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1. Introduction

Nonlinear wave equations have been widely used to describe natural phenomena of science,
engineering, geology, economics, meteorology, chemistry, and physics. The phenomena of dispersion,
dissipation, diffusion, reaction and convection play a major role in nonlinear wave equations.
Therefore, it is very important to find exact solutions of nonlinear evolution equations. Recently, there
are many useful techniques to obtain the exact traveling wave solutions, such as the inverse scattering
transform method [1], modified simple equation method [2], the Bäcklund transformation [3], the Lie
symmetry method [4], the Darboux transformation [5], the multiple exp-function method [6], Hirota’s
bilinear method [7], the sine-cosine method [8], the bifurcation theory of dynamic system [9]. A
well-known nonlinear wave equations is equal width (EW) equation

ut + uux − buxxt = 0 (1.1)
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with the boundary conditions u → 0 as x → ±∞. Since it describes many physical phenomena
such as shallow water waves and ion acoustic plasma waves, it is a model for the simulation of one-
dimensional wave propagation in nonlinear media with dispersion processes [10]. The regularized long
wave (RLW) equation is given by

ut + ux +
1
2

(u2
x) − uxxt = 0 (1.2)

with −∞ < x < +∞, t > 0. The RLW equation appears in many physical applications, for example,
the nonlinear transverse waves in shallow water, ion-acoustic waves in plasma, elastic media, optical
fibres, hydromagnetic wave in cold plasma [11]. The development of an equal width undular bore
is investigated in [12] and compared with that of the RLW bore. The modified equal width (MEW)
equation

ut + a(u3)x − buxxt = 0, (1.3)

is based upon the EW (1.2). (1.3) is a nonlinear wave equation with cubic nonlinearity which
admits solitary wave solutions with the same width, which is considered to explain many physical
phenomena [13–15].

Based on many applications of MEW equation, there is a variety of investigations on MEW
equation. In 2000, the author studied the solitary wave motion and interaction for MEW equation
by finite element methods [16]. The modified equal width equation and its variants were investigated
by Wazwaz [8] by a sine-cosine ansatz and the tanh method, compactons, solitons, solitary patterns,
and periodic solution are obtained. In [17], the propagation of the solitary wave for time split MEW
equation and space split MEW equation was investigated by quintic B-spline collocation method. After
that, the numerical solution of the MEW equation was proposed by the collocation method using the
radial basis functions with first order accurate forward difference approximation [18]. Lu [19] solved
the modified equal width equation by variational iteration method which provides remarkable accuracy
in comparison with the analytical solution. Cheng and Liew [20] derived formulae for an improved
element-free Galerkin method for MEW equation by numerical examples. In [21], the motion of a
single solitary wave and interaction of two solitary waves for the MEW equation were studied. More
recently, Shi and Zhang [22] obtained the periodic solutions, dark solutions, soliton solutions and
soliton-like solutions of the space-time fractional MEW equation by ansatz method. Additionally, there
are lots of investigations on finding the traveling wave solutions for combined systems based on MEW
equation, such as, ZK-MEW equation [23, 24], KP-MEW equation [25, 26], KP-MEW-Burgers [27].
However, there is few investigation on the traveling wave solution especially periodic wave solution
for the perturbed MEW equation.

In this paper, we consider the following perturbed MEW equation

ut + (u2)x + uxxt + ε((uux)x − uxx + uxxxx) = 0, (1.4)

where ε is a small nonnegative parameter. In Eq (1.4), ut is the evolution term, the second term
represents the nonlinear term, uxx is the backward diffusion, uxxxx is the dissipative term, (uux)x is the
nonlinear term when the Marangoni effect is considered which describing the opposite to the B́enard
convection [28, 29]. The Eq (1.4) describes the water motion in a wide range of weak dissipative
circumstances. We focus on studying the existence of the periodic wave solution for perturbed
MEW equation (1.4) and finding the number of periodic wave solution by using geometric singular
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perturbation theory. Furthermore, for the persisted periodic wave solution, we give the monotonicity
of the period.

On the topic about finding the existence of traveling wave solution for perturbed nonlinear wave
equations by using geometric singular perturbation theory, there are also lots of excellent productions.
Ogama [30] established the existence of solitary waves and periodic waves for the perturbed KdV
equation. Fan and Tian [31] studied the existence of solitary wave solution of perturbed mKdV-KS
equation. Tang [32] gave the condition of solitary wave solution persisted. Mansour [33] constructed
solitary waves for a generalized nonlinear dispersive-dissipative equation. Yan et al. [34] proved
the persistence of solitary waves and periodic waves to a perturbed generalized KdV equation. By
investigating the ratio of Abelian integrals, Du and his cooperators proved the existence of traveling
wave solutions for some delayed nonlinear wave equations [35–38]. Chen [39, 40] studied the
existence of traveling wave solutions for perturbed KdV equation. In references [41, 42], two different
generalized perturbed BBM equations were considered. Motivated by the references, we present
the existence of uniqueness isolated periodic wave solution of (1.4) by using geometric singular
perturbation theory. Combing with the Chebyshev system criterion and symbolic computation, the
monotonicity of the ratio of Abelian integrals is given. Moreover, for the periodic wave solution, the
property of the wave speed, the monotonicity and the range of period are obtained.

The rest of this paper is organized as follows. In Section 2, the geometric singular perturbation
theory is introduced and our main result is stated. In Section 3, the existence of unique periodic wave
for the perturbed MEW equation is proved by using geometric singular perturbation theory. Chebyshev
system and symbolic computation are used to verify the monotonicity of the ratio of Abelian integrals,
which is more effective than the method used in the references [39–41]. In Section 4, we investigate the
monotonicity of period by Picard-Fuchs equation, which is not been considered in the references [42,
43].

2. Preliminaries and main results

We aim to prove the traveling wave persists for sufficiently small ε > 0 by using geometric singular
perturbation theory, so we introduce the geometric singular perturbation theory which is due to [44,45],
firstly.

Consider the system x′(t) = f (x, y, ε),
y′(t) = εg(x, y, ε),

(2.1)

where ′ = d
dt , 0 < ε � 1 is a real and small parameter, x = (x1, x2, . . . , xk)T ∈ Rk, y = (y1, y2, . . . , yl)T ∈

Rl. The following hypothesis about the system (2.1) is needed.

(H1) The functions f and g are both Cr on a set U × I, where 0 < r < +∞ U ⊂ Rk+l is open and I is an
open interval containing 0.

With a change of time scaling τ = εt, system (2.1) can be written asεẋ = f (x, y, ε),
ẏ = g(x, y, ε),

(2.2)
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where˙= d
dτ . The time scale τ is slow and t is fast. When ε , 0, systems (2.1) and (2.2) are equivalent.

Thus system (2.1) is called the fast system, while system (2.2) is called the slow system. In (2.1), letting
ε→ 0, we obtain the layer system x′(t) = f (x, y, 0),

y′(t) = 0.
(2.3)

Here, x is called the fast variable, whereas y is called the slow variable. Let ε → 0 in (2.2), the limit
only makes sense if f (x, y, 0) = 0 and is given by f (x, y, 0) = 0,

ẏ = g(x, y, 0).
(2.4)

We shall assume that we are given an l-dimensional manifold, possibly with boundary, M0 which is
contained in the set { f (x, y, 0) = 0}. The manifold M0 is normally hyperbolic if the layer system (2.3)
at each point in M0 has exactly l eigenvalues on the imaginary axis. Moreover, we give the following
hypothesis.

(H2) The set M0 is a compact manifold, possibly with boundary, and is normally hyperbolic relative to
(2.3).

Definition 2.1. A set M is locally invariant under the flow from (2.1) if it has neighborhood V so that
no trajectory can leave M without also leaving V. In other words, it is locally invariant if for all x ∈ M,
x · [0, t] ⊂ V implies that x · [0, t] ⊂ M, similarly with [0, t] replaced by [t, 0], when t < 0, where the
notation x · t is used to denote the application of a flow after time t to the initial condition x.

Assume that there is a Cr function h0(y), 0 < r < +∞, with K being a compact domain in Rl, such
that M0 = {(x, y) : x = h0(y)}. Consequently, the following geometric theory of singular perturbation is
established in [44].

Lemma 2.1. For ε > 0 is sufficiently small, there exists a manifold Mε lying within O(ε) of M0. Mε

is diffeomorphic to M0 and locally invariant under the flow of (2.1), and Cr in x, y and ε, for any
0 < r < +∞.

Lemma 2.2. Under the hypotheses (H1) and (H2), for ε > 0 is sufficiently small, there exists a function
x = hε(y) defining on K, such that the graph

Mε = {(x, y) : x = hε(y)},

is locally invariant under (2.1). Moreover, hε(y) is Cr, for any 0 < r < +∞, jointly in y and ε.
Mε possesses locally invariant stable and unstable manifold W s(Mε) and Wu(Mε) lying within O(ε)
and being Cr diffeomorphic to the stable and unstable manifold W s(M0) and Wu(M0) of the critical
manifold M0.

For Eq (1.4), making the traveling wave transformation u(x, t) = u(x + ct) = u(ξ), where c is the
wave speed. Integrating it once and neglecting the integral constant, then corresponding traveling wave
system is

cu + u2 + cu′′ + ε(uu′ − u′ + u′′′) = 0, (2.5)
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where ′ is the derivative respect to ξ. Taking a time scale transformation u = cφ and ξ = z to (2.5), it
obtains

φ + φ2 +
d2φ

dz2 + ε

(
φφ′ −

1
c

dφ
dz

+
1
c

d3φ

dz3

)
= 0, (2.6)

which is equivalent to the following three-dimensional system

dφ
dz

= y,

dy
dz

= ω,

ε
1
c

dω
dz

= −φ − φ2 − ω − ε
(
−

y
c

+ φy
)
.

(2.7)

When ε = 0, system (2.7) corresponds to a unperturbed system
dφ
dz

= y,

dy
dz

= −φ − φ2,

(2.8)

which is a Hamiltonian system with the energy function

H(φ, y) =
y2

2
+
φ2

2
+
φ3

3
. (2.9)

Clearly, (2.8) has two equilibrium points (−1, 0) and (0, 0). The origin (0, 0) is a center and (−1, 0) is
a saddle. It is well known that (2.8) is determined by its potential energy function and its equilibrium
points. H(−1, 0) = H( 1

2 , 0) = 1
6 , H(0, 0) = 0. Figure 1 shows a family of closed orbits surrounded by a

homoclinic loop.

Figure 1. The portrait of system (2.8).
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Let Γh be the closed orbits defined by H(φ, y) = h which surrounds a center. Suppose that φ(z, h) is
a point lying the corresponding closed orbit Γh, φ(z, ε, h, c(ε, h)) is the periodic wave solution of (2.5)
near Γh on c = c(ε, h). Denote that T (h) is the period of φ(z, ε, h, c(ε, h)), φ0(z) is the solution
corresponds to homoclinic loop, then for the traveling wave system of perturbed MEW equation (1.4),
we obtain the following statements.

Theorem 2.1. For any given traveling wave speed c ∈ (−12,+∞), there exists ε0(c) > 0 such that when
0 < ε < ε0(c), then Eq (1.4) has a unique isolated periodic wave solution u(x + ct), which is given by
u(x + ct) = cφ(x + ct, c, ε, h(c, ε)), satisfying

lim
ε→0

φ(x + ct, c, ε, h) = φ(x + ct, h),

lim
(c,ε)→(+∞,0),0<ε<ε0(c)

φ(x + ct, c, ε, h)→ 0,

lim
(c,ε)→(−12,0),0<ε<ε0(c)

φ(x + ct, c, ε, h)→ φ0(x + ct).

Furthermore, c(ε, h) satisfies

lim
ε→0

c(ε, h) = c(h),
∂c(τ, h)
∂h

< 0,

where c(h) is a strictly decreasing function in h satisfying −12 < c(h) < +∞.

Theorem 2.2. The period of the isolated periodic wave solution shown in Theorem 2.1 is strictly
increasing for h ∈ (0, 1

6 ) and satisfies

lim
h→1/6

T (h) = +∞, lim
h→0

T (h) = 2π.

3. Perturbation analysis

By the geometric singular perturbation theory, when ε , 0, the transformation z = ετ is introduced
to change the system (2.7) to 

dφ
dτ

= εy,

dy
dτ

= εω,

1
c

dω
dτ

= −φ − φ2 − ω − ε

(
−

1
c

y + φy
)
.

(3.1)

System (2.7) is the slow system and (3.1) is the fast system, they are equivalent when ε > 0. The two
different time-scales corresponds to two different limiting systems. If ε = 0, the flow of system (3.1)
is confined to the two-dimensional invariant manifold

M0 = {(φ, y, ω) ∈ R3 : ω = −φ − φ2}

and its dynamics are determined only by the first two equations of (3.1). The set M0 is the slow
manifold. Since the linearized matrix of (3.1) with ε = 0 is

0 0 0
0 0 0

−c(1 + 2φ) 0 −c

 ,
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It is not difficult to find that the eigenvalues are 0, 0, −c, then the slow manifold M0 is normally
hyperbolic. From Lemma 2.2, there exists a sub-manifold Mε of the perturbed system (2.7) of R3 for
sufficiently small ε > 0, which can be written as

Mε = {(φ, y, ω) ∈ R3 : ω = −φ − φ2 + g(φ, y, ε)},

where g is a smooth function defined on a compact domain and satisfies g(φ, y, 0) = 0. Then assume
that g(φ, y, ε) is expanded into Taylor series g(φ, y, ε) = εg1(φ, y) + O(ε2). Substituting ω = −φ − φ2 +

g(φ, y, ε) into the slow system (2.7) and comparing the coefficient of ε, it obtains

g1 =
2
c

y +

(
2
c
− 1

)
φy.

Therefore, the slow system (2.7) restricted on Mε is given by a regular perturbed system
dφ
dz

= y,

dy
dz

= −φ − φ2 + ε

(
2
c

y +
2 − c

c
φy

)
+ O(ε2).

(3.2)

For h ∈ (0, 1/6), suppose that there exists a closed orbit Γh of (3.2)|ε=0 which surrounds the center (0, 0).
T (h) is the period of Γh. A(h) ∈ Γh is the rightmost point on the positive φ-axis at z = 0. For ε > 0
sufficiently small, let Γhε be a piece of the orbit for (3.2) starting from A(h) to the next intersection
point B(hε) with the positive φ-axis at z = z(ε) for 0 < |hε − h| � 1. By [46], the displacement function
between B(hε) and A(h) is given by

d(h, c, ε) =

∫
ÂB

dH =

∫
ÂB

(φ + φ2)dφ + ydy

=

∫ z(ε)

0

{
(φ + φ2)y +

[
−φ − φ2 + ε

(
2
c

y +
2 − c

c
φy

)
+ O(ε2)

]
y
}

dz

= ε
1
c

∫ z(ε)

0
[2y2 + (2 − c)φy2 + O(ε)]dz

, εΦ(h, c, ε).

By continuousness theorem, we have

lim
ε→0

Γh,ε = Γh, lim
ε→0

B(h, ε) = B(h), lim
ε→0

z(ε) = T (h).

Therefore, it has

Φ(h, c, ε) =
1
c

M(h, c) + O(ε),

where
M(h, c) =

∮
Γh

[
2y2 + (2 − c)φy2

]
dz

=

∮
Γh

[
2y + (2 − c)φy

]
dφ = 2J0(h) + (2 − c)J1(h),

(3.3)

with Ji(h) =
∮

Γh
φiydφ, i=0,1. M(h, c) is called Melnikov function. By the Poincaré bifurcation theory,

the isolated zeros of d(h, ε) corresponds to limit cycles of system (3.2).
In order to investigate the zero of M(h, c), the following lemmas are needed.
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Lemma 3.1. For h ∈ (0, 1
6 ), J0(h) > 0 and J′0(h) > 0.

Proof. Denote (φ, y) is a point lying on Γh. By Green formula, it yields

J0(h) =

∮
Γh

ydφ =

"
intΓh

dφdy > 0.

Since y2 = 2h − φ2 − 2
3φ

3, it has J′i (h) =
∮

Γh
φi ∂y

∂hdφ =
∮

Γh

φi

y dφ, then

J′0(h) =

∮
Γh

1
y

dφ =

∫ T (h)

0
dz = T (h) > 0.

�

Denote that P(h) =
J1(h)
J0(h) , then

M(h, c) = J0[2 + (2 − c)P(h)]. (3.4)

Lemma 3.2. J0

(
1
6

)
= 6

5 , J1

(
1
6

)
= − 6

35 . Then, J1( 1
6 )

J0( 1
6 ) = −1

7 .

Proof. Denote that α(h) and β(h) are the left and right intersection points of Γh to φ-axis, respectively.

From (2.9), it has y = ±

√
−2

3φ
3 − φ2 + 2h and α

(
1
6

)
= −1, β

(
1
6

)
= 1

2 , then we compute the J0

(
1
6

)
and

J1

(
1
6

)
directly

J0

(
1
6

)
=

∮
Γh

ydφ = 2
∫ 1

2

−1

√
−

2
3
φ3 − φ2 +

1
3

dφ

=
2
√

6
3

∫ 1
2

−1
(1 + φ)

√
1
2
− φdφ =

6
5
,

J1

(
1
6

)
=

∮
Γh

φydφ = 2
∫ 1

2

−1
φ

√
−

2
3
φ3 − φ2 +

1
3

dφ

=
2
√

6
3

∫ 1
2

−1
φ(1 + φ)

√
1
2
− φdφ = −

6
35
,

then it obtains the statements. �

Lemma 3.3. limh→0
J1(h)
J0(h) = 0.

Proof. When h→ 0, Γh approaches to the center (0, 0), implying that φ→ 0. By applying mean value
theorem for integrals, it has

lim
h→0

J1(0)
J0(0)

= lim
h→0

∮
Γh
φydφ∮

Γh
ydφ

= lim
φ→0

φ = 0.

�

Lemma 3.4. For h ∈ (0, 1
6 ), J1(h)

J0(h) is decreasing strictly from 0 to −1
7 .
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Proof. Monotonicity of J1(h)
J0(h) on (0, 1

6 ) is equivalent to {J0(h), J1(h)} is extended complete Chebyshev
system [47], i.e. any nontrivial linear combination a0J0(h) + a2J1(h) has at most one zero on (0, 1

6 ).
Denote f0(φ) = 1, f1(φ) = φ. Setting that

li(φ) =

(
fi

Ψ

)
(φ) −

(
fi

Ψ

)
(z(φ)),

where Ψ(φ)= 1
2φ

2+ 1
3φ

3 and z(φ) is an involution function: (−1, 0) → (0, 1
2 ) by Ψ(φ) = Ψ(z(φ)). Since

Ψ(φ) − Ψ(z(φ)) = 1
6 (φ − z)q(φ, z), where q(φ, y) = 2φ2 + 2φz + 2z2 + 3φ + 3z. We need to prove two

Wronskians W[l0(φ)], W[l0(φ), l1(φ)] are non-vanishing on (−1, 0). With aids of Maple, it has

W[l0(φ)] = −
(φ − z)(φ + z + 1)
φz(φ + 1)(z + 1)

,

W[l0(φ), l1(φ)] =
(φ − z)3w0(φ, z)

φ2z2(φ + 1)2(z + 1)2(2φ + 4z + 3)
,

where w0(φ, z) = 4φ2 + 6φz + 4z2 + 7φ + 7z + 3. It is not hard to verify that for φ ∈ (−1, 0), z ∈ (0, 1/2),
it has φ + z + 1 , 0, then W[l0(φ)] , 0. In order to check the zero of W[l0(φ), l1(φ)], we calculate the
resultants of 2φ + 4z + 3 and q(φ, z), w0(φ, z) and q(φ, z) respect to z. It has

R(2φ + 4z + 3, q, z) = 6(2φ + 3)(2φ − 1) , 0,
R(w0(φ, z), q, z) = 2(8φ4 + 16φ3 − 4φ2 − 12φ + 9) , 0

for φ ∈ (0, 1), then W[l0(φ), l1(φ)] , 0. Therefore, J1(h)
J0(h) is monotonic on (0, 1

6 ). By Lemmas 3.2 and
(3.3), the assertion in this lemma is proved. �

Remark 3.1. Here, the Chebyshev system criterion is used to prove the monotonicity of the ratio of
Abelian integrals, which is more effective and simpler then linear programming method used in the
references [39–41].

From (3.4), we know that for each h ∈ (0, 1
6 ), when c = c(h) = (2 + 2P(h))/P(h), it derives

M(h, c) = 0. Moreover, the monotonicity of P(h) implies that the zero of P(h) is unique, denoted by
h∗, and c′(h) = −2/P(h)2 < 0, then from Lemma 3.4, we get

−12 < c(h) < ∞, lim
h→ 1

6

c(h) = −12, lim
h→0

c(h) = +∞.

Combining with implicit function theorem, there exists c∗ = c(h∗) + O(ε) such that M(h, c) + O(ε) has
a unique zero near h∗. Therefore, the conclusion in Theorem 2.1 is obtained.

4. The period of existence of periodic wave

For the sections before, our purpose is focusing on the analysis of the relationship between the speed
of periodic wave solutions and the level h. Moreover, the property of the period is also significant
in reality. On this purpose, it is needed to introduce some additional properties for Ji(h) and J′i (h),
i = 0, 1, 2.
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From (2.9), we have

Ji(h) =

∮
Γh

φiydφ = 2
∫ β

α

φi

√
−

2
3
φ3 − φ2 + 2hdφ = 2

∫ β

α

φiE(φ)dφ,

where E(φ) =

√
−2

3φ
3 − φ2 + 2h, h ∈ (0, 1

6 ). The derivative of the Abelian integrals is

J′i (h) =

∮
Γh

φi ∂y
∂h

dφ =

∮
Γh

φi

y
dφ = 2

∫ β

α

φi

E
dφ.

Then T (h) is a period of φ(z) satisfying T (h) = 2
∫ β

α
dz =

∮
Γh

1
y dφ = J′0(h). Therefore, we have the

following lemmas.

Lemma 4.1.
(

J0

J1

)
= Λ(h)

(
J′0
J′1

)
, where Λ(h) = 1

35

(
42h 7
−6h 30h − 6

)
.

Proof. Since E dE
dφ = −φ2 − φ, it has

J0(h) = 2
∫ β

α

Edφ = 2
∫ β

α

E2 dφ
E

= 2
∫ β

α

(
−

2
3
φ3 − φ2 + 2h

)
dφ
E

= 2
∫ β

α

2
3
φ

(
EdE
dφ

+ φ

)
dφ
E
− 2

∫ β

α

φ2 dφ
E

+ 2h
∮

Γh

dφ
E

=
4
3

∫ β

α

φdE −
2
3

∫ β

α

φ2 dφ
E

+ 4h
∫ β

α

dφ
E
.

From integration by part,
∫ β

α
φdE = φE|βα −

∫ β

α
Edφ = −1

2 J0. Moreover,∫ β

α

φ2 dφ
E

=

∫ β

α

(
−

EdE
dφ
− φ

)
dφ
E

= −

∫ β

α

dE −
∫ β

α

φ
dφ
E

= −
1
2

J′1.

Thus,

J0 = −
2
3

J0 +
1
3

J′1 + 2hJ′0,

therefore, it obtains

J0 =
1
5

(6hJ′0 + J′1).

Similarly, we get

J1(h) = 2
∫ β

α

φEdφ = 2
∫ β

α

φE2 dφ
E

= 2
∫ β

α

φ

(
−

2
3
φ3 − φ2 + 2h

)
dφ
E

=

∫ β

α

4
3
φ2

(
EdE
dφ

+ φ

)
dφ
E
− 2

∫ β

α

φ3 dφ
E

+ 4h
∫ β

α

φ
dφ
E

=
4
3

∫ β

α

φ2dE −
2
3

∫ β

α

φ3 dφ
E

+ 4h
∫ β

α

φ
dφ
E
.

(4.1)
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Moreover, since∫ β

α

φ2dE = φ2E|βα − 2
∫ β

α

φEdφ = −J1,∫ β

α

φ3 dφ
E

=

∫ β

α

φ

(
−

EdE
dφ
− φ

)
dφ
E

= −

∫ β

α

φdE −
∫ β

α

φ2 dφ
E

=
1
2

J0 +
1
2

J′1,
(4.2)

substitute (4.2) into (4.1), it obtains

J1 =
6
35

[
−hJ′0 + (5h − 1)J′1

]
.

Therefore the proof of the lemma is completed. �

From Lemma 4.1, we obtain the following lemmas.

Lemma 4.2. J0 and J1 satisfy the Picard-Fuchs equation(
J′0
J′1

)
=

1
h(6h − 1)

(
5h − 1 −7

6
h 7h

) (
J0

J1

)
.

Lemma 4.3. J′0 and J′1 satisfy the Picard-Fuchs equation(
J′′0
J′′1

)
=

1
h(6h − 1)

(
−h −1

6
h h

) (
J′0
J′1

)
.

Proof. Denote that J = (J0, J1)T . From lemmas 4.1 and 4.2, we have J′′ = Λ−1(I − Λ′)J′, where I is
the unit matrix, Λ′ is Λ(h) derivative with respect to h. It is not hard to verify that

Λ−1(I − Λ)′ =
1

h(6h − 1)

(
5h − 1 −7

6
h h

) (
−1

5 0
6

35
1
7

)
=

1
h(6h − 1)

(
−h −1

6
h h

)
.

This proves the lemma. �

Lemma 4.4. limh→1/6 T (h) = +∞, limh→0 T (h) = 2π. Furthermore, For h ∈ (0, 1/6), T ′(h) > 0.

Proof. Since h = 1/6 corresponds the homoclinic loop connecting to saddle (−1, 0), it is not hard to
verify the first statement. For the latter, by Lemma 4.2, it obtains

lim
h→0

T (h) = lim
h→0

J′0(h) = lim
h→0

1
h(6h − 1)

[(5h − 1)J0 −
7
6

J1]

= lim
h→0

J0

h(6h − 1)
[(5h − 1) −

7
6

J1

J0
]

= lim
h→0

(5h − 1)J0

h(6h − 1)
=

5
6

lim
h→0

J0

h
= 2π.
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From Lemmas 4.2 and 4.3, it obtains

T ′(h) = J′′0 (h) =
1

h(6h − 1)
[−hJ′0 −

1
6

J′1]

=
1

h2(6h − 1)2

[
−h((5h − 1)J0 −

7
6

J1) −
1
6

(hJ0 + 7hJ1)
]

=
−5

h(6h − 1)2 (h −
1
6

)J0 > 0.

Therefore we get the Theorem 2.2. �

Remark 4.1. In this section, we show the properties of period for the uniqueness isolated periodic
wave solution, which were not considered in the references [42, 43].

5. Conclusions

This paper mainly proves the existence of unique periodic wave solution for perturbed MEW
equation with weak backward diffusion, dissipation and Marangoni effect. By geometric singular
perturbation theory, the local invariant submainfold is given, and then the singular perturbation is
reduced into regular perturbation. We established the existence of periodic wave on for perturbed
MEW equation by analyzing the monotonicity of the ratio of Abelian integrals. Chebyshev system
criterion is utilized to prove the uniqueness of the periodic wave solution. Particularly, the related
properties on the periodic wave are given by Picard-Fuchs equation.
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