Int¢; ) (Int) j(; T W d.

Then ;.1 € C(tj.tj1] and lim,_: (Int = Int;)" " x(¢) is finite by 1 +k +1> 0.

AIMS Mathematics Volume 8, Issue 5, 11837-11850.



11841

From (4), for ¢ € (¢;, t;+1] and Remark 2.1, we have

1Dy x(0) = = (1£) [/(nt = In sy x(s)L

(z(,l) ) })ff“(lm In sy~ Lx(s) 2 +(r)" [ (ni=In sy~ x(5) %2
I'n—-a)

i1 1 _ = a—1 .
G =Y f* (In £—In 5)"~~ 1( Ty Iy Cop(in s=In )~V [ drsn g(u)%)%
- F(n—a)

. ) S _ a—1
(t4)" [ ane-In s)"’“’l(ZL:O T Ciplin s—In 7)o"+ 7 Qi — g(u)d—;)%
+ I'n—a)

L ol - o
_ (Z{%)" Zl/zi) Zi:() :l chVf-ﬁ (Inz=In sy"= l(ln s=Inz)® V% ( b Ins—Ing _ W)
- I'(n—-a) -

lnt Int,

(z S DY Yo flit(lnt—ln )" (In s—In )V 48
I'(n—a)

Ins—Int, _
(by Inz=In t: - W)

(ns-nw?®~! 4 d
(tdt) f(fu(lnt In sy*--! nrr?au) S8 (by Ins—Inu _ W)

I'(n—a) Int—Inu
lnr/H —Inz
d\" vi-1 i—1 n—v Int=Intx n—a—1 w
(15)" Zish T 2y cen(ini=Inzy) fln T (1-w) dw
— Inr —In tx
I'(n—a)

. g o
(t4)" 2o 3", cep(nt=In 1" fingoing, (1-w)' ™ wdw

Int—Inty

+ I'(n—-a)

(z LY [ n =Ty ) (=)= 50 ) g )

T'(n—a)
(ldt) Z Ckv(lnl Int)"™ ‘J(‘)(] w)yr—e= Ly dw
T'(n—a)
(ld[) f(lnt lnu)n I(j(‘) (1- W)n = 1”1_(20) dw )g(u)du
T'(n—a)

=g(®),t € (t;, tin],i € NJ.

It follows that x is a piecewise continuous solution of (3).
Step I1. We prove that x satisfies (4) if x is a piecewise continuous solution of (3). For ¢ € (¢, #{],
we have from (3) that

7 (In¢=In 5)! s - o o
fl . trl(a)) (S)d HI 18(1) = HI HD L x(1)

T (Inr=Ins)*~! (@ \V'[ (¥ (ns—Inw)*! du ds
= |, I(@) ( ds) Ul e X(I/t)u] .
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- esra(ot) [ ]
= o) [ ]

# e ()T o] 4
=- S ()[R wd]|

t=1

el O | W e et O
- ) [ ],
][l e () (k) £
3 Zczl (S%)n—v [fls (In s;ng():)-"-l x(u)%] (InnH*

=1 T'(a—v+1)

T (Int—Ins)*™" S (In s—Inu)"~*"! du ds !
+ [fl T@—n+1) (f1 ey (1) u) s ],

= N () e ]|
[ ] S e e |
= - 5 ()1 k]| e
[ [ |
= - 30 (o) st e ot e o

It follows that there exist constants ¢y, € R(v = 1,--- ,n) such that

1 1 a—1 d
X(0) = Sy con(In ) + [T BRI g(5)4 1 € (10, 1]

_ d\'7VT S (ns=Inuy—! du
Coy = — (SZ) [J{ Sl"(n—a) X(M);] .
We know (4) holds for i = 0. Supposing that (4) holds for 0, 1,2, - - - , i, we will prove that (4) holds

for i + 1. Then by mathematical induction method, we obtain that (4) holds for all i € Zf'.
In fact, we suppose that

_ a-1
0 =00+ Y)Y e (ini - ns) IM O el ©)

j=0 v=1
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Then for ¢ € (t;,1, tis2] , we have

() g 7 nitn syt x() (14 )" [ (In—In sy x(s) e
_ H _ 't J s 1 ym s
g(t) - Dclerx(t) - - I'(n—-a) :

no; ti+1 o P _y s (In s—In u)@=! !
(@) X J) et '(ZLO 1) Con(In s=Ing)? 4 [ QRSR— o )%“)%

T'(n—a)

~1
(t 4y f  (n=In gy l(cp(s)+z;+1oz Cep(In s=In 1) 4 [} (a0 (u)@)g

T'(n-a)

~ (t%)nz fj (lIlt In S)n a— l( oo n CK",(IHS—lﬂtx)aiv)%
- I'n—a)

(t 4y f  (n=In gy H(ZHLEr, cep(ins—Ing)? ™) &
T'(n-a)

In s—Inw)@=! o
(tdt) f(lnt In 5)"~ '(fs 7("Sr?(:;) g(u)%)% N (t%)n frl_il(lnt—ln ) 1(I)(s)%
I'(n—a) ['(n—a)

(td,) =1 sy"-o- l(fs %g(m%)‘é Ly f (In r=In 5)"=*~ (s) &
I'(n—a) [(n-a)

_(18) S Sl T lcmf '(Inr—In sy~ (In s-In 7)™ 4
- I'(n—a)

(I%)anL{)ZL |L“f (In7=In $)" 2 1(In s—In£,)*" ‘d‘
+ F(n @)

P L Lo S ot g
z+1

I'(n—a)
ln1j+1—ln1,<
d\" i i n . n—v Int—Intg n—a—1,, a—v
(t4)'%i, Tl Ty cop(int=Inty) It Ing (1-w) W dw
_ Int—Inzy

- I'(n—a)

d\" wi+l _ 1 — v
(t4) L 3 e t=In )™ fing;, —inge (1=w) " w@Vdw
Int—In 1

+ I'(n—a)

L) fannoy ™t faow g dwgwdt |y,
I'n-a) D,:rl(D(t)

H—l n v In =1 5 n—v 1 1— n—a—1 a=v g
(ldz) Dito Zy=1 Sey(Int=lnze) fo( w) w—aw +g(t)+HD;i O(F).
i+1

I'(n—a)
We get
g(t) ="D.x(1) = g(t) + "D D().
i+1
So HD;i ®(#) = 0 on (#41,4+2]. Then there exist constants ¢y, € R(v € Z’l’) such that
i+1
(1) = 20, ci+1,v% on (t;11,2] . Substituting @ into (5), we get that (4) holds for i + 1. By
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mathematical induction method, we obtain that (4) holds for all i € Z7. So x satisfies (4) if x is a
piecewise continuous solution of (3). The proof is completed.

3. Remarks and counterexamples

In this section, we present some remarks and counterexamples to illustrate the application of the
main theorem given in Section 2. At the same time, we correct the incorrect lemmas in recently
published papers by remarks and counterexamples.

Remark 3.1.letl =ty <1 <---<t, <ty =ecanda € (1,2). From Theorem 2.1, we know that x

is a solution of
BDY u(r) = f(t,u(r), 1 € (t;,t11],i = 0,1,2,--- ,m

AHD?:IM(II) = ¢i (u(tl))’l = 1,2" e, m

(6)
AT u () =g (u(@),i=1,2,-- ,m
HD?IIM(D =u €R, Hlf:“u(l) =u, €R,

if and only if
(In£)*~2

a—1
x(1) = r(a)(lnt) + r(a )

b D) g 7w D) Y

(o) Jj=1 T(a-1)

7 (Inz=In §)@~ .
[ O F(s, X() L1 € (8 i) i € T

We note that IVP(6) (that is similar to (6)) was studied in [31]. Corollary 3.5 in [31] is as follows:
Result 3.1. Suppose a € (1,2), 4, h € R. Then IVP(6) is equivalent to the following integral equation:

a-l a2 7 (In¢=In 5)*~! ds
F(a) (ln ) + F(a ) (ln ) + fa @ S uls) Tt ea,n],
u AN a2 ! (Int-Ins)*! ds
TCIV) (ln Z) + F(a 1) (ln ) + fa (@) f(s M(S))

ko | wi@) (10 0\2 | ¢iw@) (1, 1\
+Zi:1[r(a—1) (ing)" "+ 2 (nf)

W=7 T ) + e ] [ (2 e ()

7 (Int—Ins)*~ ds
+ [} R f G u(s)

a

_u1+faf; f(s,u(s))% (ln L)a—l o ln;i+u2+Lf1(1nzi—ln s)f(s,u(s))% (ln L)(z—z

[(a) i [(a-1) a

7 (In—In 5)*~ ds :
— [ s, u() L]t € (1 1) i € 2.
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Example 3.1. [31, Example 1] Consider the following problem:

3
HD? u(r) =1Int,t € (1,3],1 # 2,

AHD?M(Z) o, AHP u2) = HD2 u(l) =u; €R, HI u(l) =u; e R.
By Result 3.1, Zhang in [31] get that

M u -1 7 (Int=Ins)2 lns)2 ds

TG/2) r(1/2)(ln n72+ f oD | Ins<, 1€ (1,2],
-1 (n7—Ins)2 lnA)Z

TG/ FS‘ 5 (n 73 + f tap Inse

1 1
+[r<1/2) (ln 5) i (ng )2]

u(t) =
< 1 -1 Inz-1 2
~146 4 81 | i n )t + i ng o+ <“If(3;‘2;) In s
2 ds 1
u1+fl Ins<* +\2 ulln2+u2+f (In2-In v)lnv -1
T T3 (1 5) - r(1/2) ~(In t)
T (Int-Ins)2 ds
~—h WIHST ,1 € (2,3]

U 1 (lnt)2
mamInD? + g (ng ! € (2],

1

1
Ui —= (1[12‘)2 2 2
TG/2) mizn o) :+ ra T ran r<1/2> (lns ) + o (m )
_ _ S uy up -5 (nn?2
= 1 146+ 181 | i (gt + o2

_ui+3(n2) (ln ,)% w2+ (In2)®
2 P

r(3/2) T'(1/2) (hl t)_j
B oo = wbw | re .30

We find that for r € (2, 3]

3 a2 [t -1 ds
Hna _(15) f{ani-Ins) 2u(s)%
Di.u(r) = T(1/2)

_(14) Pni-in s)*%u(s)%{z%)z fni-In s)*%u(s)%
= T(1/2)

-1 1 (ns)
(td,) [Z(ni-Ins) 2[r(3/2)(lns)2+m/2)(lns) UNULLS

T(7/2)
I(1/2)

2 . .
_1 d -5 up £
e (15) fnr—Ins)™t | gim(ns):?

5 1
-l o3 3 2
+ i (I D + o5 T (ln ) + o (m )

(In s) 2
I'(7/2)

[ + h3] (ﬁ(ln OF + mi(n ) +

1 5
_u1+%(ln2)2 s\2 _ In2+uz+ £ (In2)? -1 (ng? (1 _ 1 ds
TG/2) (1 z) —anAns9) 7 — 715 fm Ins(1 —w)2wdw || £

AIMS Mathematics
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d\2 [t — ,l (an)
(15)" [ ne=Ins) [m/z)(lﬂs) + 7y () +r(7/2>]

Ir'c/2)

1
et () e =10t [t (n3)” + s (2] | ¢

5
_1 (Ins)2
(Ins)™2 + D

up
T(1/2)

(26 + h81 s (14) [in—1n s)—%( u

5
u1+%(1n2)2 s)2 Lt11r12+142+%(ln2)3 1 (ns)? (1 1 ds
—am (In3)" - R () Ry (= w)swdw ) €

2 -
+m(l‘%) J(;l( )_71—(1/2)W dw+1“(1/2)( )(ln )J(‘)(l )_%%W%dw

5
_1 . (ns)2
(Ins)™2 + /D

2 t _1 u u
_[/16+h6]r(1/2 (td%) L(lnl’—lnS) 2( 1 F(12/2)

L 5
w+in2? 1\ In2+up+E(n2)} _1_ (ng? I 1 ds
C TG (ln 5) N r'(1/2) (Ins)™2 — T(/2) ﬁnz(l —w)2wdw r

— 1 a\* [t L u 1 L,a s)%
=Int - [16 + hdlim (t4) [f(nt—Ins) 2(F(3‘/2)(ln $)? + s (Ins) 7t + 9

1 5
ur+5(In2)> s\2  wIn2+u+i(n2)? -1 (ng2 1 L ds
TTTGR) (ln 5) - TR A Ve 75 flnz(l —w)zwdw | ¢

# Int, if [A6 + ho] # 0.

It is easy to see that Theorem 3.4 in [31] is incorrect.
Remark 3.2. Let a € (0, 1). Wang and Zhang (Lemma 2.9 in [29])proved that u is a solution of

DS u(r) = f(t,u(®),t € (1, e]\{tr,- -~ ,tu},
”11‘+ u(ff)-"0ou(t) = preRi=1,2,--,m, 7
Hlllfau(l) =uy € R,

if and only if x satisfies

n ns)¥ 1
x(t) = r() +f : [rlm)) f(s, x(s)E, 1 e (1,1], )
)(lnt)a Ly Z] | 1_(a)(lnt)d | f (lmrl(r;;) f(s X(S)) e (titia].ic Z'I”.

LetAg = =%, A; = r( ) for i € Z{'. We can rewrite this expression by
i t -1
_ (Int —1In s)* ds .
x(H)= Y A(nn) + f ————f(s, x(s))—,t € (t;, t;41], i € ZT'.
]Z(; ! ) s " !

Then for ¢ € (t;,t;,1] , we obtain

AIMS Mathematics Volume 8, Issue 5, 11837-11850.
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(rd) J;t(ln t—In 5)™"x(s) %
I'l-a)

H D{ x(1) =

_ (I%) Zi_:lo ti”l (Int=In s)"“x(s) % +(t%) ftl_r(ln t—In s)"%x(s) de
= T(-a)

. -1
() T [ et o) £ Ayt [ O a4 )
= T(-a)

. ¢ o a—1
() = 7o A [ R rxan 4)4
- I'(l-a)

N (1) Xy X Ay [ (nt—In )= (in 5)*~ &2
T(1-a)

(1) Zico i A fiee 1wy wdw
p— n
- I(1-a)

~1
(t8) Sig Aj fing; 1=y @we dw+(r) [ [1(Inr—In sy O30T ds gy e
+ lnr

I'(l-a)

(14)xh4A; fl“’l(l —w) W dw
lnt

I'(l-a)

(15) X0 A ﬁn, A=wyowr dw (e [1 [l 1w "Wm dw f (u,x(u)) 42
T(1-a)

+

(%) Tic0Aj flil (1-wywlaw
= f(t, x(1)) + £ f(t, x(1)), if A; £ 0.

I'l-a)

It shows that Lemma 2.9 in [31] is wrong.
By Theorem 2.1 (n = 1), we know that x is a solution of HD" u(t) = f(t,u(),t € (l,e]\{t;,- -+ ,tn}
if and only if there exist constants ¢; € R such that

i _ a—1
x()= Y ci(nt=Ing))’ fwf( x(s))— te(tntinl,icZl.
j=0

Then
Brzox() = F(Q)ch f £(s, x(s))— te(tutinl,i€Zy.

Hence “I/7%u (tl*) e i’ (tl.‘) = pi,i € Z!" and “I17°u(1) = uy imply that ¢; = rf’),l € Z!" and

— _W
€0 = T
1 tarfl . a—1 ! (Int-1 a— .
It follows that x(1) = S0+ 5| 2o (Inr —Ing;) + [ O f(5, x(5) L, 1 € (1, 1] i € Z3.

This is a corrected form of the solution to the above-mentioned problem.
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4. Conclusions

The authors believe that the article will be appreciated by the researchers working in the field of
impulsive fractional calculus and be helpful for study on the boundary value problems for impulsive
fractional differential equations involving Hadamard fractional derivatives and in the nonlinear area and
the numerical simulation, especially for study in the the solvability of boundary value problems, initial
value problems or numerical solutions of boundary value problems for impulsive fractional differential
equation involving the Hadamard fractional derivatives
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