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1. Introduction

Many real life dynamical systems experience sudden changes or shock. These systems are subject
to impulses and can be mathematically modelled using impulsive differential equations. There are two
types of such impulses. The first type takes place over a relatively short time compared to the overall
duration of the whole process, and is modeled using instantaneous impulsive differential equations. It
can be found in many biological phenomena involving thresholds, bursting rhythm models in medicine
and biology, optimal control models in economics, and frequency modulated systems [1–3]. In the
second type, the changes begin impulsively at some points and remain active over certain time intervals.
The mathematical models of these systems use non-instantaneous impulsive differential equations.
These equations give rise to new hybrid dynamical systems which contain a continuous-time dynamical
system, a discrete-time dynamical system, and an algebraic system [4,5]. Non-instantaneous impulsive
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differential equations provide an excellent tool to describe the injection of drugs in the bloodstream and
their consequent absorption in the body. A generalization of impulsive differential equations are the
impulsive differential inclusion, where the right hand side is replaced by multifunction. The studies
in [6–10] contain results on the existence of solutions of mild solutions for different kinds of impulsive
differential equations and inclusions.

Differential inclusions and differential equations with non-local conditions, in general, arise in
many application in engineering and biology [11], including projected dynamical systems,
discontinuous and switching dynamical systems, nonlocal neural networks, nonlocal
pharmacokinetics, nonlocal pollution and nonlocal combustion. Many results on nonlocal differential
equations and inclusions have been established [12, 13].

Like other differential equations and inclusions, impulsive equations are also generalized to their
fractional versions. Fractional calculus has many applications in industry and applied sciences [14–23].
There are many definitions of fractional derivatives, some of which have a singular kernel as those
given by Riemann-Liouvill and Caputo [23, 24]. Recently, fractional derivatives with nonsingular
kernel were introduced, such as, Caputo and Fabrizio (CF) [25], in which the kernel was based on
the exponential function, and Atangana and Baleanu (AB) [26], in which the kernel was based on
the Mittag-Leffler function. In [27–29] some application for the AB derivative are given. Several
researchers established existence results for solutions of fractional differential equations involving AB
derivative in finite dimensional spaces [30–40].

It have been noticed that all existence results in the above cited works, concerning differential
equations involving AB derivative, do not contain impulsive effects whether instantaneous or non-
instantaneous, and the great majority were concerned exclusively with finite dimensional spaces.

Still, the number of results in the literature about the existence of solutions for differential
inclusions (the right side is a multifunction) involving AB derivative is rare. To the extent of the
authors’ knowledge, the existence of solution for fractional differential equations or inclusions
containing AB derivative in the presence of non-local conditions, impulsive effects has not been
treated yet. This paper attempts to fill the gap in the literature. The main contributions of this work
can be summarized as follows:

(1) A new class of differential equations and differential inclusions containing AB derivative with
instantaneous or non-instantaneous impulses and nonlocal conditions in infinite dimensional
Banach spaces are formulated.

(2) The existence/uniqueness of solutions for the formulated equations and inclusions were proved.

(3) A generalization of a recent result (Theorem 3.1 in [33]) to infinite dimensional Banach spaces in
the presence of both impulses and nonlocal conditions is provided and proved.

(4) The used method helps interested researchers to generalize results to the case where the right hand
side is a multifunction, or in the presence of both impulsive effects and nonlocal condition.

Notation 1.1. Through out this paper, we fix the notation to be as follows:

• J = [0, b] ⊂ R, where b > 0, and 0 = s0 < t1 ≤ s1 < t2 ≤ s2 < t3 · · · < sm < tm+1 = b is a partition
of J.

• J0 = [0, t1] and Ji = (ti, ti+1], i = 1, 2, ...,m.
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• E is a real Banach space, and u0 ∈ E is a fixed point.

• Pck(E) = {B ⊆ E : B is non-empty, convex, and compact}.

• H1((a, b), E) denotes the Sobolev space {u ∈ L2((a, b), E) : u′ ∈ L2((a, b), E)}.

• PC(J, E) is the Banach space which consists of the functions x: J → E such that x|Ji ∈ C(Ji, E),
i = 0, 1, 2, ...,m, and x(t−i ), x(t+i ) exist for each i = 1, 2, ...,m. The norm on PC(J, E) is given by:

||x||PC(J,E) := sup{||x(t)|| : t ∈ J}.

• For a multifunction F, and u ∈ PC(J, E), the space S 1
F(.,u(.)) denotes

{z ∈ L1(J, E) : z(s) ∈ F(t, u(t)), a.e.}.

In the current study, we consider the following impulsive differential equations.

(1) Differential equation with non-instantaneous impulses:
ABCDα

si,tu(t) = f (t, u(t)) a.e., t ∈ ∪m
i=0(si, ti+1],

u(t) = gi(t, u(t−i )), t ∈ ∪m
i=0(ti, si],

u(0) = u0 − g(u).
(1.1)

(2) Differential equation with instantaneous impulses:
ABCDα

0,tu(t) = f (t, u(t)) a.e., t ∈ [0, b] − {t1, t2, ..., tm},

u(t+i ) − u(t−i ) = Ii(u(t−i )), i = 1, 2, ...,m,
u(0) = u0 − g(u).

(1.2)

(3) Differential inclusion with non-instantaneous impulses:
ABCDα

si,tu(t) ∈
∫ t

si
F(s, u(s))ds, a.e. t ∈ ∪m

i=0(si, ti+1],
u(t) = gi(t, u(t−i )), t ∈ ∪m

i=0(ti, si],
u(0) = u0 − g(u),

(1.3)

where α ∈ (0, 1), and ABCDα
si,t is the Atangana-Baleanu fractional derivative in the Caputo sense of

order α with lower limit at si. The map f is a function on [a, b] × E with values in E, and F is a
multifunction defined on J × E whose values are nonempty convex compact subsets of E. The map g:
PC([a, b], E)→ E is a continuous map, and the maps gi: [ti, si]×E −→ E and Ii: E → E, i = 1, 2, ...,m,
are the impulsive functions.

Remark 1.1. The initial condition u(0) = u0−g(u) is in the general form. It is common to be considered
in non-local conditions [11–13]. The advantage of using non-local conditions is that measurements
can be combined in more places to obtain better models. For example, for a non-uniform rod, g may
be given by

g(x) =
i=m∑
i=1

ωig(ti), (1.4)
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where ωi, i = 1, ...,m are given constants [41]. In this case, the formula allows the additional
measurements at ωi, i = 1, ...,m. A formula similar to (1.4) is also used in [42] to describe the
diffusion phenomenon of a small amount of gas in a transparent tube. Also if g(x) = 0,∀x ∈ PC(J, E),
we obtain the local condition u(0) = u0. If g(x) = u0 − u(b), we get u(0) = u(b), while u(0) = −u(b), if
g(x) = u0 + u(b).

The paper is organized as follows. In the second section, we recall all needed facts and results.
Section 3 presents the existence and uniqueness of solution for problem (1.1). In Section 4, we show
the existence of solutions for problem (1.2). Section 5 is devoted to giving the sufficient conditions
for the existence results of solutions for problem (1.3). Two examples are given in the last section to
illustrate the possible applicability of the provided methods.

2. Preliminaries and background definitions

Definition 2.1. [26, 30] The Atangana-Baleanu fractional derivative for a function u ∈ H1((a, b), E)
where a < b in the Caputo sense and in the Riemann-Liouville sense of order α with lower limit at a
are defined by

ABCDα
a,tu(t) :=

M(α)
(1 − α)

∫ t

a
u′(x)Eα

(
−α(t − x)α

1 − α

)
dx, (2.1)

and
ABRDα

a,tu(t) :=
M(α)

(1 − α)
d
dt

∫ t

a
u(x)Eα

(
−α(t − x)α

1 − α

)
dx, (2.2)

where M(α) > 0 is a normalization function satisfying M(0) = M(1) = 1, and Eα is the well known
Mittag-Leffler function of one variable given by:

Eα(µ) =
∞∑

k=0

µk

Γ(αk + 1)
, µ ∈ C. (2.3)

Definition 2.2. The Atangana-Baleanu fractional integral of a function u ∈ L1((a, b), E), where a < b
and with lower limit at a is given by:

ABIαa,tu(t) =
(1 − α)
M(α)

u(t) +
α

M(α)Γ(α)

∫ t

a
u(x)(t − x)α−1dx. (2.4)

Lemma 2.1. [26]. Let u ∈ H1((a, b), E).

(1) ABRDα
a,tu(t) =ABC Dα

a,tu(t) + M(α)
1−α u(a)Eα

(
−α(t−a)α

1−α

)
.

(2) ABRDα
0,t

(
ABIα0,tu(t)

)
= u(t), t ∈ J.

(3) ABRDα
a,tc = cEα

(
−α

1−α (t − a)α
)
.

The proof of the following lemma can be found in [33].
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Lemma 2.2. Let ϖ: J → E be continuous with ϖ(0) = 0. A function u ∈ H1((0, b), E) is a solution
for the fractional differential equation

ABCDα
0,tu(t) = ϖ(t), t ∈ J, (2.5)

u(0) = u0,

if

u(t) = u0 +
1 − α
M(α)

ϖ(t) +
α

M(α)Γ(α)

∫ t

0
(t − s)α−1ϖ(s)ds. (2.6)

Using this lemma, the solution for problem (1.1) can be specified as in the following definition:

Definition 2.3. A function u ∈ PC(J, E) is a solution for problem (1.1) if

u|(si ,ti+1] ∈ H1((si, ti+1), E) for i = 0, 1, ...,m,

and

u(t) =



u0 − g(u) + (1−α)
M(α) f (t, u(t)) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s))ds, t ∈ [0, t1],

gi(t, u(t−i )), t ∈ ∪i=m
i=1 (ti, si],

gi(si, u(t−i )) + (1−α)
M(α) f (t − si, u(t − si)) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 f (s, u(s))ds,

t ∈ ∪m
i=1(si, ti+1].

(2.7)

Remark 2.1. The solution function u given by (2.7) is continuous at si, hence on Ji, i = 1, 2, ...,m.

Definition 2.4. A function u ∈ PC(J, E) is a solution for problem (1.2) if

u(t) =


u0 − g(u) + (1−α)

M(α) f (t, u(t)) + α
M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s))ds, t ∈ [0, t1],

u0 − g(u) + (1−α)
M(α) f (t, u(t)) +

∑i
k=1 Ik(u(t−k )) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s))ds,

t ∈ Ji, i = 1, 2, ...,m.

(2.8)

Remark 2.2. The solution function given by (2.8) is continuous on Ji and u(t+i ) − u(t−i ) = Ii(u(t−i )), i =
1, 2, ...,m.

Definition 2.5. A function u ∈ PC(J, E) is a solution for problem (1.3) if u|(si,ti+1] ∈ H1((si, ti+1), E) is
continuous at si; i = 0, 1, ..,m, and

u(t) =



u0 − g(u) + (1−α)
M(α) f (t) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t ∈ [0, t1],

gi(t, u(t−i )), t ∈ ∪i=m
i=1 (ti, si],

gi(si, u(t−i )) + (1−α)
M(α) f (t) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 f (s)ds, t ∈ ∪m

i=1(si, ti+1],

(2.9)

where f : J → E satisfying f (t) =
∫ t

si
z(s)ds; t ∈ [si, ti+1]; i = 0, 1, ..,m, z ∈ S 1

F(.,u(.)).
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Remark 2.3. The solution function u given by (2.9) is continuous at si, i = 1, 2, ...,m, hence continuous
on Ji = 0, 1, 2, ...,m.

In the following lemma, we recall the Schauder fixed point theorem.

Lemma 2.3. Let X be a Banach space and S ⊆ X be compact, convex, and non-empty. Any continuous
operator T: S → S has at least one fixed point.

3. Existence of a solution for problem (1.1)

Hypothesis 3.1. We assume the following hypotheses:

(1) (H f ) The function f : J × E → E is satisfying

(a) f (0, u0) = 0,

(b) f (., u) continuous for u ∈ E, and for any t ∈ J, the map u → f (t, u) is uniformly continuous
on bounded sets,

(c) there is a continuous function φ: J → R+ satisfying

|| f (t, z)|| ≤ φ(t)(1 + ||z||),∀(t, z) ∈ J × E, (3.1)

(d) there is a continuous function η: J → R+ such that for any bounded subset B ⊂ E,

κ( f (t, B)) ≤ η(t) κ(B), for t ∈ J, (3.2)

and

sup
t∈J
|η(t)|

(
4(1 − α)

M(α)
+

4bα

M(α)Γ(α)

)
< 1, (3.3)

where κ is the measure of noncompactness on E.

(2) (Hg) The function g: PC(J, E) → E is continuous, compact, and there are two positive real

numbers a, d such that

||g(x)|| ≤ a||x|| + d,∀x ∈ PC(J, E). (3.4)

(3) (H) For every i = 1, 2, ..., k, gi: [ti, si]× E → E is defined such that for any t ∈ [ti, si], the function

x → gi(t, x) is uniformly continuous and compact on bounded subsets, and there is γ > 0 with

||gi(t, x)|| ≤ γ||x||, t ∈ ∪m
i=1[ti , si], x ∈ E.

Theorem 3.1. If (H f ), (Hg) and (H) are satisfied, then problem (1.1) has a solution provided that

γ + a + ϱ
(
1 − α
M(α)

+
bα

M(α)Γ(α)

)
< 1, (3.5)

where ϱ = supt∈J |φ(t)|.
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Proof. Let T : PC(J, E)→ PC(J, E) be defined as

T (x)(t) =



u0 − g(x) + 1−α
M(α) f (t, x(t)) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds, t ∈ [0, t1],

gi(t, x(t−i )), t ∈ ∪i=m
i=1 (ti, si],

gi(si, x(t−i )) + 1−α
M(α) f (t − si, x(t − si)) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 f (s, x(s))ds,

t ∈ ∪i=m
i=1 (si, ti+1].

(3.6)

Our aim is to use Schauder’s fixed point theorem to show that T has a fixed point. Set

Bk0 = {x ∈ PC(J, E) : ∥x∥PC(J,E) ≤ k0},

k0 =
||u0|| + d + ϱ(1−α)

M(α) +
αϱbα

M(α)Γ(α)

1 −
[
γ + a + ϱ(1−α)

M(α) +
ϱbα

M(α)Γ(α)

] . (3.7)

The proof will proceed through the following steps.

• Step 1. In this step, we claim that T (Bk0) ⊆ Bk0 . Let x ∈ Bk0 and t ∈ [0, t1]. Using the assumptions
(c) in (H f ), and (Hg), we obtain from (3.6)

||T (x)(t)|| ≤ ||u0|| + ak0 + d +
(1 − α)
M(α)

ϱ(1 + k0) +
αϱ(1 + k0)
M(α)Γ(α)

∫ t

0
(t − s)α−1ds

≤ ||u0|| + ak0 + d +
(1 − α)
M(α)

ϱ(1 + k0) +
ϱ(1 + k0)bα

M(α)Γ(α)
. (3.8)

For t ∈ ∪m
i=1(ti si], we have

||T (x)(t)|| ≤ ||gi(t, x(t−i ))|| ≤ γ k0. (3.9)

For t ∈ (si, ti+1], by repeating the arguments employed in (3.8), it follows that

||T (x)(t)|| ≤ k0γ + ||u0|| + ak0 + d + ϱ(1 + k0)
[
(1 − α)
M(α)

+
bα

M(α)Γ(α)

]
. (3.10)

From (3.8)–(3.10), we obtain that

||T (x)||PC(J,E) ≤ ||u0|| + d + ϱ
[
(1 − α)
M(α)

+
bα

M(α)Γ(α)

]
+ k0

[
γ + a +

ϱ(1 − α)
M(α)

+
ϱbα

M(α)Γ(α)

]
. (3.11)

From this relation and (3.7), it follows that T (x) ∈ Bk0 .

• Step 2. T : Bk0 → Bk0 is continuous. Suppose that xk ∈ Bk0 , xk → x. By definition of T ,
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T (xk)(t) =



u0 − g(xk) +
(1−α)
M(α) f (t, xk(t)) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s, xk(s))ds, t ∈ [0, t1],

gi(t, xk(t−i )), t ∈ ∪i=m
i=1 [ti, si],

gi(si, xk(t−i )) + (1−α)
M(α) f (t − si, xk(t − si)) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 f (s, xk(s)),

t ∈ ∪i=m
i=1 (si, ti+1].

(3.12)

By continuity of f , g, and gi(t, .), and from Lebesgue dominated convergence theorem, we obtain

lim
k→∞

T (xk) = T (x).

• Step 3. In this step, we show that the sets D|Ji are equicontinuous for any i = 0, 1, ...,m, where

D = T (Bk0) and

D|Ji = {u
∗ ∈ (Ji, E) : u∗(t) = u(t), t ∈ (ti, ti+1], u∗(ti) = lim

t→t+i
u(t), u ∈ D}. (3.13)

Let u = T (x), x ∈ Bk0 . We consider the following cases:

Case 1. i = 0. Let t, t + δ be two points in J0 = [0, t1]. By the uniform continuity of f on bounded
sets, we get

lim
δ→0
||u∗(t + δ) − u∗(t)|| = lim

δ→0
||u(t + δ) − u(t)||

≤ lim
δ→0
|| f (t + δ, x(t + δ)) − f (t, x(t))||

+ lim
δ→0

α

M(α)Γ(α)

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t+δ

0
(t + δ − s)α−1 f (s, x(s))ds −

∫ t

0
(t − s)α−1 f (s, x(s))ds

∣∣∣∣∣∣
∣∣∣∣∣∣

= lim
δ→0
|| f (t + δ, x(t + δ)) − f (t, x(t))||

+
αρ(1 + k0)
M(α)Γ(α)

lim
δ→0

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t+δ

0
(t + δ − s)α−1ds −

∫ t+δ

0
(t − s)α−1ds

∣∣∣∣∣∣
∣∣∣∣∣∣

+
ϱα

M(α)Γ(α)
lim
δ→0

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t+δ

0
(t − s)α−1ds −

∫ t

0
(t − s)α−1ds

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ lim
δ→0
|| f (t + δ, x(t + δ)) − f (t, x(t))||

+
αγ(1 + k0)
M(α)Γ(α)

lim
δ→0

∫ t+δ

0
|(t + δ − s)α−1 − (t − s)α−1|ds

+
αγ(1 + k0)
M(α)Γ(α)

lim
δ→0

∫ t+δ

t
(t − s)α−1ds. (3.14)

By condition (b) in (H f ), we get

lim
δ→0
|| f (t + δ, x(t + δ)) − f (t, x(t))||

≤ lim
δ→0
|| f (t + δ, x(t)) − f (t, x(t))|| + lim

δ→0
|| f (t + δ, x(t + δ)) − f (t + δ, x(t))||. (3.15)
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Since f (., x(t)) is continuous, and f (t + δ, .) is uniformly continuous, it follows that

lim
δ→0
|| f (t + δ, x(t + δ)) − f (t, x(t))|| = 0, (3.16)

independently of x. Therefore,
lim
δ→0
||u∗(t + δ) − u∗(t)|| = 0, (3.17)

independently of x.
Case 2. i ≥ 1. let t, t + δ be two points in

Ji = (ti, ti+1] = (ti, si) ∪ [si, ti+1].

If t, t + δ are in (ti, si), then by the uniform continuous of gi(t, .) on bounded sets of E , one has

lim
δ→0
||u∗(t + δ) − u∗(t)|| = lim

δ→0
||u(t + δ) − u(t)||

≤ lim
δ→0
||gi(t + δ, x(t−i )) − gi(t, x(t−i ))|| = 0, (3.18)

independently of x. If t, t + δ are in (si, ti+1), then using the same arguments as in case 1, we obtain that
limδ→0 ||u(t + δ) − u(t)|| = 0, independently of x. If t = si, then

lim
δ→0
||u∗(t + δ) − u∗(t)|| = lim

δ→0
||u(si + δ) − u(si)||

≤ lim
δ→0
||gi(si, x(t−i ))|| +

(1 − α)
M(α)

|| f (δ, x(δ))||

+
α

M(α)Γ(α)

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ si+δ

si

(si + δ − s)α−1 f (s, x(s))ds − gi(si, x(t−i ))

∣∣∣∣∣∣
∣∣∣∣∣∣

= lim
δ→0

[
(1 − α)
M(α)

|| f (δ, x(δ))|| +
αγ(1 + k0)
M(α)Γ(α)

∫ si+δ

si

(si + δ − s)α−1ds
]

= 0. (3.19)

When t = ti,

lim
δ→0
||u∗(ti + δ) − u∗(ti)||

lim
δ→0

lim
λ→t+1
||u(ti + δ) − u(λ)||

≤ lim
δ→0

lim
λ→t+i
|| f (ti + δ, x(ti + δ)) − f (λ, x(λ))||

+ lim
δ→0

lim
λ→t+i

α

M(α)Γ(α)

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ ti+δ

0
(ti + δ − s)α−1 f (s, x(s))ds −

∫ λ

0
(λ − s)α−1 f (s.x(s))ds

∣∣∣∣∣∣
∣∣∣∣∣∣

= 0. (3.20)

Thus, our claim for this step is proved.

• Step 4. Set Bn = T (Bn−1), n ≥ 1 and B = ∩∞n=1Bn.
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The sequence (Bn) is a non-decreasing, non-empty convex, bounded and closed sets. Our goal in
this step is to show that B is relatively compact, hence compact. According to the generalized Cantor’s
intersection property [43], it is enough to show that

lim
n→∞
κPC(Bn) = 0, (3.21)

where κPC is Haudorff measure of noncompactness in PC(J, E), which is defined by

κPC(Bn) = max
0≤i≤m
{χi(Bn|Ji

)},

where χi is Hausdorff measure of noncompacness on C(Ji, E) [43]. Let ϵ > 0, and n ≥ 1 be a fixed,
then there is a sequence (uk) in Bn such that

κPC(Bn) ≤ 2κPC{uk : k ≥ 1} + ϵ = 2 max
0≤i≤m
{χi(D|Ji

}, (3.22)

where D = {uk : k ≥ 1} [44]. The set D|Ji
is defined in (3.13). From Step 2, D|Ji

is equicontinuous,
hence relation (3.22) becomes

κPC(Bn) ≤ 2 max
t∈J

χ{uk(t) : k ≥ 1} + ϵ. (3.23)

Since uk ∈ Bn = T (Bn−1), there is xk ∈ Bn−1with uk = T (xk). One has by the definition of T that

uk(t) =



u0 − g(xk) +
(1−α)
M(α) f (t, xk(t)) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s, xk(s))ds, t ∈ [0, t1],

gi(t, xk(t−i )), t ∈ ∪i=m
i=1 (ti, si],

gi(si, xk(t−i )) + (1−α)
M(α) f (t − si), xk(t − si)) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 f (s, xk(s))ds,

t ∈ ∪i=m
i=1 (si, ti+1].

(3.24)

By compactness of both g and gi(t, .), t ∈ ∪i=m
i=1 [ti, si], it follows that

χ{g(xk) : k ≥ 1} = 0 and χ{gi(t, xk(t−i )) : k ≥ 1} = 0,

for any t ∈ ∪i=m
i=1 [ti, si]. Moreover, in view of (d) in (H f ), for t ∈ J,

χ{ fk(t, xk(t)) : k ≥ 1} ≤ η(t) χ{xk(t) : k ≥ 1}. (3.25)

By the properties of χ, it follows that for t ∈ J, we have

χ

(∫ t

0
(t − s)α−1 f (s, xk(s))ds : k ≥ 1

)
≤ 2

∫ t

0
(t − s)α−1χ ( fk(s) : k ≥ 1) ds

= 2χPC(Bn−1)
∫ t

0
(t − s)α−1η(s)ds

= 2χPC(Bn−1) sup
t∈J
|η(t)|

bα

α
. (3.26)
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Thus, by (3.22)–(3.26), it follows that

κPC (Bn) ≤ χPC (Bn−1)
(
4(1 − α)

M(α)
sup
t∈J
|η(t)| +

4bα

M(α)Γ(α)
sup
t∈J
|η(t)|

)
+ ϵ. (3.27)

Since ϵ is arbitrary, we get that for all t ∈ J

κPC (Bn) ≤ χPC (Bn−1) sup
t∈J
|η(t)|

(
4(1 − α)

M(α)
+

4bα

M(α)Γ(α)

)
. (3.28)

Since this relation holds for every n, we get

κPC (Bn) ≤ χPC (B1) sup
t∈J
|η(t)|

(
4(1 − α)

M(α)
+

4bα

M(α)Γ(α)

)n−1

, (3.29)

which with (3.3) establishes (3.21).

• Step 5. Applying Schauder’s fixed point theorem, the map T : B→ B has a fixed point which is a
solution for problem (1.1).

Remark 3.1. Conditions (3.5) is necessary to show that there exists k0 > 0 such that T (Bk0) ⊆ Bk0 .
Moreover, if

g(x) = 0,∀x ∈ PC(J, E),

and
gi(t, x) = 0,∀(t, x) ∈ [si, ti]; i = 1, 2, ...,m,

then this condition becomes

ϱ

[
(1 − α)
M(α)

+
bα

M(α)Γ(α)

]
< 1. (3.30)

which appears often in the literature, see for example, Theorem 3.1 in [33].

Theorem 3.2. If we replace (H f ) in the statement of Theorem 3.1 by the following condition: (H f )∗

(1) f (0, u0) = 0.

(2) There exists L > 0 such that

|| f (t1, z1) − f (t2, z2)|| ≤ L (|t2 − t1| + ||z2 − z1||) ,∀(t1, z1), (t2, z2) ∈ J × E, (3.31)

then problem (1.1) has a solution provided that

γ + a +
L(1 − α)

M(α)
+

Lbα

M(α)Γ(α)
< 1, (3.32)

and

8L
(
1 − α
M(α)

+
bα

M(α)Γ(α)

)
< 1. (3.33)

If in addition, g(x) = 0,∀x ∈ PC(J, E), then this solution is unique.
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Proof. By (3.31), f is uniformly continuous on bounded sets, and for any (t, z) ∈ J × E,

|| f (t, z)|| ≤ || f (t, z) − f (0, 0)|| + || f (0, 0)|| ≤ bL + L||z|| + || f (0, 0)||. (3.34)

Moreover, if B is a bounded set, then for any (t, z1), (t, z2) ∈ J × B, one has

|| f (t, z1) − f (t, z2)|| ≤ L||z1 − z2||. (3.35)

Thus,
κ( f (t, B)) ≤ L µ(B) ≤ 2L κ(B), for t ∈ J, (3.36)

where µ is Kuratwaski measure of noncompactness. Therefore, relation (3.2) holds with η(t) = 2L.

Next, using the arguments in the proof of Theorem 3.1, it follows that T (Bk∗0
) ⊆ Bk∗0

, where

k∗0 =
||u0|| + d + (Lb + || f (0, 0)||)

(
(1−α)
M(α) +

bα
M(α)Γ(α)

)
1 −

[
γ + a + L(1−α)

M(α) +
Lbα

M(α)Γ(α)

] . (3.37)

By applying Theorem (3.1), problem (1.1) has a solution if (3.32) and (3.33) are satisfied.
Now, assume that g(x) = 0,∀x ∈ E, and let u, v be two solutions for problem (1.1). If t ∈ [0, t1],

then

||u(t) − v(t)|| ≤
(1 − α)
M(α)

|| f (t, u(t)) − f (t, v(t))|| +
α

M(α)Γ(α)

∫ t

0
(t − s)α−1|| f (s, u(s)) − f (s, v(s))||ds

≤
L(1 − α)

M(α)
||u(t)) − v(t)|| +

Lα
M(α)Γ(α)

∫ t

0
(t − s)α−1||u(s)) − v(s)||ds. (3.38)

Thus,

||u(t) − v(t)|| ≤
(
1 −

L(1 − α)
M(α)

)−1 Lα
M(α)Γ(α)

∫ t

0
(t − s)α−1||u(s)) − v(s)||ds. (3.39)

Note that relation (3.33) implies that L(1−α)
M(α) < 1. Applying the generalized Gronwall inequality

[Corollary 2, [45]], we obtain
u(t) = v(t),∀t ∈ [0, t1].

Thus,
gi(t, u(t−1 )) = gi(t, v(t−1 )); t ∈ (t1, s1], and u(t) = v(t),∀t ∈ (t1, s1].

Next, let t ∈ (s1, t2]. If t − s1 ≤ s1, then

u(t − s1) = v(t − s1).

So,
||u(t − s1) − v(t − s1)|| ≤ sup

θ∈(s1,t2]
||u(θ) − v(θ)||. (3.40)

Therefore,

||u(t) − v(t)|| ≤
L(1 − α)

M(α)
sup

θ∈(s1,t2]
||u(θ) − v(θ)|| +

Lα
M(α)Γ(α)

sup
θ∈(s1,t2]

||u(θ) − v(θ)||
∫ t

s1

(t − s)α−1ds, (3.41)
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from which it follows

sup
θ∈(s1,t2]

||u(θ) − v(θ)|| ≤
L(1 − α)

M(α)
sup

θ∈(s1,t2]
||u(θ) − v(θ)|| +

Lbα

M(α)Γ(α)
sup

θ∈(s1,t2]
||u(θ) − v(θ)||

≤

[
L(1 − α)

M(α)
+

Lbα

M(α)Γ(α)

]
sup

θ∈(s1,t2]
||u(θ) − v(θ)||. (3.42)

This relation together with (3.33) implies that

sup
θ∈(s1,t2]

||u(θ) − v(θ)|| = 0,

hence
u(t) = v(t)∀t ∈ (s1, t2].

By repeating the same argument, we conclude that u(t) = v(t),∀t ∈ J.

Remark 3.2. Assumption (H f ) enables us to apply Schauder’s fixed-point theorem to prove that the
operator T has a fixed point, which is a solution to problem (1.1), but it does not yield any information
about the uniqueness of the solution. The condition (H f )∗ enables us to show that there is a solution
to problem (1.1), as well as the uniqueness by using the generalized Gronwall inequality.

4. Existence of solutions for problem (1.2)

Theorem 4.1. If in addition to the assumptions (H f ) and (Hg),we assume the following condition.
(HI): For any i = 1, 2, ...,m, Ii: E → E is continuous and compact and there is ξ > 0 with

sup
i=1,2,...,m

||Ii(x)|| ≤ ξ||x||, ∀x ∈ E,

then problem (1.2) has a solution provided that (3.2) and

a +
ϱ(1 − α)

M(α)
+ ξ +

ϱbα

M(α)Γ(α)
< 1 (4.1)

are satisfied.

Proof. We follow similar arguments to those used in the proof of Theorem (3.1). Therefore, we focus
only on the differences. Set

η =
||u0|| + d + ϱ(1−α)

M(α) +
ϱbα

M(α)Γ(α)

1 −
[
a + ϱ(1−α)

M(α) + ξ +
ϱbα

M(α)Γ(α)

] . (4.2)

Define a function T ∗: PC(J, E)→ PC(J, E) as

T ∗(x)(t) =


u0 − g(x) + (1−α)

M(α) f (t, x(t)) + α
M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds, t ∈ [0, t1],

u0 − g(x) + (1−α)
M(α) f (t, x(t)) +

∑i
k=1 Ik(x(t−k )) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds,

t ∈ Ji, i = 1, 2, ...,m.

(4.3)
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If t ∈ Ji, i = 1, 2, ...,m and x ∈ Bη = {z ∈ P(J, E) : ||z|| ≤ η}, then

||T ∗(x)(t)|| ≤ ||u0|| + aη + d +
(1 − α)
M(α)

ϱ(1 + η) + ξη +
αϱ(1 + η)
M(α)Γ(α)

∫ t

0
(t − s)α−1ds

≤ ||u0|| + d +
ϱ(1 − α)

M(α)
+

ϱbα

M(α)Γ(α)
+ η

[
a +

ϱ(1 − α)
M(α)

+ ξ +
ϱbα

M(α)Γ(α)

]
, (4.4)

By this and using (4.1), we obtain T (Bη) ⊆ Bη.

By continuity and compactness of Ii, i = 1, 2, ...,m, and using same arguments as in the proof of
Theorem (3.1), we can show that T ∗ has a fixed point, which is a solution for problem (1.2).

Theorem 4.2. If (H f )∗, (HI) and g(x) = 0,∀x ∈ PC(J, E) are satisfied, then problem (1.2) has a
unique solution provided that (3.33) holds.

Proof. Let T ∗: PC(J, E) → PC(J, E) be defined as in the proof of Theorem 4.1. Following the
arguments used in proving Theorem (4.1), one can show the existence of solutions. Let u and v be two
solutions for problem (1.2). Similar to the proof of Theorem (3.2), we show that

u(t) = v(t),∀t ∈ [0, t1].

Let t ∈ (t1, t2]. Since u(t−1 ) = v(t−1 ), then I1(u(t−1 )) = I1(v(t−1 )), and

||u(t) − v(t)|| ≤
L(1 − α)

M(α)
sup

θ∈(t1,t2]
||u(θ) − v(θ)|| +

Lα
M(α)Γ(α)

sup
θ∈(t1,t2]

||u(θ) − v(θ)||
∫ t

0
(t − s)α−1ds, (4.5)

from which it follows

sup
θ∈(t1,t2]

||u(θ) − v(θ)|| ≤
L(1 − α)

M(α)
sup

θ∈(t1,t2]
||u(θ) − v(θ)|| +

Lbα

M(α)Γ(α)
sup

θ∈(t1,t2]
||u(θ) − v(θ)||

≤

[
L(1 − α)

M(α)
+

Lbα

M(α)Γ(α)

]
sup

θ∈(t1,t2]
||u(θ) − v(θ)||. (4.6)

In view of (3.33), it yields from this equation, u(θ) = v(θ),∀θ ∈ [t1, t2].

In the following theorem, we provide a version for the existence and uniqueness of the solution for
problem (1.2) without assuming that g(x) = 0,∀x ∈ PC(J, E).

Theorem 4.3. If the following conditions hold:

(1) (H f )∗ The function f : J × E → E satisfies

(a) f (0, u0) = 0.

(b) There is L > 0 such that

|| f (t, z1) − f (t, z2)|| ≤ L||z2 − z1||,∀t ∈ J , and ∀z1, z2 ∈ E. (4.7)

(2) (Hg)∗ There is ν > 0 such that

||g(x) − g(y)|| ≤ ν||x − y||PC(J,E),∀x, y ∈ PC(J, E). (4.8)
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(3) (HI)∗ For any i ∈ {1, 2, ...,m}, there is σi > 0 such that

||Ii(u) − Ii(v)|| ≤ σi ||u − v||PC(J,E),∀u, v ∈ E. (4.9)

Then problem (1.2) has a unique solution provided that

ν +
L(1 − α)

M(α)
+

Lαbα

M(α)Γ(α)
+ mσ < 1, (4.10)

where σ =
∑i=m

i=1 σi.

Proof. Let T ∗: PC(J, E) → PC(J, E) be defined as in (4.3). We show that T ∗ is a contraction. Let
x, y ∈ PC(J, E), and t ∈ [0, t1]. Using (H f )∗∗ and (Hg)∗ to get

||T ∗(x)(t) − T ∗(y)(t)|| ≤ ||g(x) − g(y)|| +
(1 − α)
M(α)

|| f (t, x(t)) − f (t, x(t))||

+
α

M(α)Γ(α)

∫ t

0
(t − s)α−1|| f (s, x(s)) − f (s, y(s))||ds

≤ ||x − y||PC(J,E)

[
ν +

L(1 − α)
M(α)

+
Lαbα

M(α)Γ(α)

]
. (4.11)

Similarly, if t ∈ Ji, i = 1, 2, ..,m , then by using (H f )∗∗, (Hg)∗ and (HI)∗ we obtain

||T ∗(x)(t) − T ∗(y)(t)|| ≤ ||x − y||PC(J,E)

[
ν +

L(1 − α)
M(α)

+
Lαbα

M(α)Γ(α)
+ mσ

]
. (4.12)

Then,

||T ∗(x) − T ∗(y)||PC(J,E) ≤ ||x − y||PC(J,E)

[
ν +

L(1 − α)
M(α)

+
Lαbα

M(α)Γ(α)
+ mσ

]
. (4.13)

Since,

ν +
L(1 − α)

M(α)
+

Lαbα

M(α)Γ(α)
+ mσ < 1,

T ∗ is a contraction, and hence, by Banach’s fixed point theorem, it has a unique fixed point, which is
the unique solution for problem (1.2).

Remark 4.1. Theorem 4.3 generalizes Theorem 3.1 in [33] to infinite dimensional Banach spaces and
in the presence of non-local conditions and instantaneous impulses. If there are not impulses effect
and

g(x) = 0,∀x ∈ PC(J, E),

the inequality (4.10) becomes the same condition assumed in Theorem 3.1 in [33] .

Remark 4.2. If the function f satisfies Lipschitz condition, then applying Banach’s fixed point theorem
shows that the solution operator has a unique fixed point, which is a unique solution for our problems.
Alternatively, we applied Schauder’s fixed point theorem to show the existence of fixed point of the
solution operator, then by using the generalized Gronwall inequality, we showed the uniqueness.
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• In Theorem 3.1, the function f does not satisfies the Lipschitz condition. Therefore, we were
only able to show the existence of a solution to problem (1.1). In Theorem 3.2, the funtion f
satisfies (H f )∗, which implies Lipschitz condition. Consequently, we obtained both existence
and uniqueness of a solution to problem (1.1). Note that since the impulsive functions gi, and
Ii, i = 1, 2, ...,m, do not satisfy Lipschitz’s condition, we can not apply Banach’s fixed point
theorem.

• For problem (1.2), in Theorem 4.1, with the assumption of (H f ), we only have proved the existence
of a solution, in Theorem 4.2, we investigated the existence and uniqueness with the assumption
that f satisfies (H f )∗ and g(x) = 0,∀x ∈ PC(J, E). In Theorem 4.3, we obtained the existence
and uniqueness when all functions f , g and L satisfy Lipschitz’s condition. Note that Theorem 4.2
is not a special case of Theorem 4.3.

5. Existence of solutions for problem (1.3)

In this section, we derive sufficient conditions under which the solution set of problem (1.3) will be
not empty and compact. We need to the following fixed points theorems for multifunctions. For more
information about multifunctions, we refer the reader to [46].

Lemma 5.1. [ [47], Corollary 3.3.1]. Let W be a closed convex subset of E and R: E → Pck (W) be a
closed multifunction which is ϑ−condensing on every bounded subset of W, where ϑ is a nonsingular
measure of noncompactness defined on subsets of W, then the set of fixed points for R is not empty.

Lemma 5.2. [ [47], Proposition 3.5.1]. Let W be a closed subset of E and R: W → Pck (E) be a closed
multifunction which is ϑ−condensing on every bounded subset of W, where ϑ is a monotone measure
of noncompactness defined on W. If the set of fixed points for R is a bounded subset of E, then it is
compact.

Hypothesis 5.1. We employ the following hypothesis: (H f ) The function F: J×E → Pck(E) is defined

such that:

(a) For every x ∈ E, t → F(t, x) is measurable.

(b) For almost t ∈ J, x→ F(t, x) is upper semi-continuous.

(c) There is a function ψ ∈ L1(J,R+) with

sup
y∈F(t,x)

||y|| ≤ ψ(t)(1 + ||x||), for a.e., t ∈ J. (5.1)

(d) There is a function η ∈ L1(J,R+) such that for any bounded subset B ⊂ E,

κ(F(t, B)) ≤ η(t) κ(B), for t ∈ J, (5.2)

and

||η||L1(J,R+)

(
2(1 − α)

M(α)
+

4bα

M(α)Γ(α)

)
< 1, (5.3)

where κ is the measure of noncompactness on E.
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Theorem 5.1. If (H f ), (Hg) and (H) are satisfied, then the solution set for problem (1.3) is non-empty
and compact provided that

γ + a +
ρ(1 − α)

M(α)
+

αρbα

M(α)Γ(α + 1)
< 1, (5.4)

where ρ = ||ψ||L1(J,R+).

Proof. Due to (a) in (H f ), for any x ∈ PC(J, E), S 1
F(.,x(.)) is not empty, and so, multifunction R:

PC(J, E)→ 2PC(J,E) can be defined such that u ∈ R(x) if and only if

u(t) =



u0 − g(x) + (1−α)
M(α) f (t) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t ∈ [0, t1],

gi(t, x(t−i )), t ∈ ∪i=m
i=1 [ti, si],

gi(si, x(t−i )) + (1−α)
M(α) f (t) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 f (s)ds, t ∈ ∪i=m

i=1 (si, ti+1],

(5.5)

where for t ∈ ∪i=m
i=0 [si, ti+1],

f (t) =
∫ t

si

z(s)ds, z ∈ S 1
F(.,u(.)).

Our aim is using Lemma 5.1, to show that R has a fixed point. Set

Bζ = {x ∈ PC(J, E) : ∥x∥PC(J,E) ≤ ζ},

ζ =
||u0|| + d + ρ(1−α)

M(α) +
ρbα

M(α)Γ(α)

1 −
[
γ + a + ρ(1−α)

M(α) +
αρbα

M(α)Γ(α)

] . (5.6)

The proof will proceed in the following steps.

• Step 1. In this step, we claim that R(Bζ) ⊆ Bζ . Let x ∈ Bζ and u ∈ R(x).

Then, there is z ∈ S 1
F(.,u(.)) such that u satisfies (5.5), where

f (t) =
∫ t

si

z(s)ds, t ∈ [si, ti+1], i = 0, 1, ...,m.

Using (c) of (Hf), we get
|| f (t)|| ≤ (1 + ζ)ρ, ∀t ∈ ∪i=m

i=0 [si, ti+1]. (5.7)

Let t ∈ [0, t1]. Using (5.7) and (Hg), we obtain

||u(t)|| ≤ ||u0|| + aζ + d +
(1 − α)
M(α)

ρ(1 + ζ) +
αρ(1 + ζ)
M(α)Γ(α)

∫ t

0
(t − s)α−1ds

≤ ||u0|| + aζ + d +
(1 − α)
M(α)

ρ(1 + ζ) +
αρ(1 + ζ)bα

M(α)Γ(α + 1)
. (5.8)

Let t ∈ ∪m
i=1(ti si]. Then, by (H)

||u(t)|| ≤ ||gi(t, x(t−i ))|| ≤ γ ζ. (5.9)
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Let t ∈ (si, ti+1]. By repeating the arguments employed in (5.8 ), it follows

||u(t)|| ≤ ζγ + ||u0|| + aζ + d +
(1 − α)
M(α)

ϱ(1 + ζ) +
αρ(1 + ζ)bα

M(α)Γ(α + 1)
. (5.10)

From (5.8)–(5.10), we get

∥u∥PC(J,E) ≤ ||u0|| + d +
ρ(1 − α)

M(α)
+

αρbα

M(α)Γ(α + 1)
+ ζ

[
γ + a +

ρ(1 − α)
M(α)

+
αρbα

M(α)Γ(α + 1)

]
. (5.11)

It yields from this relation and (5.4), that u ∈ Bζ .

• Step 2. In this step, we show that, if xk ∈ Bζ , uk ∈ R(xk), xk → x and uk → u, then u ∈ R(x). By
definition of R, there is

fk =

∫ t

si

zk(s)ds; t ∈ [si, ti+1], (i = 0, 1, 2, ..m), zk ∈ S 1
F(.,xk(.)),

such that

uk(t) =



u0 − g(xk) + 1−α
M(α) fk(t) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 fk(s)ds, t ∈ [0, t1],

gi(t, xk(t−i )), t ∈ ∪i=m
i=1 [ti, si],

gi(si, xk(t−i )) + 1−α
M(α) fk(t) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 fk(s)ds, t ∈ ∪i=m

i=1 (si, ti+1].

(5.12)

From (d) in (H f ), it follows,

κ{zk(t) : k ≥ 1} ≤ κF(t, {xk(t) : k ≥ 1}) ≤ η(t)κ{xk(t) : k ≥ 1} = 0. (5.13)

Moreover, by (c) in (H f ) and ||zk(t)|| ≤ ψ(t)(1 + ζ), a.e., then {zk: k ≥ 1} is semicompact in L1(J, E),

and hence, it is weakly compact in L1(J, E) [47]. By Mazure Lemma, without loss of generality, there

exists a subsequence (z∗k), k ≥ 1 of convex combinations of (zk) and converging almost everywhere to

a function z. Note that z∗k(t) ∈ F(t, (xk(t)), a.e.,∀k ≥ 1. Due to the upper semicontinuity of F(t, .), a, e.,

it follows that z ∈ S 1
F(,.x(.)). Set

uk(t) =



u0 − g(zk) +
(1−α)
M(α) f ∗k (t) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f ∗k (s)ds, t ∈ [0, t1],

gi(t, xk(t−i )), t ∈ ∪i=m
i=1 [ti, si],

gi(si, xk(t−i )) + (1−α)
M(α) f ∗k (t) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 f ∗k (s)ds, t ∈ ∪i=m

i=1 (si, ti+1],

(5.14)

where f ∗k (t) =
∫ t

si
zk(s)ds; t ∈ [si, ti+1], (i = 0, 1, 2, ...,m). Clearly (uk) is a subsequence of (uk).
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Moreover, by continuity of both g and gi(t, .), and by taking the limit k → ∞ , in (5.14 ), uk(k)
converges to u, where

u(t) =



u0 − g(z) + (1−α)
M(α) f (t) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t ∈ [0, t1],

gi(t, x(t−i )), t ∈ ∪i=m
i=1 [ti, si],

gi(si, x(t−i )) + (1−α)
M(α) f (t) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 f (s)ds, t ∈ ∪i=m

i=1 [si, ti+1],

(5.15)

and

f (t) =
∫ t

si

z(s)ds; t ∈ [si, ti+1], (i = 0, 1, 2, ...,m).

By the uniqueness of the limit, u = u ∈ R(x).

• Step 3. R(x), x ∈ Bζ is compact.

Suppose that (uk) is a sequence in R(x): x ∈ Bζ . By arguing as in Step 2, there is a subsequence of
(uk) converging to u ∈ R(x).

• Step 4. Our goal in this step is to show that the sets D|Ji
are equicontinuous for any i = 0, 1, ...,m,

where D = R(Bζ) and

D|Ji
= {u∗ ∈ (Ji, E) : u∗(t) = u(t), t ∈ (ti, ti+1], u∗(ti) = lim

t→t+i
u(t), u ∈ D}. (5.16)

Let u ∈ R(x), x ∈ Bζ . We consider the following cases:

Case 1. i = 0. Let t, t + δ be two points in J0 = [0, t1]. Then,

u(t) = u0 − g(x) +
(1 − α)
M(α)

f (t) +
α

M(α)Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, (5.17)

where f (t) =
∫ t

0
z(s)ds, z ∈ S 1

F(.,x(.)). By using (c) in (H f ), one has,

|| f (t)|| ≤ (1 + ζ)
∫ t

0
ψ(s)ds ≤ (1 + ζ)||ψ||L1(J,R+). (5.18)

Therefore,

lim
δ→0
||u∗(t + δ) − u∗(t)|| = lim

δ→0
||u(t + δ) − u(t)||

≤ lim
δ→0
|| f (t + δ) − f (t)||

+ lim
δ→0

α

M(α)Γ(α)
||

∫ t+δ

0
(t + δ − s)α−1 f (s)ds −

∫ t

0
(t − s)α−1 f (s)ds||

≤ (1 + ζ) lim
δ→0

∫ t+δ

t
ψ(s)ds
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+
α

M(α)Γ(α)
lim
δ→0
||

∫ t+δ

0
(t + δ − s)α−1 f (s)ds −

∫ t+δ

0
(t − s)α−1 f (s)ds||

+
α

M(α)Γ(α)
lim
δ→0
||

∫ t+δ

0
(t − s)α−1 f (s)ds −

∫ t

0
(t − s)α−1 f (s)ds||

≤ (1 + ζ) lim
δ→0

∫ t+δ

t
ψ(s)ds

+
α(1 + ζ)||ψ||L1(J,R+)

M(α)Γ(α)
lim
δ→0

∫ t+δ

0
|(t + δ − s)α−1 − (t − s)α−1|ds

+
αγ(1 + ζ)
M(α)Γ(α)

||ψ||L1(J,R+) lim
δ→0

∫ t+δ

t
(t − s)α−1ds

= 0. (5.19)

Case 2. i ≥ 1. Let t, t + δ be two points in

Ji = (ti, ti+1] = (ti, si) ∪ [si, ti+1].

If t, t + δ are in (ti, si), then

lim
δ→0
||u∗(t + δ) − u∗(t)|| = lim

δ→0
||u(t + δ) − u(t)||

≤ lim
δ→0
||gi(t + δ, x(t−i )) − gi(t, x(t−i ))|| = 0. (5.20)

If t, t + δ are in (si, ti+1), then by using the same arguments as in Case 1, we can arrive to

lim
δ→0
||u(t + δ) − u(t)|| = 0.

When t = t+i ,

lim
δ→0
||u∗(ti + δ) − u∗(ti)||

lim
δ→0

lim
λ→t+1
||u(ti + δ) − u(λ)||

≤ lim
δ→0

lim
λ→t+i
|| f (ti + δ) − f (λ)||

+ lim
δ→0

lim
λ→t+i

α

M(α)Γ(α)
||

∫ ti+δ

0
(ti + δ − s)α−1 f (s)ds −

∫ λ

0
(λ − s)α−1 f (s)ds||

= 0. (5.21)

Thus, the claim is proved in this step.

• Step 5. Set Bn = R(Bn−1), n ≥ 1 and B = ∩∞n=1Bn.

Then, (Bn) is a non-decreasing sequence of non-empty, convex, bounded and closed sets. Our goal
in this step is to show that B is relatively compact, and hence it is compact. According to the generalized
Cantor’s intersection property [43], it is enough to show that

lim
n→∞
κPC(Bn) = 0, (5.22)
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where κPC is the measure of noncompactness in PC(J, E). Let ϵ > 0, and n ≥ 1 be a fixed. There is
(see [44]) a sequence (uk) in Bn such that

κPC(Bn) ≤ 2κPC{uk : k ≥ 1} + ϵ
= 2 max

0≤i≤m
{χi(Z|Ji

)}, (5.23)

where
Z = {uk : k ≥ 1},

Z|Ji
is defined similar to (5.16) and χi is the Hausdorff measure of noncompactness in C(Ji , E) [43].

By Step 2, Z|Ji
is equicontinuous, and hence relation (5.23) becomes

κPC(Bn) ≤ 2 max
t∈J

χ{uk(t) : k ≥ 1} + ϵ. (5.24)

Since
uk ∈ Bn = R(Bn−1),

there is xk ∈ Bn−1 with uk ∈ R(x). According to the definition of R, there is zk ∈ S 1
F(.,xk(.)) such that

uk(t) =



u0 − g(xk) + 1−α
M(α) fk(t) + α

M(α)Γ(α)

∫ t

0
(t − s)α−1 fk(s)ds, t ∈ [0, t1],

gi(t, xk(t−i )), t ∈ ∪i=m
i=1 [ti, si],

gi(si, xk(t−i )) + 1−α
M(α) fk(t − si) + α

M(α)Γ(α)

∫ t

si
(t − s)α−1 fk(s)ds, t ∈ ∪i=m

i=1 (si, ti+1],

(5.25)

where

fk(t) =
∫ t

si

zk(s)ds; t ∈ [si, ti+1], i = 0, 1, ...,m.

By the compactness of both g and gi(t, .), t ∈ ∪i=m
i=1 [ti, si], we obtain

χ{g(xk) : k ≥ 1} = 0,

and
χ{gi(t, xk(t−i )) : k ≥ 1} = 0,

for any t ∈ ∪i=m
i=1 [ti, si]. Moreover, in view of (4.10), for t ∈ J,

χ{zk(t) : k ≥ 1} ≤ χF(t, {xk(t) : k ≥ 1})
≤ η(t)χ{xk(t) : k ≥ 1}
≤ η(t)χPC(Bn−1). (5.26)

Then, for t ∈ [si, ti+1], i = 0, 1, ...,m

χ{ fk(t) : k ≥ 1} ≤ χ{

∫ t

si

zk(s)ds : k ≥ 1}

≤ 2
∫ t

si

χ{zk(s) : k ≥ 1}ds
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≤ 2χPC(Bn−1)
∫ t

si

η(s)ds

≤ 2χPC(Bn−1)||η||L1(J,R+). (5.27)

Due to the properties of χ, it yields from (5.27) for t ∈ J,

χ{

∫ t

0
(t − s)α−1 fk(s)ds : k ≥ 1} ≤ 2

∫ t

0
(t − s)α−1χ{ fk(s) : k ≥ 1}ds

= 4χPC(Bn−1)||η||L1(J,R+)

∫ t

0
(t − s)α−1ds

= 4χPC(Bn−1)||η||L1(J,R+)
bα

α
. (5.28)

Thus, by (5.24), (5.25) and (5.28),

κPC(Bn) ≤ χPC(Bn−1)||η||L1(J,R+)

(
2(1 − α)

M(α)
+

4bα

M(α)Γ(α)

)
+ ϵ. (5.29)

Since ϵ is arbitrary, we get for all t ∈ J

κPC(Bn) ≤ χPC(Bn−1)||η||L1(J,R+)

(
2(1 − α)

M(α)
+

4bα

M(α)Γ(α)

)
. (5.30)

Since this relation holds for every n, we get

κPC(Bn) ≤ χPC(B1)
[
||η||L1(J,R+)

(
2(1 − α)

M(α)
+

4bα

M(α)Γ(α)

)]n−1

, (5.31)

which with (5.3) gives that (5.22) is satisfied.

• Step 6. Applying Corollary 3.3.1 in [47], the multifunction R: B → Pck(B) has a fixed point
which is a solution for problem (1.3). Furthermore, by arguing as in step 1, one can show that the
set of fixed points of R is bounded, and hence by Lemma 5.2, the solution set for problem (1.3)
is compact.

6. Examples

Example 6.1. Let α ∈ (0, 1), E be a Hilbert space, J = [0, 1], and

s0 = 0, si =
2i
9
, ti =

2i − 1
9

, i = 1, 2, 3, 4, t5 = 1.

Let F: J × E → Pck(E) be a multifunction defined by

F(t, u) =
ρ1||u|| sin t
σ (1 + ||u||)

K, (t, u) ∈ J × E, (6.1)

where K is a convex and compact subset of E with 0 ∈ K, ρ1 > 0, σ is a constant such that

sup{ ||z || : z ∈ K} = σ.
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For any u ∈ PC(J, E), the function

z(t) =
ϱ||u|| sin t
σ (1 + ||u||)

z0, z0 ∈ Z (6.2)

is an element of S 1
F(.,u(.)), and

z(t) ∈ F(t, u(t)), t ∈ J.

Hence, S 1
F(.,u(.)) is not empty. Moreover, for any u, v ∈ E and t ∈ J, we have

sup
y∈F(t,x)

||y|| ≤ ϱ1 sin(t)(1 + ||x||), (6.3)

and

H(F(t, u), F(t, v)) ≤ ϱ1| sin t|
∣∣∣∣∣ ||u||
(1 + ||u||)

−
||v||

(1 + ||v||)

∣∣∣∣∣
≤ ϱ1| sin t| ||u − v||, (6.4)

where H is the Hausdorff distance. Thus, (H f ) is satisfied, where

ζ(t) = ϱ| sin t|, η(t) = 2ϱ1| sin t|, t ∈ J.

Let g: PC(J, E)→ E be defined by

g(x) = a pro jK x, (6.5)

where a > 0. Note that, g(0) = 0, g is continuous and compact. Moreover,

||g(x) − g(0)|| = a ||pro jK x − pro jK0|| ≤ a ||x||, (6.6)

which yields, ||g(x)|| ≤ a ||x||, and therefore, (Hg) is satisfied.
Next, for any i ∈ N, let gi: [ti, si] × E → E, be defined as:

gi(t, x) := it ϱ2 pro j K x, (t, x) ∈ [ti, si] × E, i = 1, 2, 3, 4, (6.7)

where ϱ2 is a positive real number. For any

t ∈ [ti, si], i = 1, 2, 3, 4,

the maps gi(t, .) is continuous and compact, where

||gi(t, x)|| ≤ 4ϱ2 ||x||.

Hence, (H) holds with γ = 4ϱ2 . By applying Theorem 5.1, with u0 = 0, the solution set of the following
problem: 

ABCDα
si,tu(t) ∈ −K ϱ1 ||u|| cot s

σ (1+||u||) , a.e. t ∈ ∪4
i=0(si, ti+1],

u(t) = it ϱ2 pro j Ku(t−i ), t ∈ ∪4
i=0(ti si],

u(0) = −a pro jKu,

(6.8)
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is not empty and compact, provided that(
4(1 − α)

M(α)
+

8bα

M(α)Γ(α)

)
ϱ1 < 1, (6.9)

and
4bϱ2 + a +

2(1 − α)
M(α)

+ ϱ1
ϱbα

M(α)Γ(α)
< 1, (6.10)

were ϱ1, a and ϱ2 appear in (6.1), (6.5), and (6.7). By choosing ϱ1, a and ϱ2 sufficiently small, we can
obtain (6.9) and (6.10).

Example 6.2. Let E = L2[0, π], α, J, s0, si, ti (i = 1, 2, 3, 4), t5 as be in Example 6.1. Consider the
function f : J × E → E, defined by

f (t, x)(θ) = r(sin x(θ) + sin t), t ∈ J, x ∈ E, θ ∈ [0, π], (6.11)

where r > 0. Let u0 ∈ L2[0, π] be the zero function. Note that

f (0, u0)(θ) = 0, ∀θ ∈ [0, π].

We show that f satisfies (H f )∗. Let
z1, z2 ∈ E = L2[0, π]

and t1, t2 ∈ J. One has

|| f (t1, z1) − f (tt, z2)||L2[0,π] =

(∫ π

0
|(r sin z2(θ) − r sin z1(θ)) + r(sin t2 − sin t1)|2ds

) 1
2

≤ r
(∫ π

0
| sin z2(θ) − sin z1(θ)|2dθ

) 1
2

+ k
(∫ π

0
| sin t2 − sin t1|

2dθ
) 1

2

= r||z2 − z1||L2[0,π] + r
√
π|t2 − t1|. (6.12)

Thus, (H f )∗is satisfied, with
L = r(1 +

√
π).

Next, let
g : PC(J, E)→ E, gi : [ti, si] × E → E, (i = 1, 2, 3, 4)

be defined as in (6.5) and (6.7), with K is a convex and compact subset of L2[0, π] and 0 ∈ K. By
applying Theorem (3.2) with u0=0, there is a solution for the following problem:

(
ABCDα

si,tu(t)
)

(s) = r(sin u(s) + sin t), a.e., t ∈ ∪m
i=0(si, ti+1], s ∈ [0, π],

u(t) = it ϱ2 pro j Ku(t−i ), t ∈ ∪4
i=0(ti, si],

u(0) = −a pro jKu,

(6.13)

provided that

4ϱ2 + a + r
(
1 +
√
π
) (1 − α

M(α)
+

1
M(α)Γ(α)

)
< 1, (6.14)
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and

8r
(
1 +
√
π
) (1 − α

M(α)
+

1
M(α)Γ(α)

)
< 1. (6.15)

By choosing ϱ2, a and r sufficiently small, we can obtain (6.14) and (6.15). If

g(x) = 0, ∀x ∈ PC(J, E),

then the problem

(
ABCDα

si,tu(t)
)

(s) = r(sin u(s) + sin t), a.e., t ∈ ∪m
i=0(si, ti+1], s ∈ [0, π],

u(t) = it ϱ2 pro j Ku(t−i ), t ∈ ∪4
i=0(ti, si],

u(0) = 0,

(6.16)

has a unique solution provided that (6.14) and (6.15) are satisfied with a = 0.

7. Discussion and conclusions

Recently, some existence results of solutions for differential equations, involving the
Atangana-Baleanu fractional derivative were done in finite dimensional spaces. In this work, we
investigate the existence in infinite dimensional spaces, for differential equations and differential
inclusions containing the Atangana-Baleanu fractional derivative. A new class of differential
equations and differential inclusions containing AB derivative with instantaneous or
non-instantaneous impulses and nonlocal conditions in infinite dimensional Banach spaces are
formulated. The existence and uniqueness of solutions for problems (1.1) and (1.2) were proved. For
problem (1.3), we were able to show the existence of a solution. The used method is based on
properties of both multifunctions and the Hausdorff measure of noncompactness. It is noteworthy that
there is no uniqueness of solutions for differential inclusions. Theorem 4.3 in this paper, generalizes a
recent result (Theorem 3.1 in [33]) to infinite dimensional Banach spaces. The used method might
help researcher who aim to generalize any of the above mentioned results to the case where the right
hand side is a multifunction, or in the presence of impulsive effects. For directions of future work, the
authors suggest:

(1) Extending the results of this paper to the case where the interval [0, b] is replaced by [0,∞).

(2) Extending the results in [30–40], to the infinite dimensional case and/or in the presence of
impulses and/or to the case where the function is a multi-valued.

(3) Proving results analogue to those in [48] when the Caputo derivative is replaced by the Atangana-
Baleanu fractional derivative.
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