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Abstract: Based on the Hirota bilinear form of a (2+1)-dimensional equation, breathers and resonant
multiple waves as well as complexiton solutions are considered in this paper. First, the breather
waves are constructed via employing the extend homoclinic test method. By calculation, two kinds
of solutions are obtained. Through analysis, three pairs of breathers consisting of hyperbolic functions
and trigonometric functions are derived. Furthermore, a rouge wave solution is deduced by applying
the Taylor expansion method to a obtained breather wave. In addition, related figures are plotted to
illustrate the dynamical features of these obtained solutions. Then, two types of the resonant multi-
soliton solutions are obtained by applying the linear superposition principle to the the Hirota bilinear
form. At the same time, 3D profiles and 2D density plots are presented to depict the intersection
progression of wave motion. Finally, the complexiton solutions are constructed according to the
yielded resonant multi-soliton solutions by further utilizing the linear superposition principle. By
considering different domain fields, several types of complexiton solutions including the positive ones
are derived. Moreover, related 3D and 2D figures are plotted for the obtained results in order to vividly
exhibit their dynamics properties.
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1. Introduction

As the exact solutions of nonlinear partial differential equations are beneficial for researchers to
better understand the physical phenomena described by the equation, it has been one of the hotspots in
the nonlinear field. With the aid of symbolic computation, many methods for searching exact solutions
are proposed, such as the Painlevé analysis method [1], the multiple exp-function method [2, 3], three
waves method [4, 5] etc. By employing these methods, we can obtain various forms of accurate
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solutions, such as traveling wave solutions [6], bright wave solutions [7], breathers [8–10], lump
solutions [11–13], resonant solutions [14, 15], complexiton solutions [16] and other types of soliton
solutions [17, 18]. By analyzing these solutions, researchers can well explain the physical phenomena
on different dynamic characteristics represented by the original equation [19–21].

Among many types of exact solutions, breathers and resonant multi-soliton solutions have been
receiving growing attention. As early as in 2009, the homoclinic test method and extended homoclinic
test method were proposed by Professor Dai to derive breather solutions for high dimensional nonlinear
equation in [22]. Then the homoclinic breather limit method was proposed by Xu for searching
rogue wave solution to nonlinear evolution equation in [23]. Since then, many results on breathers
and rouge waves have been obtained [24, 25]. In 2011, Ma [26] introduced the linear superposition
principle to construct the resonant multi-soliton solutions of nonlinear equations. Afterwards the linear
superposition principle has been widely used to establish the resonant multiple wave solutions [27–29].
Many results revealed that the linear superposition principle is much more effective in constructing
resonant multiple wave solutions for nonlinear evolution equations.

Complexiton solution is another kind of special exact solution which is composed of exponential
function and trigonometric function. By using Wronskian techniques, the complexiton solutions of
KdV equation have been achieved for the first time [30]. By using the extended transformation rational
function method, complexiton solutions of several nonlinear differential equations have been derived
in Ref. [31]. The (3+1) dimensional Boiti-Leon-Manna-Pempinell has been investigated in [32] by
utilizing the linear superposition principle. Up to now, linear superposition principle and Hirota bilinear
method are the main ways for constructing complexiton solutions.

Recently, a (2 + 1)-dimensional nonlinear evolution equation has been considered, which was
written by [33]

− 4ut + 3
∫ x

−∞

uyydx + uxxx + 3(u2)x = 0. (1.1)

If replacing u in Eq (1.1) by ux, Eq (1.1) can be reduced to a (2+1)-dimensional equation, which
is similar to the (2+1)-dimensional Boussinesq equation in Ref. [34]. So Eq (1.1) may be used to
describe the motion of shallow water waves. In Ref. [33], several types of soliton solutions and singular
solutions have been achieved by employing Hirota direct method, such as one soliton solution, two
soliton solution, one singular and two singular solution. While breathers and resonant multiple waves
as well as complexiton solutions of Eq (1.1) haven’t been investigated yet.

In this paper, our main purpose is to investigate breather waves, resonant multiple waves and
complexiton solutions for Eq (1.1). The structure of this paper is organized as follows. In Section 2,
the breather wave solutions of Eq (1.1) are derived by employing the extend homoclinic test method
and a rouge wave solution is deduce by using Taylor expansion method. Their dynamical behaviors are
depicted in some figures. In Section 3, the resonant multiple waves of Eq (1.1) are presented by using
linear superposition principle. Their dynamical behaviors are also shown in some three-dimensional
plots and corresponding density plots. In Section 4, the complexiton solutions of Eq (1.1) are derived
by using linear superposition principle and Hirota bilinear method based on the results in Section3.
Their dynamical behaviors are depicted in two figures. Finally, some remarks are given.
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2. Breather wave aolutions of the (2 + 1)-dimensional Eq (1.1)

First of all, we aim to construct the breather solutions of the Eq (1.1). It is easy to verify that there
exists an equilibrium solution u0 for Eq (1.1), so we suppose

u = u0 + 2(lnϕ)xx, ϕ = ϕ(x, y, t). (2.1)

Substituting Eq (2.1) into Eq (1.1), then Eq (1.1) can be transformed into the following form

− 8(lnϕ)xxt + 6(lnϕ)xyy + 2(lnϕ)xxxxx + 12
(
(lnϕ)2

xx

)
x

+ 12u0(lnϕ)xxx = 0. (2.2)

Integrating with respect x once, then one obtains

(−4DxDt + 3D2
y + D4

x + 6u0D2
x)ϕ · ϕ = 0. (2.3)

In order to obtain breather waves of Eq (1.1), according to the idea of the extend homoclinic test
method, we search for the solution of Eq (2.3) as the following form

ϕ = exp(−λ(x + a1y − αt)) + µ1cos(λ(x + a2y − βt)) + µ2exp(λ(x + a1y − αt)), (2.4)

in which λ, α, β, a1, a2, µ1, µ2 are undetermined real constants. Inserting Eq (2.4) into Eq (2.3) leads to
an algebraic equation and equating each coefficient for the powers of exp(±λ(x + a1y − αt)), sin(λ(x +

a2y − βt)), cos(λ(x + a2y − βt)) to be zero, some algebraic equations can be obtained

(4λ2µ2
1 − 3a2

2µ
2
1 − 4µ2

1β + 16λ2µ2 − 6u0µ
2
1 + 12a2

1µ2 + 16µ2α + 24u0µ2)λ2 = 0,
(4λ2 − 3a2

1 + 3a2
2 − 4α + 4β)λ2µ1µ2 = 0,

(4λ2 − 3a2
1 + 3a2

2 − 4α + 4β)λ2µ1 = 0,
(3a1a2 + 2α + 2β + 6u0)λ2µ1µ2 = 0,
(3a1a2 + 2α + 2β + 6u0)λ2µ1 = 0.

(2.5)

Solving the obtained Eq (2.5), two cases are obtained.
Case 1:

α = −
3
4

a2
2 +

1
2
λ2 −

3
2

u0, β = −
3
4

a2
2 −

1
2
λ2 −

3
2

u0, µ
2
1 = −4µ2, (2.6)

in which u0, a1, a2, λ are arbitrary real numbers while µ2 is negative.
Case 2:

α = −
3
8

a2
1 −

3
4

a1a2 +
3
8

a2
2 +

1
2
λ2 −

3
2

u0, β =
3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0,

µ2
1 =

4µ2(a2
1 − 2a1a2 + a2

2 + 4λ2)
(a2

1 − 2a1a2 + a2
2 − 4λ2)

,
(2.7)

in which λ, u0, a1, a2, µ2 are arbitrary real numbers.
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For the first case, owing to µ2 < 0, the expression (2.4) can be written as

ϕ = exp(−λ(x + a1y + (
3
4

a2
2 −

1
2
λ2 +

3
2

u0)t))

± 2
√
−µ2cos(λ(x + a2y + (

3
4

a2
2 +

1
2
λ2 +

3
2

u0)t))

+ µ2exp(λ(x + a1y + (
3
4

a2
2 −

1
2
λ2 +

3
2

u0)t))

= −2
√
−µ2sinh

[
λ(x + a1y + (

3
4

a2
2 −

1
2
λ2 +

3
2

u0)t) + ln
√
−µ2

]
± 2
√
−µ2cos(λ(x + a2y + (

3
4

a2
2 +

1
2
λ2 +

3
2

u0)t)).

(2.8)

Next substituting the obtained results (2.8) into Eq (2.1) leads to the homoclinic breather waves of
Eq (1.1) as follows

u1 = u0 −
4
√
−µ2λ

2(cosh(∆1)sin(∆2) + 1)
(sinh(∆1) − cos(∆2))2 , (2.9)

u2 = u0 +
4
√
−µ2λ

2(cosh(∆1)sin(∆2) − 1)
(sinh(∆1) + cos(∆2))2 , (2.10)

where ∆1 = λ(x + a1y + ( 3
4a2

2 −
1
2λ

2 + 3
2u0)t) + ln

√
−µ2,∆2 = λ(x + a2y + (3

4a2
2 + 1

2λ
2 + 3

2u0)t). Here
u1, u2 are two homoclinic breather wave solutions of Eq (1.1). Their expressions are much similar and
their properties are also similar. There is a possibility that their denominator is close to zero. So their
absolute values may be large. We choose u1 for an example. The breather solution (2.9) is vividly
shown in Figure 1.

(a) (b) (c)

Figure 1. (Color online) Profiles of breather wave (2.9) with the following parameters: λ =

3, u0 = 2, a1 = 2, a2 = 2, µ2 = −1 at t = 0. (a) Perspective view of the wave. (b) Overhead
view of the wave. (c) The wave propagation pattern along the x axis with y = 1.
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For the second case, when µ2 > 0, the expression (2.4) can be written as

ϕ = exp(−λ(x + a1y + (
3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t))±√
4µ2(a2

1 − 2a1a2 + a2
2 + 4λ2)

(a2
1 − 2a1a2 + a2

2 − 4λ2)
cos(λ(x + a2y − (

3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0)t))

+ µ2exp(λ(x + a1y + (
3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t))

= 2
√
µ2cosh

[
λ(x + a1y + (

3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t) + ln
√
µ2

]
±√

4µ2(a2
1 − 2a1a2 + a2

2 + 4λ2)

(a2
1 − 2a1a2 + a2

2 − 4λ2)
cos(λ(x + a2y − (

3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0)t)).

(2.11)

Then substituting the obtained results (2.11) into Eq (2.1) yields the homoclinic waves of Eq (1.1) as
follows

u3 = u0 +
2λ2(4µ2 − P2 + 4

√
µ2Psinh(Φ1)sin(Φ2))

(2
√
µ2cosh(Φ1) + Pcos(Φ2))2 , (2.12)

u4 = u0 +
2λ2(4µ2 − P2 − 4

√
µ2Psinh(Φ1)sin(Φ2))

(2
√
µ2cosh(Φ1) − Pcos(Φ2))2 , (2.13)

in which

P =

√
4µ2(a2

1 − 2a1a2 + a2
2 + 4λ2)

(a2
1 − 2a1a2 + a2

2 − 4λ2)
,

Φ1 = λ(x + a1y + (
3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t) + ln
√
µ2,

Φ2 = λ(x + a2y − (
3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0)t).

(2.14)

Here u3, u4 are two homoclinic breather wave solutions, and when t → ±∞, they tend to a fixed point
u0. In the following, Figure 2 presents the breather solutions (2.12).
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(a) (b) (c)

Figure 2. (Color online) Breather wave (2.12) for Eq (1.1) with the following selected
parameters: λ = 1, u0 = 1, a1 = 2, a2 = −4, µ2 = 1 at t = 2. (a) Perspective view. (b) The
overhead view . (c) The wave propagation pattern of the wave along the x axis with y = 2.

Equation (2.12) is similar to Eq (2.13). Since u3 and u4 are almost the same, in the rest of this
section, only u4 will be taken into consideration. In consideration of Eq (2.12), taking δ2 = 1, along
with the following Taylor expansions at λ = 0.

sinh(Φ1) = λ(x + a1y + (
3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t) + O(λ2),

sinh(Φ2) = λ(x + a2y − (
3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0)t) + O(λ2),

cosh(Φ1) = 1 +
1
2
λ2(x + a1y + (

3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t)2 + O(λ3),

cos(Φ2) = 1 −
1
2
λ2(x + a2y − (

3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0)t)2 + O(λ3).

(2.15)

We obtain rogue wave solutions of Eq (1.1)

u5 = u0 −
16

[
4B + (x + a1y − αt)(x + a2y − βt)

](
(x + a1y − αt)2 + (x + a2y − βt)2) − 8B

)2 . (2.16)

Where B = 1
(a2

1−2a1a2+a2
2) . Relevant dynamical behaviors are shown in Figure 3.
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(a) (b) (c)

Figure 3. Rouge wave (2.16) for Eq (1.1) with the following selected parameters: u0 =

2, a1 = 3, a2 = 1, α = −33
4 , β = −9

4 at t = 1
2 . (a) Perspective view of the real part of the wave.

(b) The overhead view of the wave. (c) The wave propagation pattern of the wave along the
x axis with y = 1.

For the second case, when µ2 < 0, the expression (2.4) can be written as

ϕ = exp(−λ(x + a1y + (
3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t))±√
4µ2(a2

1 − 2a1a2 + a2
2 + 4λ2)

(a2
1 − 2a1a2 + a2

2 − 4λ2)
cos(λ(x + a2y − (

3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0)t))

+ µ2exp(λ(x + a1y + (
3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t))

= −2
√
−µ2sinh

[
λ(x + a1y + (

3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t) + ln
√
−µ2

]
±√

4µ2(a2
1 − 2a1a2 + a2

2 + 4λ2)

(a2
1 − 2a1a2 + a2

2 − 4λ2)
cos(λ(x + a2y − (

3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0)t)).

(2.17)

Then inserting the obtained results (2.17) into Eq (2.1) yields the homoclinic waves of Eq (1.1) as
follows

u6 = u0 +
2λ2(−4µ2 + Q2 + 4

√
−µ2Qcosh(Θ1)sin(Θ2))

(2
√
−µ2sinh(Θ1) − Qcos(Θ2))2

, (2.18)

u7 = u0 +
2λ2(4µ2 − Q2 + 4

√
−µ2Qcosh(Θ1)sin(Θ2))

(2
√
−µ2sinh(Θ1) + Qcos(Θ2))2

, (2.19)
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in which

Q =

√
4µ2(a2

1 − 2a1a2 + a2
2 + 4λ2)

(a2
1 − 2a1a2 + a2

2 − 4λ2)
,

Θ1 = λ(x + a1y + (
3
8

a2
1 +

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 +

3
2

u0)t) + ln
√
−µ2,

Θ2 = λ(x + a2y − (
3
8

a2
1 −

3
4

a1a2 −
3
8

a2
2 −

1
2
λ2 −

3
2

u0)t).

(2.20)

Here u6, u7 are two homoclinic breather wave solutions. Obviously, when t → ±∞, they tend to a fixed
point u0. In the following, Figure 4 presents the breather solutions (2.18) .

(a) (b) (c)

Figure 4. (Color online) Profiles of breather wave (2.18) for Eq (1.1) with the following
selected parameters: λ = 1, u0 = −2, a1 = 2, a2 = 1, α = 7

8 , β = 17
8 , µ2 = −1

4 at t = 2. (a)
Perspective view. (b) Overhead view. (c) The propagation pattern of the wave along the x
axis with y = 1.

3. Resonant multiple wave solutions of Eq (1.1)

In order to obtain the resonant multiple wave solutions of the (2+1)-dimensional Eq (1.1), taking
u0 = 0 in (2.3), then the bilinear form of (1.1) can be written as

(−4DxDt + 3D2
y + D4

x)ϕ · ϕ = 0. (3.1)

By introducing the following N-wave variables

ϕi = hix + kiy + lit + ηi, 1 ≤ i ≤ n, (3.2)

where hi, ki, li are real constants to be determined, ηi is an arbitrary constant. According to the linear
superposition principle, the following results can be derived

− 4(hi − h j)(li − l j) + 3(ki − k j)2 + (hi − h j)4 = 0. (3.3)
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We can assume that
hi = hi, ki = ah2

i , li = bh3
i , (3.4)

where a, b are arbitrary real constants. By substituting Eq (3.4) into Eq (3.3), collecting all the
coefficients of polynomials on hi and h j, then equating each term to be zero, therefore the parameters
a, b satisfy 

4b − 4 = 0,
−6a2 + 6 = 0,
3a2 − 4b + 1 = 0.

(3.5)

By solving Eq (3.5), we get
a = ±1, b = 1. (3.6)

Therefore, the multiple resonant wave solutions of Eq (1.1) can be written as the following the
expression (3.2)

ϕ =

N∑
i=1

λiehi x±h2
i y+h3

i t+ηi , u = 2(lnϕ)xx, (3.7)

where hi and λi(1 < i < N, i ∈ N+) are arbitrary real constants. Profiles and density plots of (3.7) are
shown in Figure 5.

(a) N=3 (b) N=4 (c) N=5

(d) N=3 (e) N=4 (f) N=5

Figure 5. (Color online) 3D profiles (a)–(c) and 2D density plots (d)–(f) of resonant three-
, four-, five-wave solutions for (3.7) at t = 1 with λi = 1(i = 1 ≤ i ≤ 5), a = −1, b =

1, h1 = 0.1, h2 = 0.3. (a) and (d) N = 3, k3 = 0.5; (b) and (e) N = 4, h4 = 0.7; (c) and (f)
N = 5, h5 = 0.9.
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By observation and analysis, we can conclude that for any positive integer N > 1 in Eq (3.7), N − 1
cross marks will be appeared in their density plots.

4. Complexiton solutions of Eq (1.1)

In what follows, we aim to construct the complexiton solutions of Eq (1.1) under the real field and
the complex field. Assume N1,N2 are natural numbers, N = N1 + N2, ϕi = hix − h2

i y + h3
i t, where

hi(1 ≤ i ≤ N1) are real numbers. When 1 ≤ i ≤ N1, the following expression

ϕ =

N1∑
i=1

λiehi x−h2
i y+h3

i t (4.1)

is a linear superposition solution for the bilinear equation (3.1). For N1 +1 ≤ i ≤ N, taking hi = pi + Iqi,
where I =

√
−1 and pi, qi are real numbers, then

ϕi = hix − h2
i y + h3

i t

= pix − (p2
i − q2

i )y + (p2
i − 3piq2

i t) + ηi + I[qix + 2piqiy + (3p2
i qi − q3

i )t]
= ϕi,1 + Iϕi,2,

(4.2)

where ϕi,1 = pix− (p2
i −q2

i )y+ (p2
i −3piq2

i t), ϕi,2 = qix+2piqiy+ (3p2
i qi−q3

i )t. Obviously, the conjugate
function of ϕi is given by

ϕi = ϕi,1 − Iϕi,2. (4.3)

It can be verified that both eϕi and eϕi are solutions of Eq (3.1). By using the linear superposition
principle, the following expression

N∑
i=N1

(δieϕi + δ̃ieϕi) =

N∑
i=N1

eϕi,1
[
(δi + δ̃i)cos(ϕi,2) + I(δi − δ̃i)sin(ϕi,2)

]
(4.4)

is also a solution of Eq (3.1), where δi, δ̃i are complex numbers.
By employing the linear superposition principle again, the complex value solution of (2+1)-

dimensional Eq (1.1) can be obtained
u = 2(lnϕ)xx, (4.5)

where

ϕ =

N1∑
i=1

λieϕi +

N∑
i=N1

(δieϕi + δ̃ieϕi)

=

N1∑
i=1

λieϕi +

N∑
i=N1

eϕi,1
[
(δi + δ̃i)cos(ϕi,2) + I(δi − δ̃i)sin(ϕi,2)

]
,

(4.6)

in which δi, δ̃i are complex numbers while ϕi,1, ϕi,2 are determined by Eq (4.2).
In order to obtain the real complexiton solutions of Eq (1.1), taking

δi =
δi,1 − Iδi,2

2
, δ̃i =

δi,1 + Iδi,2

2
, (4.7)
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Substituting Eq (4.7) along with Eq (4.6) into Eq (4.4), one real complexiton solutions of Eq (1.1) can
be written as

u = 2(lnϕ)xx (4.8)

with

ϕ =

N1∑
i=1

λieϕi +

N∑
i=N1

eϕi,1
[
δi,1cos(ϕi,2) + δi,2sin(ϕi,2)

]
, (4.9)

in which λi, δi,1, δi,2 are real numbers,ϕi,1, ϕi,2 are determined by Eq (4.2).
According to the obtained results in Eq (3.6), if eϕi = ehi x−h2

i y+h3
i t is one solution of Eq (3.1) for

1 ≤ i ≤ N1, it can be verified that e−ϕi = e−hi x+h2
i y−h3

i t = e(−hi)x+(−hi)2y+(−hi)3t is also one solution of
Eq (3.1). By employing the linear superposition principle, eϕi +e−ϕi

2 and eϕi−e−ϕi

2 are also solutions of
Eq (3.1), so the real complexiton solutions of Eq (1.1) can also be written as the following expressions:

u = 2(lnϕ)xx (4.10)

with

ϕ =

N1∑
i=1

λicosh(ϕi) +

N∑
i=N1

eϕi,1
[
δi,1cos(ϕi,2) + δi,2sin(ϕi,2)

]
(4.11)

or

ϕ =

N1∑
i=1

λisinh(ϕi) +

N∑
i=N1

eϕi,1
[
δi,1cos(ϕi,2) + δi,2sin(ϕi,2)

]
. (4.12)

In general, the complexiton solution Eq (4.10) is singular. If eϕi = e(Ihi)x+(Ihi)2y+(Ihi)3t = eI(hi x−h3
i t)−h2

i y =

eI(hi x−h3
i t)−h2

i y is one solution of Eq (3.1) for N1 ≤ i ≤ N, it can be verified that eϕi = e−I(hi x−h3
i t)−h2

i y =

e(−Ihi)x+(−Ihi)2y+(−Ihi)3t is also one solution of Eq (3.1). By utilizing the linear superposition principle,
eϕi +eϕi

2 = e−h2
i ycos(hix − h3

i t) is also a solution of Eq (3.1), which can be written as

u = 2(lnϕ)xx, (4.13)

where

ϕ =

N1∑
i=1

λicosh(ϕi) +

N∑
i=N1

e−h2
i ycos(hix − h3

i t). (4.14)

If coefficients λi(1 ≤ i ≤ N1) are positive real constants and satisfy the following condition:

N1∑
i=1

λicosh(ϕi) >
N∑

i=N1

λieϕi,1δi,1, (4.15)

then ϕ will always be greater than zero. By transformation u = 2(lnϕ)xx, the positive complexiton
solution of (2+1) dimensional equation (1.1) can be obtained, where ϕ is determined by Eq (4.14).

Taking N = 2,N1 = 1, h1 = 1, h2 = −1, λ1 = 4, λ2 = 1 in Eq (4.14), the positive complexiton
solution can be written as

u =
8 cosh(t + x − y) − 2 e−y cos(−x + t)
4 cosh(t + x − y) + e−y cos(−x + t)

−
2 (4 sinh(t + x − y) + e−y sin(−x + t))2

(4 cosh(t + x − y) + e−y cos(−x + t))2 . (4.16)
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Profiles and density plots of (4.16) are shown in Figures 6 and 7 respectively.

(a) t=1 (b) t=3 (c) t=5

Figure 6. (Color online) Evolution for complexiton solutions Eq (4.16) of (2+1) dimensional
equation Eq (1.1) at different times.

(a) t=1 (b) t=3 (c) t=5

Figure 7. (Color online) Density plots for complexiton solutions Eq (4.16) of (2+1)
dimensional equation Eq (1.1) at different times.

By observation, the shape of completion solution Eq (4.16) seems to change little with time in
Figure 6, but their changes are obvious in the density plots.

5. Conclusions

In summary, a (2+1)-dimensional equation Eq (1.1) has been systematically investigated in this
paper and three types of solutions were obtained. First, the breather solutions were constructed by
using the extend homoclinic test method and symbolic calculation. By analysis, three pairs of breathers

AIMS Mathematics Volume 8, Issue 5, 11651–11665.
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consisting of hyperbolic functions and trigonometric functions were derived. Meanwhile, homoclinic
limit method and the Taylor expansion method were employed to derive a rogue wave solution of
Eq (1.1). Their dynamical behaviors were depicted in four figures. Second, the resonant multiple
solutions of Eq (1.1) were derived by using linear superposition principle, which didn’t depend on
the dispersion relation. In addition, 3D profiles and 2D density plots were shown in order to depict
their dynamical properties. Third, the complexiton solutions were constructed under the real number
field and the complex number field respectively by using linear superposition principle many times.
As a result, several types of complexiton solutions were derived. Among these solutions, a positive
complexiton solution Eq (4.16) was deduced. Its dynamical behaviors were depicted in Figures 6
and 7. As exponential functions and trigonometric functions are not separated in the representation
of Eq (4.16), how to construct a perfect positive complexiton solutions of Eq (1.1) is an interesting
problem. In a sense, all results in this paper are different types of hybrid solutions. In our future work,
we will explore more types of hybrid solutions of higher order nonlinear evolution equations.
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to a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition
principle, Appl. Math. Lett., 78 (2018), 112–117. https://doi.org/10.1016/j.aml.2017.10.013

28. C. K. Kuo, W. X. Ma, A study on resonant multi-soliton solutions to the (2+1)-dimensional Hirota-
Satsuma-Ito equations via the linear superposition principle, Nonlinear Anal., 190 (2020), 111592.
https://doi.org/10.1016/j.na.2019.111592

29. C. K. Kuo, Novel resonant multi-soliton solutions and inelastic interactions to the (3 +1)- and (4
+1)-dimensional Boiti-Leon-Manna-Pempinelli equations via the simplified linear superposition
principle, Eur. Phys. J. Plus, 136 (2021), 1–11. https://doi.org/10.1140/epjp/s13360-020-01062-8

30. W. X. Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301 (2002),
35–44. https://doi.org/10.1016/S0375-9601(02)00971-4

31. H. Q. Zhang, W. X. Ma, Extended transformed rational function method and
applications to complexiton solutions, Appl. Math. Comput., 230 (2014), 509–515.
https://doi.org/10.1016/j.amc.2013.12.156

32. J. G. Liu, Y. F. Zhang, I. Muhammad, Resonant soliton and complexiton solutions for (3+1)-
dimensional Boiti-Leon-Manna-Pempinell equation, Comput. Math. Appl., 75 (2018), 3939–3945.
https://doi.org/10.1016/j.camwa.2018.03.004

33. X. P. Liu, Explicit solutions of the (2+1)-dimensional nonlinear evolution equation, J. Henan Univ.
Eng. (In Chinese), 33 (2021), 74–76. https://doi.org/10.3969/j.issn.1674-330X.2021.01.015

34. H. C. Ma, A. P. Deng, Lump solution of (2+1)-dimensional Boussinesq equation, Commun. Theor.
Phys., 65 (2016), 546–552. https://doi.org/10.1088/0253-6102/65/5/546

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 5, 11651–11665.

http://dx.doi.org/https://doi.org/10.1007/s11082-022-04391-3
http://dx.doi.org/https://doi.org/10.1016/j.amc.2008.10.042
http://dx.doi.org/ https://doi.org/10.1016/j.aml.2014.05.005
http://dx.doi.org/https://doi.org/10.1016/j.aml.2016.12.009
http://dx.doi.org/https://doi.org/10.1016/j.aml.2018.03.017
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2010.12.043
http://dx.doi.org/https://doi.org/10.1016/j.aml.2017.10.013
http://dx.doi.org/https://doi.org/10.1016/j.na.2019.111592
http://dx.doi.org/https://doi.org/10.1140/epjp/s13360-020-01062-8
http://dx.doi.org/https://doi.org/10.1016/S0375-9601(02)00971-4
http://dx.doi.org/ https://doi.org/10.1016/j.amc.2013.12.156
http://dx.doi.org/ https://doi.org/10.1016/j.amc.2013.12.156
http://dx.doi.org/ https://doi.org/10.1016/j.camwa.2018.03.004
http://dx.doi.org/https://doi.org/10.3969/j.issn.1674-330X.2021.01.015
http://dx.doi.org/https://doi.org/10.1088/0253-6102/65/5/546
http://creativecommons.org/licenses/by/4.0

	Introduction
	Breather wave aolutions of the (2 + 1)-dimensional Eq (1.1)
	Resonant multiple wave solutions of Eq (1.1)
	Complexiton solutions of Eq (1.1)
	Conclusions

