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Abstract: Stochastic disturbances often occur in real-world systems which can lead to undesirable
system dynamics. Therefore, it is necessary to investigate stochastic disturbances in neural network
modeling. As such, this paper examines the stability problem for Takagi-Sugeno fuzzy uncertain
quaternion-valued stochastic neural networks. By applying Takagi-Sugeno fuzzy models and
stochastic analysis, we first consider a general form of Takagi-Sugeno fuzzy uncertain quaternion-
valued stochastic neural networks with time-varying delays. Then, by constructing suitable Lyapunov-
Krasovskii functional, we present new delay-dependent robust and global asymptotic stability criteria
for the considered networks. Furthermore, we present our results in terms of real-valued linear matrix
inequalities that can be solved in MATLAB LMI toolbox. Finally, two numerical examples are
presented with their simulations to demonstrate the validity of the theoretical analysis.
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1. Introduction

Since the 1970s, different types of neural networks (NNs) have attracted substantial interest from
researchers due to their potential applications in various fields including secure communications,
parallel computing, artificial intelligence, signal and image processing, optimization, and others [1–5].
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It is well known that real-world systems are subject to random factors, which influence the system
dynamics. As pointed out in [6–8], a real nervous system is usually affected by external noise
which is great uncertainty and hence may be regarded as a stochastic perturbation. Because of this,
stochastic perturbations are inevitable in neural systems, and they should be considered in the modeling
process [7, 9–12]. Meanwhile, NNs are classified into two groups: deterministic NNs and stochastic
NNs. In the study of NNs, deterministic NNs are very effective for describing and analyzing the
system when there is no external disturbance [3–5]. Conversely, deterministic NNs fail when external
disturbances occur. While stochastic NNs are very effective for describing and analyzing the system
when they are subjected to external disturbances [7–10, 13, 14]. In recent years, stochastic NNs have
drawn increasing attention from researchers and several results have been published [15–21].

It has been shown recently that real-valued NNs and complex-valued NNs have been successfully
applied to a variety of engineering applications [1, 2, 11, 12]. However, real-valued NNs and complex-
valued NNs have some limitations when it comes to the problem of symmetry detection and high-
dimensional data [22, 23]. In order to address these issues, some researchers have developed
quaternion-valued neural networks (QVNNs) by incorporating quaternions into conventional NNs [24–
27]. Moreover, QVNNs have shown superior performance compared to complex-valued NNs and real-
valued NNs because of the general representation, as well as their ability to handle multidimensional
data with high efficiency. As a result of these aspects, a variety of applications have been developed
including color images [28, 29], signal processing [30], optimization [31], sparse representation [32],
extreme learning machine [33], and so on. Recently, several research works have been published
regarding various dynamics of stochastic QVNNs using the Lyapunov-Krasovskii functional (LKF)
and linear matrix inequality (LMI) [34–38]. For example, by employing decomposition method in [34],
discrete-time stochastic QVNNs with time-varying delays are discussed, and some sufficient conditions
are obtained to ensure global asymptotic stability. In [35], stochastic QVNNs with event-triggered
control are studied, as well as various criteria are derived for stochastic stability based on direct
quaternion method. Recently, mean square exponential input-to-state stability criterion based on a
real-valued decomposition was found in [38] for stochastic delayed QVNNs. There are similar results
can also be found in [36, 37].

Furthermore, Takagi-Sugeno (T-S) fuzzy system is a powerful and convenient tool in functional
approximations for complex nonlinear systems [39, 40]. The T-S fuzzy system has the advantage of
being able to approximate a nonlinear system with a set of linear models. Unlike typical NN structures,
T-S fuzzy NNs have fuzzy operations and they can preserve the direct connection among cells. Due
to their good approximation properties, T-S fuzzy NNs have proved to be an important research topic.
Many scientific papers have been proposed the idea of incorporating fuzzy logic into the NNs in order
to enhance their performance [41–46]. For example, using LKFs and matrix inequality, the authors
of [45] have demonstrated exponential convergence for T-S fuzzy complex-valued NNs with impulsive
effects and time delays. By decomposing Clifford-valued NNs into 2mn-dimensional real-valued NNs,
the authors of [46] have derived the global asymptotic stability criteria for T-S fuzzy Clifford-valued
NNs with time-varying delays and impulses.

As we all know, the stability issue is the most significant problem in the field of NNs because it is a
precondition for an actual system to be able to function normally, which is fundamental for solving any
other issues [2, 4, 6]. Unfortunately, time delays are often observed when implementing NNs due to
the limited switching speed of amplifiers or information processing, which may result in oscillations,

AIMS Mathematics Volume 8, Issue 5, 11589–11616.



11591

divergences, and even instability in the designing systems [34,37,39]. Therefore, it is essential to study
how delays affect the system’s dynamics. Several theoretical studies on the stability of NNs with time
delays can be found in [46–48]. On the other hand, parameter uncertainties also occur in real systems,
as well as NNs, as a result of modeling inaccuracies and/or environmental changes, which can lead to
undesirable dynamic behaviours. In this regard, it is important to ensure that the system is stable with
respect to uncertainties. Recently, the robustness analysis of various uncertain systems has gained an
increasing amount of attention [11, 12, 18, 21, 50].

As far as we know, no papers have been published on Takagi-Sugeno fuzzy uncertain quaternion-
valued stochastic neural networks (T-S FUQVSNNs) with time-varying delays. The purpose of this
study is to fill such gaps by investigating the robust and global asymptotic stability criteria for T-
S FUQVSNNs. Recently, several results have been published regarding the stability of stochastic
QVNNs; however, T-S FUQVSNNs have not been thoroughly explored and have not received much
attention, which motivates us to investigate this topic. The main merits of this paper are:

(1) To represent more realistic dynamics of QVNNs, we present a general form of T-S FUQVSNNs
with time-varying delays.

(2) We analyze the robust and global asymptotic stability criteria for T-S FUQVSNNs by employing
the system decomposition method.

(3) By constructing suitable LKFs and employing integral inequalities, enhanced stability conditions
for the T-S FUQVSNNs are derived in terms of real-valued LMIs, which could be verified directly
by MATLAB LMI toolbox.

The paper is structured as follows: Section 2 provides the problem model, definitions of robust
asymptotic stability, assumptions about activation functions and time delays, and helpful lemmas.
The main results of this study are stated in Section 3; Theorem (3.1) presents the robust and global
asymptotic stability criteria; Theorem (3.5) provides the global asymptotic stability criteria for the
considered networks. In Corollary (3.3), (3.7), the results of stability criteria are discussed in a
particular case. Section 4 discusses two numerical case studies. Section 5 shows the conclusion of
this paper.

2. Mathematical formulation and problem definition

2.1. Notations

This paper uses the following notations. Let the quaternion, complex and real numbers are denoted
by H,C and R, respectively. The n-dimensional quaternion, complex and real vectors are denoted by
Hn,Cn and Rn, respectively. The quaternion, complex and real matrices of size n × n are represented
by Hn×n,Cn×n and Rn×n, respectively. Let the matrix P < 0 (P > 0) means P is negative (positive)
definite matrix. The block diagonal matrix is shown in diag{·}. PT denotes the transpose of matrix P
and P∗ denotes the Hermitian transpose of matrix P. I denotes the identity matrix with appropriate
dimensions. For ℓ > 0, C ([−ℓ, 0],Hn) denotes the family of continuous functions from φ to Hn with
the norm ∥φ∥ = sup−ℓ≤t≤0 |φ(t)|. Let (Ω,F , {F }t≥0,P) be a complete probability space with a filtration
{F }t≥0 satisfying the usual conditions. The symmetric term in a matrix is showed by ✠.
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2.2. Quaternion algebra

The quaternion was first invented by Hamilton in 1843. The skew field of a quaternion is denoted
by

z = zR + izI + jzJ + kzK ∈ H,

where zR, zI , zJ, zK ∈ R, z is the quaternion-valued input and i, j, k are the quaternion basis which
subjects to Hamilton’s multiplication rules as follows:

k2 = j2 = i2 = −1
jk = −k j = i, ki = −ik = j, i j = − ji = k.

The following are some fundamental operation rules for quaternions and quaternion matrices [24, 49].

(1) The conjugate of the quaternion as follows:

z̄ = zR − izI − jzJ − kzK ∈ H.

(2) The modulus of the quaternion as follows:

|z| =
√

zz̄ =
√

(zR)2 + (zI)2 + (zJ)2 + (zK)2.

(3) Let x = xR+ ixI + jxJ + kxK ∈ H and y = yR+ iyI + jyJ + kyK ∈ H. The addition and multiplication
of two quaternions can be accomplished as follows:

x + y = (xR + yR) + i(xI + yI) + j(xJ + yJ) + k(xK + yK),
xy =

(
xRyR − xIyI − xJyJ − xKyK) + i

(
xRyI + xIyR + xJyK − xKyJ)

+ j
(
xRyJ + xJyR − xIyK + xKyI) + k

(
xRyK + xKyI + xIyJ − xJyI).

2.3. Problem formulation

In this section, we consider the following uncertain stochastic QVNNs with time-varying delays:

dz(t) = [−(D + △D(t))z(t) + (A + △A(t))g(z(t)) + (B + △B(t))g(z(t − ℓ(t)))]dt

+ σ(t, z(t), z(t − ℓ(t)))dω(t), (2.1)

where z(t) = (z1(t), z2(t), ...., zn(t))T ∈ Hn and g(z(·)) = (g1(z1(·)), g2(z2(·)), ..., gn(zn(·)))T ∈ Hn are the
state vector and neuron activation functions, respectively. D = [di]n×n ∈ Rn×n, A = [ai j]n×n ∈ Hn×n,
B = [bi j]n×n ∈ Hn×n are known matrices with appropriate dimensions. ω(t) = (ω1(t), ω2(t), ..., ωn(t))T

is n-dimensional Brownian motion defined on (Ω,F , {F }t≥0,P) with E[ω(t)] = 0 and E[ω(t)2] = t.
We also suppose that the stochastic disturbance σ(t, z(t), z(t − ℓ(t))) : R × Hn × Hn → Hn×m is locally
Lipschitz continuous and satisfies the linear growth condition, i.e., σ(t, 0, 0) = 0, see [6–10] and the
references therein.

This paper also makes the following assumptions about the transmission delays ℓ(t) and activation
functions g(z(·)).
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Assumption 1: ℓ(t) is bounded on R, that is, 0 ≤ ℓ(t) ≤ ℓ and is differentiable function with
ℓ̇(t) ≤ µ < 1, where ℓ, µ are constants.
Assumption 2: For any z, z′ ∈ H, there exists a positive constant lg

α such that

|gα(z) − gα(z′)| ≤ lg
α|z − z′|, α = 1, 2, ..., n.

We also assume that g(0) = 0.
From Assumption 2, we have

(g(z) − g(z′))∗(g(z) − g(z′)) ≤ (z − z′)∗LT
gLg(z − z′), (2.2)

where Lg = diag{lg
1, l

g
2, ...., l

g
n}.

Assumption 3: The parameter uncertainties △D(t),△A(t) = △A
R
(t) + i△A

I
(t) + j△A

J
(t) + k△A

K
(t),

△B(t) = △B
R
(t) + i△B

I
(t) + j△B

J
(t) + k△B

K
(t) in (2.1) are assumed to satisfy: △D(t) = GF (t)H1,

△A
R
(t) = GF (t)H2, △A

I
(t) = GF (t)H3, △A

J
(t) = GF (t)H4, △A

K
(t) = GF (t)H5,

△B
R
(t) = GF (t)H6, △B

I
(t) = GF (t)H7, △B

J
(t) = GF (t)H8, △B

K
(t) = GF (t)H9, where G

and Hα, α = 1, 2, ..., 9 are constant matrices and F (t) is the time-varying uncertain matrix satisfies
F T (t)F (t) ≤ I.

The initial condition of the NNs (2.1) is given by

z(t) = φ(t), t ∈ [−ℓ, 0], (2.3)

where φ(t) is continuously differential on t ∈ [−ℓ, 0].

As shown in [39–42], this paper presents a class of T-S FUQVSNNs with time-varying delays based
on the T-S fuzzy models as follows.
Plant Rule a:
IF ϑ1(t) is ηa

1 and ϑ2(t) is ηa
2 and ... and ϑg(t) is ηa

g, THEN

dz(t) = [−(Da + △Da(t))z(t) + (Aa + △Aa(t))g(z(t)) + (Ba + △Ba(t))g(z(t − ℓ(t)))]dt

+ σa(t, z(t), z(t − ℓ(t)))dω(t), (2.4)

where ϑc(t) (c = 1, ..., g) is the premise variables vector; ηa
c (a = 1, ...,m; c = 1, ..., g) is the fuzzy set,

and m is the number of If-Then rules.

By inferring from the fuzzy models, the final output of T-S FUQVSNNs can be obtained as follows

dz(t) =

m∑
a=1

ψa(ϑ(t))
{−(Da + △Da(t))z(t) + (Aa + △Aa(t))g(z(t))

+ (Ba + △Ba(t))g(z(t − ℓ(t)))dt + σa(t, z(t), z(t − ℓ(t)))dω(t)
}

m∑
a=1

ψa(ϑ(t))

, (2.5)
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or equivalently

dz(t) =
m∑

a=1

χa(ϑ(t))
{
− (Da + △Da(t))z(t) + (Aa + △Aa(t))g(z(t))

+ (Ba + △Ba(t))g(z(t − ℓ(t)))dt + σa(t, z(t), z(t − ℓ(t)))dω(t)
}
, (2.6)

where ϑ(t) = (ϑ1(t), ..., ϑg(t))T , χa(ϑ(t)) = ψa(ϑ(t))
m∑

a=1
ψa(ϑ(t))

, and ψa(ϑ(t)) =
g∏

c=1
ηa

c(ϑ(t)). The term ηa
c(ϑc(t)) is

the grade membership of ϑc(t) in ηa
c . It is stated that ψa(ϑ(t)) ≥ 0, a = 1, ...,m and

m∑
a=1

ψa(ϑ(t)) > 0 for

all t ≥ 0. By fuzzy set theory, we have χa(ϑ(t)) ≥ 0, a = 1, ...,m and
m∑

a=1
χa(ϑ(t)) = 1 for all t ≥ 0.

Assumption 4: For z = zR + izI + jzJ + kzK , ẑ = ẑR + îzI + ĵzJ + k̂zK , with zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK ∈ Rn,
σa(t, z, ẑ) is defined as

σa(t, z, ẑ) = σR
a (t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK) + iσI

a(t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)
+ jσJ

a(t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK) + kσK
a (t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK), (2.7)

where σR
a , σ

I
a, σ

J
a, σ

K
a : R+ × Rn × Rn × Rn × Rn × Rn × Rn × Rn × Rn → Rn×m. There exist matrices

U
α

a ≥ 0,V
α

a ≥ 0,M
α

a ≥ 0,N
α

a ≥ 0, α = 1, 2, ..., 8 such that

trace{σR
a (t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)TσR

a (t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)}

≤ (zR)TU
1
a(zR) + (zI)TU

2
a(zI) + (zJ)TU

3
a(zJ) + (zK)TU

4
a(zK)

+ (̂zR)TU
5
a(̂z)R + (̂zI)TU

6
a(̂zI) + (̂zJ)TU

7
a(̂zJ) + (̂zK)TU

8
a(̂zK),

trace{σI
a(t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)TσI

a(t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)}

≤ (zR)TV
1
a(zR) + (zI)TV

2
a(zI) + (zJ)TV

3
a(zJ) + (zK)TV

4
a(zK)

+ (̂zR)TV
5
a(̂z)R + (̂zI)TV

6
a(̂zI) + (̂zJ)TV

7
a(̂zJ) + (̂zK)TV

8
a(̂zK),

trace{σJ
a(t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)TσJ

a(t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)}

≤ (zR)TM
1
a(zR) + (zI)TM

2
a(zI) + (zJ)TM

3
a(zJ) + (zK)TM

4
a(zK)

+ (̂zR)TM
5
a(̂z)R + (̂zI)TM

6
a(̂zI) + (̂zJ)TM

7
a(̂zJ) + (̂zK)TM

8
a(̂zK),

trace{σK
a (t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)TσK

a (t, zR, zI , zJ, zK , ẑR, ẑI , ẑJ, ẑK)}

≤ (zR)TN
1
a(zR) + (zI)TN

2
a(zI) + (zJ)TN

3
a(zJ) + (zK)TN

4
a(zK)

+ (̂zR)TN
5
a(̂z)R + (̂zI)TN

6
a(̂zI) + (̂zJ)TN

7
a(̂zJ) + (̂zK)TN

8
a(̂zK).

To further investigate, we define z(t) = zR(t) + izI(t) + jzJ(t) + kzK(t), A = A
R
+ iA

I
+ jA

J
+ kA

K
,

B = B
R
+ iB

I
+ jB

J
+ kB

K
, g
(
z(t)
)
= gR(zR(t), zI(t), zJ(t), zK(t)

)
+ igI(zR(t), zI(t), zJ(t), zK(t)

)
+

jgJ(zR(t), zI(t), zJ(t), zK(t)
)
+ kgK(zR(t), zI(t), zJ(t), zK(t)

)
, g
(
z(t − ℓ(t))

)
= gR(zR(t − ℓ(t)), zI(t −

ℓ1(t)), zJ(t− ℓ(t)), zK(t− ℓ(t))
)
+ igI(zR(t− ℓ(t)), zI(t− ℓ(t)), zJ(t− ℓ(t)), zK(t− ℓ(t))

)
+ jgJ(zR(t− ℓ(t)), zI(t−

ℓ(t)), zJ(t − ℓ(t)), zK(t − ℓ(t))
)
+ kgK(zR(t − ℓ(t)), zI(t − ℓ(t)), zJ(t − ℓ(t)), zK(t − ℓ(t))

)
.
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In order to simplify the resulting parts, the following notations are used:
zR = zR(t), zI = zI(t), zJ = zJ(t), zK = zK(t), zR

ℓ(t) = zR(t − ℓ(t)), zI
ℓ(t) = zI(t − ℓ(t)),

zJ
ℓ(t) = zJ(t − ℓ(t)), zK

ℓ(t) = zK(t − ℓ(t)).

Hence, the T-S FUQVSNNs (2.6) can be splitting into real and imaginary parts as



dzR =

m∑
a=1

χa(ϑ(t))
{[
−
(
Da + △Da(t)

)
zR +
(
A

R
a + △A

R
a (t)
)
gR(zR, zI , zJ, zK)

−(A
I
a + △A

I
a(t))gI(zR, zI , zJ, zK) − (A

J
a + △A

J
a(t))gJ(zR, zI , zJ, zK)

−(A
K
a + △A

K
a (t))gK(zR, zI , zJ, zK) + (B

R
a + △B

R
a (t))gR(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

−(B
I
a + △B

I
a(t))gI(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
− (B

J
a + △B

J
a(t))gJ(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

−(B
K
a + △B

K
a (t))gK(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)]

dt

+σR
a
(
t, zR, zI , zJ, zK , zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
dω(t)

}
dzI =

m∑
a=1

χa(ϑ(t))
{[
−
(
Da + △Da(t)

)
zI +
(
A

R
a + △A

R
a (t)
)
gI(zR, zI , zJ, zK)

+(A
I
a + △A

I
a(t))gR(zR, zI , zJ, zK) + (A

J
a + △A

J
a(t))gK(zR, zI , zJ, zK)

−(A
K
a + △A

K
a (t))gJ(zR, zI , zJ, zK) + (B

R
a + △B

R
a (t))gI(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

+(B
I
a + △B

I
a(t))gR(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
+ (B

J
a + △B

J
a(t))gK(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

−(B
K
a + △B

K
a (t))gJ(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)]

dt

+σI
a
(
t, zR, zI , zJ, zK , zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
dω(t)

}
dzJ =

m∑
a=1

χa(ϑ(t))
{[
−
(
Da + △Da(t)

)
zJ +
(
A

R
a + △A

R
a (t)
)
gJ(zR, zI , zJ, zK)

+(A
J
a + △A

J
a(t))gR(zR, zI , zJ, zK) − (A

I
a + △A

I
a(t))gK(zR, zI , zJ, zK)

+(A
K
a + △A

K
a (t))gI(zR, zI , zJ, zK) + (B

R
a + △B

R
a (t))gJ(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

+(B
J
a + △B

J
a(t))gR(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
− (B

I
a + △B

I
a(t))gK(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

+(B
K
a + △B

K
a (t))gI(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)]

dt

+σJ
a
(
t, zR, zI , zJ, zK , zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
dω(t)

}
dzK =

m∑
a=1

χa(ϑ(t))
{[
−
(
Da + △Da(t)

)
zK +

(
A

R
a + △A

R
a (t)
)
gK(zR, zI , zJ, zK)

+(A
K
a + △A

K
a (t))gR(zR, zI , zJ, zK) + (A

I
a + △A

I
a(t))gJ(zR, zI , zJ, zK)

−(A
J
a + △A

J
a(t))gI(zR, zI , zJ, zK) + (B

R
a + △B

R
a (t))gK(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

+(B
K
a + △B

K
a (t))gR(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
+ (B

I
a + △B

I
a(t))gJ(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

−(B
J
a + △B

J
a(t))gI(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)]

dt

+σK
a
(
t, zR, zI , zJ, zK , zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
dω(t)

}
.

(2.8)
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Based on (2.8), the following NNs can be written as:


dzR

dzI

dzJ

dzK

 =
m∑

a=1

χa(ϑ(t))
{(
−

Da+△Da(t) 0 0 0
0 Da+△Da(t) 0 0
0 0 Da+△Da(t) 0
0 0 0 Da+△Da(t)



zR

zI

zJ

zK


+


A

R
a+△A

R
a (t) −A

I
a−△A

I
a(t) −A

J
a−△A

J
a(t) −A

K
a −△A

K
a (t)

A
I
a+△A

I
a(t) A

R
a+△A

R
a (t) −A

K
a −△A

K
a (t) A

J
a+△A

J
a(t)

A
J
a+△A

J
a(t) A

K
a +△A

K
a (t) A

R
a+△A

R
a (t) −A

I
a−△A

I
a(t)

A
K
a +△A

K
a (t) −A

J
a−△A

J
a(t) A

I
a+△A

I
a(t) A

R
a+△A

R
a (t)




gR
(

zR,zI ,zJ ,zK
)

gI
(

zR,zI ,zJ ,zK
)

gJ
(

zR,zI ,zJ ,zK
)

gK
(

zR,zI ,zJ ,zK
)


+


B

R
a+△B

R
a (t) −B

I
a−△B

I
a(t) −B

J
a−△B

J
a(t) −B

K
a −△B

K
a (t)

B
I
a+△B

I
a(t) B

R
a+△B

R
a (t) −B

K
a −△B

K
a (t) B

J
a+△B

J
a(t)

B
J
a+△B

J
a(t) B

K
a +△B

K
a (t) B

R
a+△B

R
a (t) −B

I
a−△B

I
a(t)

B
K
a +△B

K
a (t) −B

J
a−△B

J
a(t) B

I
a+△B

I
a(t) B

R
a+△B

R
a (t)




gR
(

zR
ℓ(t),z

I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
gI
(

zR
ℓ(t),z

I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
gJ
(

zR
ℓ(t),z

I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
gK
(

zR
ℓ(t),z

I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)

)
dt

+


σR

a

(
t,zR,zI ,zJ ,zK ,zR

ℓ(t),z
I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
σI

a

(
t,zR,zI ,zJ ,zK ,zR

ℓ(t),z
I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
σJ

a

(
t,zR,zI ,zJ ,zK ,zR

ℓ(t),z
I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
σK

a

(
t,zR,zI ,zJ ,zK ,zR

ℓ(t),z
I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
dω(t)

}
,

(2.9)

which is equivalent to


dzR

dzI

dzJ

dzK

 =
m∑

a=1

χa(ϑ(t))
{(
−


Da 0 0 0

0 Da 0 0
0 0 Da 0
0 0 0 Da

 +
 △Da(t) 0 0 0

0 △Da(t) 0 0
0 0 △Da(t) 0
0 0 0 △Da(t)




zR

zI

zJ

zK


+



A

R
a −A

I
a −A

J
a −A

K
a

A
I
a A

R
a −A

K
a A

J
a

A
J
a A

K
a A

R
a −A

I
a

A
K
a −A

J
a A

I
a A

R
a

 +

△A

R
a (t) −△A

I
a(t) −△A

J
a(t) −△A

K
a (t)

△A
I
a(t) △A

R
a (t) −△A

K
a (t) △A

J
a(t)

△A
J
a(t) △A

K
a (t) △A

R
a (t) −△A

I
a(t)

△A
K
a (t) −△A

J
a(t) △A

I
a(t) △A

R
a (t)





gR
(

zR,zI ,zJ ,zK
)

gI
(

zR,zI ,zJ ,zK
)

gJ
(

zR,zI ,zJ ,zK
)

gK
(

zR,zI ,zJ ,zK
)


+



B

R
a −B

I
a −B

J
a −B

K
a

B
I
a B

R
a −B

K
a B

J
a

B
J
a B

K
a B

R
a −B

I
a

B
K
a −B

J
a B

I
a B

R
a

 +

△B

R
a (t) −△B

I
a(t) −△B

J
a(t) −△B

K
a (t)

△B
I
a(t) △B

R
a (t) −△B

K
a (t) △B

J
a(t)

△B
J
a(t) △B

K
a (t) △B

R
a (t) −△B

I
a(t)

△B
K
a (t) −△B

J
a(t) △B

I
a(t) △B

R
a (t)





gR
(

zR
ℓ(t),z

I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
gI
(

zR
ℓ(t),z

I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
gJ
(

zR
ℓ(t),z

I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
gK
(

zR
ℓ(t),z

I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)

)
dt

+


σR

a

(
t,zR,zI ,zJ ,zK ,zR

ℓ(t),z
I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
σI

a

(
t,zR,zI ,zJ ,zK ,zR

ℓ(t),z
I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
σJ

a

(
t,zR,zI ,zJ ,zK ,zR

ℓ(t),z
I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
σK

a

(
t,zR,zI ,zJ ,zK ,zR

ℓ(t),z
I
ℓ(t),z

J
ℓ(t),z

K
ℓ(t)

)
dω(t)

}
.

(2.10)

Let

ĝ(π(t)) =


gR(zR, zI , zJ, zK)
gI(zR, zI , zJ, zK)
gJ(zR, zI , zJ, zK)
gK(zR, zI , zJ, zK)

 , ĝ(π(t − ℓ(t))) =


gR(zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

gI(zR
ℓ(t), z

I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

gJ(zR
ℓ(t), z

I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

gK(zR
ℓ(t), z

I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
 ,
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π(t) =


zR

zI

zJ

zK

 , D̂a =


Da 0 0 0
0 Da 0 0
0 0 Da 0
0 0 0 Da

 , Âa =


A

R
a −A

I
a −A

J
a −A

K
a

A
I
a A

R
a −A

K
a A

J
a

A
J
a A

K
a A

R
a −A

I
a

A
K
a −A

J
a A

I
a A

R
a

 ,

B̂a =


B

R
a −B

I
a −B

J
a −B

K
a

B
I
a B

R
a −B

K
a B

J
a

B
J
a B

K
a B

R
a −B

I
a

B
K
a −B

J
a B

I
a B

R
a

 , ςa(t) =


σR

a
(
t, zR, zI , zJ, zK , zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

σI
a
(
t, zR, zI , zJ, zK , zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

σJ
a
(
t, zR, zI , zJ, zK , zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)

σK
a
(
t, zR, zI , zJ, zK , zR

ℓ(t), z
I
ℓ(t), z

J
ℓ(t), z

K
ℓ(t)
)
 ,

△D̂a =


△Da(t) 0 0 0

0 △Da(t) 0 0
0 0 △Da(t) 0
0 0 0 △Da(t)

 ,

△Âa =


△A

R
a (t) −△A

I
a(t) −△A

J
a(t) −△A

K
a (t)

△A
I
a(t) △A

R
a (t) −△A

K
a (t) △A

J
a(t)

△A
J
a(t) △A

K
a (t) △A

R
a (t) −△A

I
a(t)

△A
K
a (t) −△A

J
a(t) △A

I
a(t) △A

R
a (t)

 ,

△B̂a =


△B

R
a (t) −△B

I
a(t) −△B

J
a(t) −△B

K
a (t)

△B
I
a(t) △B

R
a (t) −△B

K
a (t) △B

J
a(t)

△B
J
a(t) △B

K
a (t) △B

R
a (t) −△B

I
a(t)

△B
K
a (t) −△B

J
a(t) △B

I
a(t) △B

R
a (t)

 .
Now, the system (2.10) is equivalent form as

dπ(t) =
m∑

a=1

χa(ϑ(t))
{[
− (D̂a + △D̂a)π(t) + (Âa + △Âa)̂g(π(t))

+ (B̂a + △B̂a)̂g(π(t − ℓ(t)))
]
dt + ςa(t)dω(t)

}
. (2.11)

From (2.11), the parameter uncertainties △D̂a,△Âa,△B̂a, which satisfy:

△D̂a = ĜaF̂a(t)Ĥ1
a , △Âa = ĜaF̂a(t)Ĥ2

a , △B̂a = ĜaF̂a(t)Ĥ3
a , (2.12)

where

Ĝa =


Ga 0 0 0
0 Ga 0 0
0 0 Ga 0
0 0 0 Ga

 , F̂a(t) =


Fa(t) 0 0 0

0 Fa(t) 0 0
0 0 Fa(t) 0
0 0 0 Fa(t)

 ,

Ĥ1
a =


H1

a 0 0 0
0 H1

a 0 0
0 0 H1

a 0
0 0 0 H1

a

 , Ĥ2
a =


H2

a −H3
a −H4

a −H5
a

H3
a H2

a −H5
a H4

a

H4
a H5

a H2
a −H3

a

H5
a −H4

a H3
a H2

a

 ,
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Ĥ3
a =


H6

a −H7
a −H8

a −H9
a

H7
a H6

a −H9
a H8

a

H8
a H9

a H6
a −H7

a

H9
a −H8

a H7
a H6

a

 .
The initial condition of the system (2.11) is given by

π(t) = φ̂(t), t ∈ [−ℓ, 0], (2.13)

where φ̂(t) = (φR(t) φI(t) φJ(t) φK(t))T .
To simplify the sequel, the following abbreviations are used

θa(t) = − (D̂a + △D̂a)π(t) + (Âa + △Âa)̂g(π(t)) + (B̂a + △B̂a)̂g(π(t − ℓ(t))).

The system (2.11) read as

dπ(t) =
m∑

a=1

χa(ϑ(t))θa(t)dt +
m∑

a=1

χa(ϑ(t))ςa(t)dω(t). (2.14)

In order to derive our main results, we present some definitions, lemmas.

Definition 2.1. [50] The NN model (2.1) is said to be mean-square stable if for any ϵ > 0 there
exists a scalar κ(ϵ) > 0 such that E{∥z(t)∥2} < ϵ, t > 0, whenever sup

−ℓ≤t≤0
E{∥φ(t)∥2} < κ(ϵ). In addition,

if lim
t→∞

E{∥z(t)∥2} = 0 for any initial condition, then the NNs (2.1) is said to be mean-square robustly
asymptotically stable.

Lemma 2.2. [51] LetM ∈ Rn×n be a positive definite matrix, vector function z(s) : [a, b] → Rn with
scalars a < b, then

−(b − a)
∫ b

a
zT (s)Mz(s)ds ≤ −

[ ∫ b

a
z(s)ds

]T
M

[ ∫ b

a
z(s)ds

]
.

Lemma 2.3. [51] Let Ω = ΩT , J1 and J2 be real matrices, F (t) satisfies F T (t)F (t) ≤ I. Then
Ω+ (J1F (t)J2)+ (J1F (t)J2)T < 0, iff there exist a scalar ϵ > 0 such thatΩ+ ϵJ1J

T
1 + ϵ

−1JT
2 J2 < 0.

Lemma 2.4. [51] Given constant matrices M,N and O with 0 < M = MT and 0 < N = NT ,

then
[
M O

OT N

]
< 0, is equivalent to one of the following conditions: (i) N < 0, M− ON−1OT < 0,

(ii)M < 0, N − OTM−1O < 0.

Lemma 2.5. [52] LetM ∈ Rn×n be a positive definite matrix, two matrices Λ1,Λ2 ∈ Rn×m, positive
integers n and m, scalar ζ ∈ (0, 1), any vector ξ ∈ Rm, denote the function Ξ(ζ,M) with the following
form:

Ξ(ζ,M) =
1
ζ
ξTΛT

1MΛ1ξ +
1

1 − ζ
ξTΛT

2MΛ2ξ.

There exists a matrix N ∈ Rn×n satisfying
[
M N

NT M

]
> 0, then

min
ζ∈(0,1)

Ξ(ζ,M) ≥
[
Λ1ξ

Λ2ξ

]T [
M N

NT M

] [
Λ1ξ

Λ2ξ

]
.
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3. Main results

This section derives sufficient criteria for the robust and global asymptotic stability criteria for T-S
FUQVSNNs using the Lyapunov stability theory and LMI method.

3.1. Robust stability analysis

In the following Theorem (3.1), we derive the mean square robust asymptotic stability criteria for
T-S FUQVSNNs (2.11).

Theorem 3.1. Suppose Assumptions 1-4 hold. If there exist positive symmetric matrices P ∈
R4n×4n,Q ∈ R4n×4n,R ∈ R4n×4n,S ∈ R4n×4n, any matrix T ∈ R4n×4n and positive scalars ϵ1 ∈ Rn, ϵ2 ∈

Rn, ϵ3 ∈ Rn, γ1 ∈ Rn, γ2 ∈ Rn, λ ∈ Rn, such that the following LMIs hold for all a = 1, 2, ...,m

P ≤ λI, (3.1)[
Φ̂a Υa

✠ Ωa

]
< 0, (3.2)

where Φ̂a = (Φ̂i, j,a)7×7, Υa = (Υi, j,a)7×3, Ωa = (Ωi, j,a)3×3 with Φ̂1,1,a = −PD̂a − D̂aP
T + ϵ1Ĥ

1
a

T
Ĥ1

a +

Q + R + ℓ2S + γ1L̂g + λΠ1, Φ̂1,4,a = PÂa, Φ̂1,5,a = PB̂a, Φ̂2,2,a = −(1 − µ)Q + γ2L̂g + λΠ2, Φ̂3,3,a =

−R, Φ̂4,4,a = −γ1+ϵ2Ĥ
2
a

T
Ĥ2

a , Φ̂5,5,a = −γ2+ϵ3Ĥ
3
a

T
Ĥ3

a , Φ̂6,6,a = −S, Φ̂6,7,a = −T , Φ̂7,7,a = −S, Υ1,1,a =

PĜa, Υ1,2,a = PĜa, Υ1,3,a = PĜa, Ω1,1,a = −ϵ1, Ω2,2,a = −ϵ2, Ω3,3,a = −ϵ3, then the NN model (2.11) is
robustly asymptotically stable in the mean square.

Proof: Take the following LKF (3.3) for the NNs (2.11)

V(t, π(t), a) = πT (t)Pπ(t) +
∫ t

t−ℓ(t)
πT (s)Qπ(s)ds +

∫ t

t−ℓ
πT (s)Rπ(s)ds

+ ℓ

∫ 0

−ℓ

∫ t

t+u
πT (s)Sπ(s)dsdu. (3.3)

Suppose L is the weak infinitesimal generator. By Ito’s formula, the time derivative of V(t, π(t), a) can
be calculated along the trajectories of the system (2.11) is given by

LV(t, π(t), a) =
m∑

a=1

χa(ϑ(t))
{
2πT (t)Pθa(t) + trace{ςT

a (t)Pςa(t)} + πT (t)Qπ(t)

− (1 − ℓ̇(t))πT (t − ℓ(t))Qπ(t − ℓ(t)) + πT (t)Rπ(t)

− πT (t − ℓ)Rπ(t − ℓ) + ℓ2πT (t)Sπ(t) − ℓ
∫ t

t−ℓ
πT (u)Sπ(u)du

}
=

m∑
a=1

χa(ϑ(t))
{
2πT (t)P[−(D̂a + △D̂a)π(t) + (Âa + △Âa)̂g(π(t))

+ (B̂a + △B̂a)̂g(π(t − ℓ(t)))] + trace{ςT
a (t)Pςa(t)} + πT (t)Qπ(t)

− (1 − ℓ̇(t))πT (t − ℓ(t))Qπ(t − ℓ(t)) + πT (t)Rπ(t)
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− πT (t − ℓ)Rπ(t − ℓ) + ℓ2πT (t)Sπ(t) − ℓ
∫ t

t−ℓ
πT (u)Sπ(u)du

}
≤

m∑
a=1

χa(ϑ(t))
{
− 2πT (t)(PD̂a)π(t) − 2πT (t)(PĜaF̂a(t)Ĥ1

a )π(t)

+ 2πT (t)(PÂa)̂g(π(t)) + 2πT (t)(PĜaF̂a(t)Ĥ2
a )̂g(π(t))

+ 2πT (t)(PB̂a)̂g(π(t − ℓ(t))) + 2πT (t)(PĜaF̂a(t)Ĥ3
a )̂g(π(t − ℓ(t)))

+ trace{ςT
a (t)Pςa(t)} + πT (t)Qπ(t) − (1 − µ)πT (t − ℓ(t))Q

× π(t − ℓ(t)) + πT (t)Rπ(t) − πT (t − ℓ)Rπ(t − ℓ) + ℓ2πT (t)Sπ(t)

− ℓ

∫ t

t−ℓ
πT (u)Sπ(u)du

}
. (3.4)

By using Lemma (2.3), we can get

LV(t, π(t), a) ≤
m∑

a=1

χa(ϑ(t))
{
− 2πT (t)(PD̂a)π(t) + ϵ−1

1 πT (t)(PĜaĜ
T
aP

T )π(t)

+ ϵ1π
T (t)(Ĥ1

a

T
Ĥ1

a )π(t) + 2πT (t)(PÂa)̂g(π(t)) + ϵ−1
2 πT (t)(PĜaĜ

T
aP

T )

× π(t) + ϵ2ĝT (π(t))(Ĥ2
a

T
Ĥ2

a )̂g(π(t)) + 2πT (t)(PB̂a)̂g(π(t − ℓ(t)))

+ ϵ−1
3 πT (t)(PĜaĜ

T
aP

T )π(t) + ϵ3ĝT (π(t − ℓ(t)))(Ĥ3
a

T
Ĥ3

a )̂g(π(t − ℓ(t)))
+ trace{ςT

a (t)Pςa(t)} + πT (t)Qπ(t) − (1 − µ)πT (t − ℓ(t))Q
× π(t − ℓ(t)) + πT (t)Rπ(t) − πT (t − ℓ)Rπ(t − ℓ) + ℓ2πT (t)Sπ(t)

− ℓ

∫ t

t−ℓ
πT (u)Sπ(u)du

}
. (3.5)

By using Assumption 1 and Lemma (2.2), we have

−ℓ

∫ t

t−ℓ
πT (u)Sπ(u)du = − ℓ

∫ t−ℓ(t)

t−ℓ
πT (u)Sπ(u)du − ℓ

∫ t

t−ℓ(t)
πT (u)Sπ(u)du

−ℓ

∫ t

t−ℓ
πT (u)Sπ(u)du = −

ℓ

ℓ − ℓ(t)

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]T
S

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]
−

ℓ

ℓ(t)

[ ∫ t

t−ℓ(t)
π(u)du

]T
S

[ ∫ t

t−ℓ(t)
π(u)du

]
= −

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]T
S

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]
−

ℓ(t)
ℓ − ℓ(t)

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]T
S

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]
−

[ ∫ t

t−ℓ(t)
π(u)du

]T
S

[ ∫ t

t−ℓ(t)
π(u)du

]
−
ℓ − ℓ(t)
ℓ(t)

[ ∫ t

t−ℓ(t)
π(u)du

]T
S

[ ∫ t

t−ℓ(t)
π(u)du

]
. (3.6)
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If
[
S T

T T S

]
≥ 0 by Lemma (2.5), the following inequality is true:



√
ℓ(t)
ℓ−ℓ(t)

[∫ t−ℓ(t)

t−ℓ
π(u)du

]
√

ℓ−ℓ(t)
ℓ(t)

[∫ t

t−ℓ(t)
π(u)du

]


T [
S T

T T S

] 

√
ℓ(t)
ℓ−ℓ(t)

[∫ t−ℓ(t)

t−ℓ
π(u)du

]
√

ℓ−ℓ(t)
ℓ(t)

[∫ t

t−ℓ(t)
π(u)du

]

≥ 0, (3.7)

which implies

−
ℓ(t)

ℓ − ℓ(t)

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]T
S

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]
−
ℓ − ℓ(t)
ℓ(t)

[ ∫ t

t−ℓ(t)
π(u)du

]T
S

[ ∫ t

t−ℓ(t)
π(u)du

]
≤ −

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]T
T

[ ∫ t

t−ℓ(t)
π(u)du

]
−

[ ∫ t

t−ℓ(t)
π(u)du

]T
T T
[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]
. (3.8)

From (3.6) and (3.8), one can obtain that

−ℓ

∫ t

t−ℓ
πT (u)Sπ(u)du ≤ −

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]T
S

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]
−

[ ∫ t

t−ℓ(t)
π(u)du

]T
S

[ ∫ t

t−ℓ(t)
π(u)du

]
−

[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]T
T

[ ∫ t

t−ℓ(t)
π(u)du

]
−

[ ∫ t

t−ℓ(t)
π(u)du

]T
T T
[ ∫ t−ℓ(t)

t−ℓ
π(u)du

]
. (3.9)

From the Assumption 4, one has

trace(ςT
a (t)ςa(t)) ≤ (zR)T (U

1
a +V

1
a +M

1
a +N

1
a)(zR) + (zR)T

ℓ(t)(U
5
a +V

5
a +M

5
a +N

5
a)(zR)ℓ(t)

+ (zI)T (U
2
a +V

2
a +M

2
a +N

2
a)(zI) + (zI)T

ℓ(t)(U
6
a +V

6
a +M

6
a +N

6
a)(zI)ℓ(t)

+ (zJ)T (U
3
a +V

3
a +M

3
a +N

3
a)(zJ) + (zJ)T

ℓ(t)(U
7
a +V

7
a +M

7
a +N

7
a)(zJ)ℓ(t)

+ (zK)T (U
4
a +V

4
a +M

4
a +N

4
a)(zK) + (zK)T

ℓ(t)(U
8
a +V

8
a +M

8
a +N

8
a)(zK)ℓ(t)

≤ πT (t)Π1π(t) + πT (t − ℓ(t))Π2π(t − ℓ(t)), (3.10)

where

Π1 =


U

1
a +V

1
a +M

1
a +N

1
a 0 0 0

0 U
2
a +V

2
a +M

2
a +N

2
a 0 0

0 0 U
3
a +V

3
a +M

3
a +N

3
a 0

0 0 0 U
4
a +V

4
a +M

4
a +N

4
a


,

Π2 =


U

5
a +V

5
a +M

5
a +N

5
a 0 0 0

0 U
6
a +V

6
a +M

6
a +N

6
a 0 0

0 0 U
7
a +V

7
a +M

7
a +N

7
a 0

0 0 0 U
8
a +V

8
a +M

8
a +N

8
a


.
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From (3.10) and (3.1), one can obtain

trace(ςT
a (t)Pςa(t)) ≤ πT (t)(λΠ1)π(t) + πT (t − ℓ(t))(λΠ2)π(t − ℓ(t)). (3.11)

Moreover, from Assumption 2 it follows that

0 ≤ γ1[πT (t)L̂gπ(t) − ĝT (π(t))̂g(π(t))], (3.12)

0 ≤ γ2[πT (t − ℓ(t))L̂gπ(t − ℓ(t)) − ĝT (π(t − ℓ(t)))̂g(π(t − ℓ(t)))]. (3.13)

Adding from (3.5)-(3.13), we get

LV(t, π(t), a) ≤
m∑

a=1

χa(ϑ(t))
{
ξT (t)Φaξ(t)

}
, (3.14)

where

ξ(t) =
[
πT (t) πT (t − ℓ(t)) πT (t − ℓ) ĝT (π(t)) ĝT (π(t − ℓ(t)))

∫ t−ℓ(t)

t−ℓ
πT (u)du

∫ t

t−ℓ(t)
πT (u)du

]T
,

and Φa = (Φi, j,a)7×7 with Φ1,1,a = −PD̂a − D̂aP
T + ϵ−1

1 PĜaĜ
T
aP

T + ϵ1Ĥ
1
a

T
Ĥ1

a + ϵ
−1
2 PĜaĜ

T
aP

T +

ϵ−1
3 PĜaĜ

T
aP

T + Q + R + ℓ2S + γ1L̂g + λΠ1, Φ1,4,a = PÂa, Φ1,5,a = PB̂a, Φ2,2,a =

−(1 − µ)Q + γ2L̂g + λΠ2, Φ3,3,a = −R, Φ4,4,a = −γ1 + ϵ2Ĥ
2
a

T
Ĥ2

a , Φ5,5,a = −γ2 + ϵ3Ĥ
3
a

T
Ĥ3

a , Φ6,6,a =

−S, Φ6,7,a = −T , Φ7,7,a = −S.

By Schur Complement Lemma (2.4), it is obvious that Φa is equivalent to
[
Φ̂a Υa

✠ Ωa

]
< 0. Then

taking mathematical expectation, we have

E{LV(t, π(t), a)} ≤ E
{
ξT (t)

[
Φ̂a Υa

✠ Ωa

]
ξ(t)
}
,

≤ − ϵE{∥π(t)∥2}. (3.15)

This implies that the NNs (2.11) is robustly asymptotically stable in the mean square. The proof is
completed.

Remark 3.2. Suppose there has no stochastic disturbance, then NNs (2.6) turns to

dz(t)
dt
=

m∑
a=1

χa(ϑ(t))
{
− (Da + △Da(t))z(t) + (Aa + △Aa(t))g(z(t)) + (Ba + △Ba(t))g(z(t − ℓ(t)))

}
.

(3.16)

At the same time, system (2.11) turns to

dπ(t)
dt
=

m∑
a=1

χa(ϑ(t))
{
− (D̂a + △D̂a)π(t) + (Âa + △Âa)̂g(π(t)) + (B̂a + △B̂a)̂g(π(t − ℓ(t)))

}
. (3.17)

By setting the stochastic disturbance ςa(t)dω(t) = 0 in Theorem (3.1), Corollary (3.3) can be obtained.
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Corollary 3.3. Suppose Assumptions 1-3 hold. If there exist positive symmetric matrices P ∈
R4n×4n,Q ∈ R4n×4n,R ∈ R4n×4n,S ∈ R4n×4n, any matrix T ∈ R4n×4n and positive scalars ϵ1 ∈ Rn, ϵ2 ∈

Rn, ϵ3 ∈ Rn, γ1 ∈ Rn, γ2 ∈ Rn, such that the following LMI hold for all a = 1, 2, ...,m[
Φ̃a Υa

✠ Ωa

]
< 0, (3.18)

where Φ̃a = (Φ̃i, j,a)7×7, Υa = (Υi, j,a)7×3, Ωa = (Ωi, j,a)3×3 with Φ̃1,1,a = −PD̂a − D̂aP
T + ϵ1Ĥ

1
a

T
Ĥ1

a +Q+

R + ℓ2S + γ1L̂g, Φ̃1,4,a = PÂa, Φ̃1,5,a = PB̂a, Φ̃2,2,a = −(1 − µ)Q + γ2L̂g, Φ̃3,3,a = −R, Φ̃4,4,a = −γ1 +

ϵ2Ĥ
2
a

T
Ĥ2

a , Φ̃5,5,a = −γ2 + ϵ3Ĥ
3
a

T
Ĥ3

a , Φ̃6,6,a = −S, Φ̃6,7,a = −T , Φ̃7,7,a = −S, Υ1,1,a = PĜa, Υ1,2,a =

PĜa, Υ1,3,a = PĜa, Ω1,1,a = −ϵ1, Ω2,2,a = −ϵ2, Ω3,3,a = −ϵ3, then the NN model (3.17) is robustly
asymptotically stable.

Remark 3.4. In Theorem (3.1) and Corollary (3.3), sufficient conditions are obtained to ensure that
the NN (2.11) model is robust asymptotic stability by decomposes QVNNs into real-valued NNs, but
the result we achieve is actually about QVNNs themselves.

3.2. Global stability analysis

If there are no uncertainties, then NNs (2.6) becomes

dz(t) =
m∑

a=1

χa(ϑ(t))
{
[ −Daz(t) +Aag(z(t)) + Bag(z(t − ℓ(t)))]dt + σa(t, z(t), z(t − ℓ(t)))dω(t)

}
. (3.19)

At the same time, the NNs (2.11) turns to

dπ(t) =
m∑

a=1

χa(ϑ(t))
{
[−D̂aπ(t) + Âaĝ(π(t)) + B̂aĝ(π(t − ℓ(t)))]dt + ςa(t)dω(t)

}
. (3.20)

By setting △D̂a = △Âa = △B̂a = 0 in Theorem (3.1), Theorem (3.5) can be obtained.

Theorem 3.5. Suppose Assumptions 1,2,4 hold. If there exist positive symmetric matrices P ∈
R4n×4n,Q ∈ R4n×4n,R ∈ R4n×4n,S ∈ R4n×4n, any matrix T ∈ R4n×4n and positive scalars γ1 ∈ Rn, γ2 ∈

Rn, λ ∈ Rn, such that the following LMIs hold for all a = 1, 2, ...,m

P ≤ λI, (3.21)

Φ̆a < 0, (3.22)

where Φ̆a = (Φ̆i, j,a)7×7, with Φ̆1,1,a = −PD̂a−D̂aP
T +Q+R+ ℓ2S+γ1L̂g+λΠ1, Φ̆1,4,a = PÂa, Φ̆1,5,a =

PB̂a, Φ̆2,2,a = −(1 − µ)Q + γ2L̂g + λΠ2, Φ̆3,3,a = −R, Φ̆4,4,a = −γ1, Φ̆5,5,a = −γ2, Φ̆6,6,a = −S, Φ̆6,7,a =

−T , Φ̆7,7,a = −S, then the NN model (3.20) is globally asymptotically stable in the mean square.

Remark 3.6. When stochastic disturbance is not appear, then the NNs (3.19) turns to

dz(t)
dt
=

m∑
a=1

χa(ϑ(t))
{
−Daz(t) +Aag(z(t)) + Bag(z(t − ℓ(t)))

}
. (3.23)
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At the same time, the NNs (3.20) turns to

dπ(t)
dt
=

m∑
a=1

χa(ϑ(t))
{
− D̂aπ(t) + Âaĝ(π(t)) + B̂aĝ(π(t − ℓ(t)))

}
. (3.24)

By setting △D̂a = △Âa = △B̂a = 0 and ςa(t)dω(t) = 0 in Theorem (3.5), Corollary (3.7) can be
obtained.

Corollary 3.7. Suppose Assumptions 1, 2 hold. If there exist positive symmetric matrices P ∈
R4n×4n,Q ∈ R4n×4n,R ∈ R4n×4n,S ∈ R4n×4n, any matrix T ∈ R4n×4n and positive scalars γ1 ∈ Rn, γ2 ∈

Rn, such that the following LMIs hold for all a = 1, 2, ...,m

Φ̌a < 0, (3.25)

where Φ̆a = (Φ̆i, j,a)7×7 with Φ̌1,1,a = −PD̂a − D̂aP
T + Q + R + ℓ2S + γ1L̂g, Φ̌1,4,a = PÂa, Φ̌1,5,a =

PB̂a, Φ̌2,2,a = −(1 − µ)Q + γ2L̂g, Φ̌3,3,a = −R, Φ̌4,4,a = −γ1, Φ̌5,5,a = −γ2, Φ̌6,6,a = −S, Φ̌6,7,a =

−T , Φ̌7,7,a = −S, then the NN model (3.19) is globally asymptotically stable.

Remark 3.8. As is well known, QVNNs are the extensions of real-valued and complex-valued NNs
with quaternion-valued states, inputs, and connection weights. The activation functions in the real
domain are generally assumed to be smooth and bounded, whereas these assumptions do not apply
to the quaternion domain. Therefore, choosing the activation function is very important when dealing
with quaternions. Because of this, quaternion-valued activation functions are generally examined in
three different ways: (i) The real-valued decomposition method, (ii) The complex-valued decomposition
method, (iii) The direct quaternion method. Based on these three approaches, several works have been
published on the dynamics of QVNNs [28, 30, 34–38].

Remark 3.9. By using suitable LKF, T-S fuzzy system model and the theory of stochastic analysis, we
obtain a novel set of sufficient conditions for T-S FUQVSNNs (2.6) to ascertain the robust and global
asymptotic stability. As far as we are aware, no results have been published on the robust and global
asymptotic stable for T-S FUQVSNNs with time-varying delays (2.6).

Remark 3.10. As we all know, QVNNs are aimed for investigating new capabilities and improved
accuracy to address issues that cannot be resolved using complex-valued and real-valued NN models.
For instance, the global stability of complex-valued NN [18,19,45], and real-valued NNs [12–14] can
be summarized as a particular case of the results of this work.

Remark 3.11. It is obvious that real-valued LMI can be solved straightforwardly with MATLAB LMI
toolbox; however, solving quaternion-valued LMI is more challenging. Therefore, we establish the
robust and global asymptotic stability criteria for T-S FUQVSNNs by decomposing n-dimensional
quaternion-valued NNs into 4n-dimensional real-valued NNs. Based on that, sufficient criteria in this
paper are derived in terms of real-valued LMIs.

4. Numerical evaluations

In this section, two numerical examples illustrate the effectiveness of the theoretical results
presented in the previous section.
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Example 1: Consider the plant rules with a = 1, 2, the T-S FUQVSNNs is described as follows

dz(t) =
2∑

a=1

χa(ϑ(t))
{[
− (Da + △Da(t))z(t) + (Aa + △Aa(t))g(z(t))

+ (Ba + △Ba(t))g(z(t − ℓ(t)))
]
dt + σa(t, z(t), z(t − ℓ(t)))dω(t)

}
. (4.1)

Plant Rule 1: IF ϑ1(t) is η1
1, THEN

dz(t) =
[
− (D1 + △D1(t))z(t) + (A1 + △A1(t))g(z(t)) + (B1 + △B1(t))g(z(t − ℓ(t)))

]
dt

+ σ1(t, z(t), z(t − ℓ(t)))dω(t).

Plant Rule 2: IF ϑ1(t) is η2
1, THEN

dz(t) =
[
− (D2 + △D2(t))z(t) + (A2 + △A2(t))g(z(t)) + (B2 + △B2(t))g(z(t − ℓ(t)))

]
dt

+ σ2(t, z(t), z(t − ℓ(t)))dω(t),

where η1
1 is z1(t) ≤ 1, η2

1 is z1(t) > 1, and

D1 =

[
9 0
0 9

]
, D2 =

[
10 0
0 10

]
,

A1 =

[
0.5 − 0.5i + 0.3 j − 0.4k 0.5 + 0.5i − 0.4 j + 0.3k
0.4 + 0.5i − 0.4 j − 0.5k 0.5 − 0.5i + 0.4 j + 0.4k

]
,

A2 =

[
0.4 − 0.5i + 0.3 j − 0.4k 0.4 + 0.3i − 0.4 j + 0.3k
0.2 + 0.4i − 0.4 j − 0.4k 0.3 − 0.3i + 0.2 j + 0.2k

]
,

B1 =

[
0.6 − 0.5i + 0.5 j − 0.4k 0.6 + 0.5i − 0.6 j + 0.3k
0.6 + 0.5i − 0.6 j − 0.5k 0.4 − 0.5i + 0.6 j + 0.4k

]
,

B2 =

[
0.5 − 0.4i + 0.3 j − 0.4k 0.2 + 0.3i − 0.5 j + 0.3k
0.6 + 0.5i − 0.4 j − 0.3k 0.3 − 0.5i + 0.2 j + 0.4k

]
,

G1 = G2 =

[
0.1 0
0 0.1

]
, H1

1 =

[
0.1 0
0 0.1

]
, H1

2 =

[
0.3 0
0 0.3

]
,

H2
1 =

[
0.2 0
0 0.2

]
, H2

2 =

[
0.1 0
0 0.1

]
, H3

1 =

[
0.2 0
0 0.2

]
, H3

2 =

[
0.3 0
0 0.3

]
,

H4
1 =

[
0.1 0
0 0.1

]
, H4

2 =

[
0.2 0
0 0.2

]
, H5

1 =

[
0.3 0
0 0.3

]
, H5

2 =

[
0.2 0
0 0.2

]
,

H6
1 =

[
0.2 0
0 0.2

]
, H6

2 =

[
0.3 0
0 0.3

]
, H7

1 =

[
0.3 0
0 0.3

]
, H7

2 =

[
0.1 0
0 0.1

]
,

H8
1 =

[
0.2 0
0 0.2

]
, H8

2 =

[
0.2 0
0 0.2

]
, H9

1 =

[
0.2 0
0 0.2

]
, H9

2 =

[
0.3 0
0 0.3

]
,

F1(t) = F2(t) =
[
0.1 sin(t) 0

0 0.1 sin(t)

]
.
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The premise variable ϑ(t) is chosen as a state-dependent term, that is, ϑ(t) = z1(t). Using the
same procedure as in [40], the membership functions can be obtained from the property of χ1(z1(t)) +
χ2(z1(t)) = 1, where χ1(z1(t)) = 1

1+e−z1(t) , χ2(z1(t)) = 1 − 1
1+e−z1(t) .

Assumption 4 is further assumed to be satisfied by

U
1
1 =U

1
2 =

[
0.001 0

0 0.001

]
, V

1
1 = V

1
2 =

[
0.005 0

0 0.001

]
, M

1
1 =M

1
2 =

[
0.002 0

0 0.001

]
,

N
1
1 = N

1
2 =

[
0.001 0

0 0.002

]
, U

2
1 = U

2
2 =

[
0.005 0

0 0.002

]
, V

2
1 = V

2
2 =

[
0.001 0

0 0.003

]
,

M
2
1 =M

2
2 =

[
0.005 0

0 0.005

]
, N

2
1 = N

2
2 =

[
0.005 0

0 0.001

]
, U

3
1 = U

3
2 =

[
0.002 0

0 0.002

]
,

V
3
1 =V

3
2 =

[
0.003 0

0 0.003

]
, M

3
1 =M

3
2 =

[
0.002 0

0 0.003

]
, N

3
1 = N

3
2 =

[
0.005 0

0 0.004

]
,

U
4
1 =U
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]
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]
,
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]
, N
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]
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0 0.005

]
, M

6
1 =M

6
2 =

[
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]
, N

6
1 = N

6
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,

U
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1 =U

7
2 =

[
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]
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,
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]
, U

8
1 = U

8
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]
, V

8
1 = V

8
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[
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,

M
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1 =M

8
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, N

8
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8
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[
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]
.

Using simple calculations, we can find outA
R
1 ,A

R
2 ,A

I
1,A

I
2,A

J
1,A

J
2,A

K
1 ,A

K
2 , B

R
1 , B

R
2 , B

I
1, B

I
2, B

J
1,

B
J
2, B

K
1 , B

K
2 , D̂1, D̂2, Â1, Â2, B̂1, B̂2, Ĝ1, Ĝ2, F̂1(t), F̂2(t), Ĥ1

1 , Ĥ1
2 , Ĥ2

1 , Ĥ2
2 , Ĥ3

1 and Ĥ3
2 .

Moreover, the activation functions gα(zα(t)), gα(zα(t − ℓ(t))) in (4.1) can be chosen as gα(zα(t)) =
0.5 tanh(zα(t)) + 0.5 tanh(zα(t))i + 0.5 tanh(zα(t)) j + 0.5 tanh(zα(t))k, gα(zα(t − ℓ(t))) = 0.5 tanh(zα(t −
ℓ(t))) + 0.5 tanh(zα(t − ℓ(t)))i + 0.5 tanh(zα(t − ℓ(t))) j + 0.5 tanh(zα(t − ℓ(t)))k for all α = 1, 2.
Obviously, the activation functions gα(zα(t)) and gα(zα(t − ℓ(t))) are satisfies Assumption 2 with L̂g =

diag{0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25}. The delay ℓ(t) is defined as ℓ(t) = 0.1 + 0.2 sin(t),
which implies that the maximum permissible upper bound is ℓ = 0.3. It is observable that 0 ≤ ℓ̇(t) ≤
µ = 0 ≤ 0.2 cos(t) ≤ 0.2. By applying MATLAB LIM toolbox, the LMI conditions of Theorem (3.1)
are verified. Under initial values of φ1(t) = −1 + 0.9i − 1.5 j + 0.8k, φ2(t) = 0.8 − 0.8i + j − 1.2k, the
time responses of states zR

1 (t), zI
1(t), zJ

1(t), zK
1 (t), zR

2 (t), zI
2(t), zJ

2(t), zK
2 (t) are illustrated in Figures (1)–(4).
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Figure 1. Time representation of the states zR
1 (t), zR

2 (t) of the NN (4.1) with σR(t, zR(t), zR(t −
ℓ(t))) = 0.1(zR(t) + zR(t − ℓ(t)).
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Figure 2. Time representation of the states zI
1(t), zI

2(t) of the NN (4.1) with σI(t, zI(t), zI(t −
ℓ(t))) = 0.1(zI(t) + zI(t − ℓ(t)).
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Figure 3. Time representation of the states zJ
1(t), zJ

2(t) of the NN (4.1) with σJ(t, zJ(t), zJ(t −
ℓ(t))) = 0.1(zJ(t) + zJ(t − ℓ(t)).
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Figure 4. Time representation of the states zK
1 (t), zK

2 (t) of the NN (4.1) with σK(t, zK(t), zK(t−
ℓ(t))) = 0.1(zK(t) + zK(t − ℓ(t)).

This example confirms all of the conditions associated with Theorem (3.1), then the equilibrium
point of NNs (2.11) is robustly asymptotically stable in the mean square.
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Example 2: Determine the T-S fuzzy stochastic QVNNs with a = 1, 2 as given below:

dz(t) =
2∑

a=1

χa(ϑ(t))
{
[ −Daz(t) +Aag(z(t)) + Bag(z(t − ℓ(t)))]dt + σa(t, z(t), z(t − ℓ(t)))dω(t)

}
. (4.2)

Plant Rule 1: IF ϑ1(t) is η1
1, THEN

dz(t) = [−D1z(t) +A1g(z(t)) + B1g(z(t − ℓ(t)))]dt + σ1(t, z(t), z(t − ℓ(t)))dω(t)
}
.

Plant Rule 2: IF ϑ1(t) is η2
1, THEN

dz(t) = [−D2z(t) +A2g(z(t)) + B2g(z(t − ℓ(t)))]dt + σ2(t, z(t), z(t − ℓ(t)))dω(t),

where η1
1 is z1(t), η2

1 is z1(t), and let z1(t) ∈ [−s, s], where 0 < s = 3, and

D1 =

[
8 0
0 8

]
, D2 =

[
9 0
0 9

]
,

A1 =

[
0.6 − 0.6i + 0.4 j − 0.5k 0.6 + 0.6i − 0.5 j + 0.4k
0.5 + 0.6i − 0.5 j − 0.6k 0.6 − 0.6i + 0.5 j + 0.5k

]
,

A2 =

[
0.5 − 0.6i + 0.4 j − 0.5k 0.5 + 0.4i − 0.5 j + 0.4k
0.3 + 0.5i − 0.5 j − 0.5k 0.4 − 0.4i + 0.3 j + 0.3k

]
,

B1 =

[
0.7 − 0.6i + 0.5 j − 0.5k 0.7 + 0.6i − 0.5 j + 0.4k
0.6 + 0.6i − 0.5 j − 0.5k 0.7 − 0.6i + 0.6 j + 0.4k

]
,

B2 =

[
0.4 − 0.4i + 0.6 j − 0.5k 0.4 + 0.3i − 0.6 j + 0.2k
0.5 + 0.3i − 0.4 j − 0.2k 0.6 − 0.4i + 0.4 j + 0.2k

]
.

The premise variable ϑ(t) is chosen as a state-dependent term, that is, ϑ(t) = z1(t). Using the
same procedure as in [40], the membership functions can be obtained from the property of χ1(z1(t)) +
χ2(z1(t)) = 1, where χ1(z1(t)) = 1

1+e−3z1(t) , χ2(z1(t)) = 1 − 1
1+e−3z1(t) .

Assumption 4 is further assumed to be satisfied by
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0.004 0

0 0.004

]
, V

4
1 = V

4
2 =

[
0.004 0

0 0.001

]
, M

4
1 =M

4
2 =

[
0.004 0

0 0.002

]
,

N
4
1 = N

4
2 =

[
0.004 0

0 0.003

]
, U

5
1 = U

5
2 =

[
0.003 0

0 0.005

]
, V

5
1 = V

5
2 =

[
0.003 0

0 0.004

]
,

AIMS Mathematics Volume 8, Issue 5, 11589–11616.



11610

M
5
1 =M

5
2 =

[
0.003 0

0 0.003

]
, N

5
1 = N

5
2 =

[
0.003 0

0 0.002

]
, U

6
1 = U

6
2 =

[
0.003 0

0 0.001

]
,

V
6
1 =V

6
2 =

[
0.002 0

0 0.005

]
, M

6
1 =M

6
2 =

[
0.002 0

0 0.004

]
, N

6
1 = N

6
2 =

[
0.002 0

0 0.003

]
,

U
7
1 =U

7
2 =

[
0.002 0

0 0.002

]
, V

7
1 = V

7
2 =

[
0.002 0

0 0.001

]
, M

7
1 =M

7
2 =

[
0.001 0

0 0.005

]
,

N
7
1 = N

7
2 =

[
0.001 0

0 0.004

]
, U

8
1 = U

8
2 =

[
0.001 0

0 0.003

]
, V

8
1 = V

8
2 =

[
0.001 0

0 0.002

]
,

M
8
1 =M

8
2 =

[
0.001 0

0 0.001

]
, N

8
1 = N

8
2 =

[
0.003 0

0 0.002

]
.

The following can be obtained by simple calculations A
R
1 , A

R
2 , A

I
1, A

I
2, A

J
1, A

J
2, A

K
1 , A

K
2 , B

R
1 ,

B
R
2 , B

I
1, B

I
2, B

J
1, B

J
2, B

K
1 , B

K
2 , D̂1, D̂2, Â1, Â2, B̂1 and B̂2. Further, the activation functions gα(zα(t)),

gα(zα(t−ℓ(t))) in (4.2) can be selected as gα(zα(t)) = 0.5 tanh(zα(t))+0.5 tanh(zα(t))i+0.5 tanh(zα(t)) j+
0.5 tanh(zα(t))k, gα(zα(t− ℓ(t))) = 0.5 tanh(zα(t− ℓ(t)))+0.5 tanh(zα(t− ℓ(t)))i+0.5 tanh(zα(t− ℓ(t))) j+
0.5 tanh(zα(t − ℓ(t)))k for all α = 1, 2. Clearly, the activation functions gα(zα(t)), gα(zα(t − ℓ(t))) are
satisfies Assumption 2 with L̂g = diag{0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25}.

The delay ℓ(t) is regarded as ℓ(t) = 0.1 + 0.2 sin(t), implying that the maximum permissible upper
bound is ℓ = 0.3. It is observable that 0 ≤ ℓ̇(t) ≤ µ = 0 ≤ 0.2 cos(t) ≤ 0.2.

The LMI conditions of Theorem (3.5) are verified by applying MATLAB LIM toolbox. Under
randomly selected 15 initial values, the time responses of states zR

1 (t), zI
1(t), zJ

1(t), zK
1 (t), zR

2 (t), zI
2(t),

zJ
2(t), zK

2 (t) are illustrated in Figures (5)–(7).
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Figure 5. Time representation of the states zR
1 (t), zI

1(t), zJ
1(t), zK

1 (t) of the NN (4.2) without
stochastic disturbance.
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Figure 6. Time representation of the states zR
2 (t), zI

2(t), zJ
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2 (t) of the NN (4.2) without
stochastic disturbance.
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Figure 7. Phase representation of the states z1(t), z2(t) of the NNs (4.2) without stochastic
disturbance.

This example confirms all of the conditions associated with Theorem (3.5), then the equilibrium
point of NNs (3.19) is globally asymptotically stable in the mean square.
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5. Conclusions

This paper investigated the robust and global asymptotic stability problem for a class of T-S
FUQVSNNs with discrete time-varying delays using the system decomposition method. By applying
T-S fuzzy models and stochastic analysis, we first considered a general form of T-S FUQVSNNs
with time delays. Then, we presented some delay-dependent stability conditions for the considered
NNs using LKFs to ensure the robust and global asymptotic stability. Furthermore, we established
our results in terms of real-valued LMIs that can be solved in MATLAB LMI toolbox. Finally, two
numerical examples are presented with their simulations to demonstrate the validity of the theoretical
analysis. By using the results of this paper, we can analyze various dynamic behaviours of T-S
FUQVSNNs including finite-time stability, passivity, state estimation, synchronization, and others.
There are certain advancements worth investigating further in this proposed area of research. Soon, we
will attempt to investigate the stability of delayed impulsive T-S FUQVSNNs in the finite-time case.
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