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Abstract: This work evaluates the fractional complex Ginzburg-Landau equation in the sense of 

truncated M- fractional derivative and analyzes its soliton solutions and other new solutions in the 

appearance of a detuning factor in non-linear optics. The multiple, bright, and bright-dark soliton 

solutions of this equation are obtained using the modified ( )2'G G  and ( )1 'G − expansion methods. 

The equation is evaluated with Kerr law, quadratic –cubic law and parabolic law non-linear fibers. To 

shed light on the behavior of solitons, the graphical illustrations in the form of 2D and 3D of the 

obtained solutions are represented for different values of various parameters. All of the solutions have 

been verified by substitution into their corresponding equations with the aid of a symbolic software 

package. The various forms of solutions to the aforementioned nonlinear equation that arises in fluid 

dynamics and nonlinear processes are presented. Moreover, we guarantee that all the solutions are new 

and an excellent contribution in the existing literature of solitary wave theory. 
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1. Introduction 

Solitons are currently being examined in a very efficient manner. They occur by the elimination 

of dispersive effects when they propagate. Soliton is a solution to the weak massive dispersive 
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nonlinear partial differential equation (NLPDE) that can be found in mathematics, physics, biology, 

engineering finance as well as fractional dynamics. There are several models that are under 

consideration today for the exploration of soliton solutions [1–7]. One such model that has been taken 

into account for many years is the complex Ginzburg-Landau (CGL) model. Complex Ginzburg-

Landau equation (CGLE) is one of the most important models to describe optical phenomena [8–10]. 

In order to better analyze the complex optical phenomena and study their essence, the best ways are to 

find exact traveling solutions to the CGLE describing the nonlinear optical phenomena. In recent years, 

a variety of powerful mathematical approaches have been applied to derive the exact soliton solutions 

of CGLE. Liu et al. [11] obtained the kink and periodic wave solutions by using the Hirota bilinear 

method. Inc et al. [12] obtained the bright and singular soliton solutions for the non-linearity term of 

the CGL model by utilizing the Sine-Gordon method. Arnous et al. [13] observed the optical soliton 

solution by using the modified simple equation method. The quadratic and multiple solitons of n-

dimension CGLE were gained by Khater et al. [14] using the Sine-Gordon expansion method. Das 

et al. [15] used the F −  expansion method to get bright and dark solitons of CGLE. 

Recently, the study of physical models with fractional derivatives has attracted a great deal of 

attention since some materials are well-described as fractal media. To investigate such models, several 

definitions of fractional derivatives such as Caputo [16], Caputo-Fabrizio [17], Riemann Liouville [18], 

conformable fractional derivative [19], Beta derivative [20] and Grunwald-Letnikov [21] have been 

introduced. It is found that fractional derivatives do not satisfy some basic properties of derivatives, 

such as the product rule and chain rule. Recently, Sousa and Oliveira [22] developed a local derivative 

called a new truncated M-fractional derivative where this fractional calculus satisfies all the properties 

of derivatives like the chain rule. Also, this derivative has some appealing consequences in diverse 

areas including fluid mechanics, optical physics, chaos theory, biological models, disease analysis, 

circuit analysis and others. 

The present study sheds light on the space-time fractional CGLE [23,24]. The space-time 

fractional CGL model addressed here is described by 

( ) ( ) ( )( )
2

2 2 2 2, 2 , 2 , ,

0 , 0 , 0 , 0 ,2

1
,A A A A

M t M x M x M xi D u a D u cH u u D u u N D u Pu
u u

       
 

+ + = − + 
 

 (1) 

where   and   are the fractional parameters, x  denotes distance along the fiber, t  denotes time in 

dimensionless form, ,a c  and P  are valued constants, the symbol   indicates the complex conjugate 

of the function ( ),u x t  and H  is a real-valued algebraic function and its smoothness is possessed by a 

complex function ( )2
: .H u u C C→  Now, taking C  as a complex plane to be a two dimensional linear 

space 2 ,R  ( )2
H u u  is k  times continuously differentiable real-valued function [25]: 

( ) ( ) ( )( )
2 2

, 1
, , ; ,k

p q
H u u U C q q p p R



=
 −  −        (2) 

where 2 ,N = then Eq (1) reduces to 

( ) ( ) ( )( )
2

2 2 2 2, 2 , 2 , ,

0 , 0 , 0 , 0 ,2
2 .A A A A

M t M x M x M x

N
i D u a D u cH u u D u u D u Pu

u u

        
+ + = − + 

 
 (3) 
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Equation (2) is one of the extremely many models that govern pulse propagation dynamics 

through optical fibers for transcontinental and transoceanic distances. In [26], Sulaiman et al. studied 

the conformable time-space fractional complex Ginzburg-Landau equation via the extended Sine-

Gordon equation expansion method. In [27], Abdou et al. considered the fractional complex Ginzburg- 

Landau equation by employing the extended Jacobi elliptic function expansion method. In [28], Arshed 

constructed the soliton solutions to the fractional complex Ginzburg-Landau equation by utilizing the 

exp ( )( ) − − expansion method. In [29], Ghanbari and Gomez-Aguilar employed the generalized 

exponential rational functional method to study the periodic and hyperbolic soliton solutions 

conformable Ginzburg-Landau equation. In [30], Lu et al. studied the (2+1)- dimensional fractional 

complex Ginzburg-Landau equation via the fractional Riccati method and fractional bifunction method. 

In [31], Hussain and Jhangeer obtained the optical solitons of fractional complex Ginzburg-Landau 

equation with conformable, beta, and M-truncated derivatives. In [32] Akram et al. studied the  

optical solitons for the fractional CGLE with Kerr law nonlinearity using different fractional 

differential operators. In [33], Sadaf et al. obtained the dark, bright, complexion, singular and periodic 

optical solitons of fractional order complex Ginzburg–Landau equation with Kerr law nonlinearity 

implementing conformable, beta and M-truncated derivatives. Zafar et al. in [34] acquired the kink, 

bright, W-shaped bright and dark solitons of fractional CGL model using the modified Exp-function 

and Kudryshov methods. The model is examined with quadratic-cubic law, Kerr law, and parabolic 

laws non-linear fibers. 

The major concern of this existing study is to utilize the novel meanings of fractional-order 

derivative, named truncated M-fractional derivative [35,36], for space-time fractional CGLE, and to 

find the novel soliton solutions and other solutions in the appearance of a detuning factor in non-linear 

optics by employ two modified methods, the ( )1/ 'G − expansion method [37] and the modified 

( )2'/G G − expansion method [38–40]. According to the best authors’ knowledge, such type of 

investigation has not been done before [31–34] for the considered fractional CGL model and thus it is 

interesting to report here. Further, under the given constraint conditions, we obtained the dynamic 

behavior of solitary wave solutions. Such solutions are important for further studies of this model due 

to their significant applications in nonlinear optics. 

The rest of the paper is structured as follows. In Section 2, the truncated M-fractional derivative 

and its properties are presented. In Section 3, a truncated M- fractional derivative is applied on the 

fractional CGLE. In Sections 4 and 5, exact solutions of fractional CGLE are obtained with the Kerr 

law, quadratic-cubic law and parabolic law nonlinearity. The graphical representation of our obtained 

solutions in given in Section 6. In the end, conclusions are announced in Section 7. 

2. M-Truncated fractional derivatives and its properties [22] 

Definition 2.1: The truncated Mittag-Leffler function [22,39] with one parameter is defined as follows: 

( )
( )0

,
1

ki

k

z
iE z

k


=

=
 +

          (4) 

in which 0   and .z C  It is defined in the sense of non-fuzzy concept as given below. 

https://www.sciencedirect.com/topics/physics-and-astronomy/solitary-waves
https://www.sciencedirect.com/topics/physics-and-astronomy/operators-mathematics
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Definition 2.2: Suppose that  ): 0,g R →  and ( )0,1 ,   the truncated derivative g  of order   

is defined by 

( )
( )( ) ( )

,

0
lim ,M

g t iE t g t
iT g t



 







−

→

+ −
=  for 0t   and ( ) , 0.iE      (5) 

Properties 2.1: Suppose that f  is a differentiable function of   order at 
0 0t   with ( 0,1 

and 0.   Then f  is continuous at 
0.t  

Properties 2.2: If ( 0,1 ,  0, ,g h   are differentiable up to   order at 
0 0,t   then: 

(1) ( ) ( ) ( ), , , ,M i M i MiT pg qh p T g q T h     + = +  where ,p q are real constants; 

(2) ( ), , ;v v

MiT t vt v R  −=   

(3) ( ) ( ) ( ), , , ;M i M i MiT gh g T h hT g     = +  

(4) 
( ) ( ), ,

,

2
;

i M i M

M

g T h hT gg
iT

h h

   

  − 
= 

 
 

(5) ( )( )
( )

1
, ;

1
M

t dg
iT g t

dt


 



−

=
 +

 

(6) ( )( ) ( )( ) ( ), ,' .M Mi
iT goh t f h t T h t   =  

3. The space time-fractional CGLE and its soliton solutions 

To solve Eq (3), we consider the following traveling wave transformation 

( ) ( ) ( ),
, ,

i x t
u x t U e


=  

( )
( )

1
,x vt 




 +
= −       (6) 

( )
( )

( )
1

, ,x t kx vwt 




 +
 = − − +  

where ( ),u x t , ( ), , , ,w k v x t  and   represents the pulse shape, wave number, frequency, speed, 

phase component and phase function of soliton respectively. 

Substituting Eq (6) into Eq (3), an ordinary differential equation is obtained, whose real and 

imaginary parts respectively are: 

( ) ( ) ( )2 24 '' 0,a N U w ak P U cH U U− − + + + =       (7) 

and 

2 .v ak= −           (8) 

Now, the focus of the study is to consider Eq (7) with three shapes of non-linear fibers, namely, the 

Kerr law, the quadratic-cubic law and the parabolic law nonlinearity. 
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4. Representation of the modified ( )2'G G - expansion method and its applications 

Let us consider the nonlinear partial differential equation (NLPDE) is given by 

( ), , , , , , , ... ,                       t x x tt xt xxQ u u u uu u u uu=      (9) 

where ( ),u u x t=  is an unknown function, Q  is a polynomial depending on ( ),u x t  and its various 

partial derivatives. 

Step 1: By suitable wave transformation 

( ) ( ) ( ), , .x vt u x t U = − =         (10) 

Here, v  is the wave speed. The wave variable allows us to reduce Eq (10) into a nonlinear ordinary 

differential equation (ODE) for ( ) :U U =  

( ), ', '', ''',... .                                    R U U U U=     (11) 

Step 2: Extend the solution of Eq (11)
 
in the following form. Let the modified ( )2'G G -equation is 

( ) 2
0

'
,

im

i

i

G
U a

G


=

 
=  

 
          (12) 

where ( )0,1,2,3,...,ia i m=  are constants and find to be later. It is important that 0.ia   

The function  satisfies the following Riccati equation, 

' 2

1 02 2

' '
,

G G

G G
 

   
= +   

   
         (13) 

where 
0  and 

1  are constants. We gain the below solutions to Eq (13) due to different conditions 

of 
0 : 

When 
0 1 0,    

( ) ( )
( ) ( )

1 0 1 2 0 10 1 0 1

2

1 1 0 1 2 0 1

sinh cosh'
.

2 cosh sinh

C CG

G C C

      

    

 +   = − + 
   +
 

   (14) 

When 
0 1 0,    

( ) ( )
( ) ( )

1 0 1 2 0 1
0

2

1 1 0 1 2 0 1

cos sin'
.

sin cos

C CG

G C C

   

    

 +   = 
   −
 

     (15) 

( )G G =
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When 
0 0 =   and 

1 0,   

(
𝐺′

𝐺2
) = −

𝐶1

𝜆1(𝐶1𝜂+𝐶2)
,         (16) 

where 
1C  and 

2C  are arbitrary constant. 

Substituting Eq (12) into Eq (11) along with Eq (13)
 
and apply symbolic computations results in 

an algebraic system whose solution leads to optical solitons of the nonlinear partial differential Eq (9). 

4.1 Kerr law 

In this case, when we take 

( ) .H U U=           (17) 

This appears in water waves and in nonlinear fiber optics Biswas et al. [41]. Then Eq (3) becomes: 

( ) ( ) ( )( )
2

2 2 2 2, 2 , 2 , ,

0 , 0 , 0 , 0 ,2
2 .A A A A

M t M x M x M x

N
i D u a D u c u u D u u D u Pu

u u

        
+ + = − + 

 
  (18) 

Thus; Eq (18) changes to 

( ) ( )2 34 '' 0.a N U w ak P U cU− − + + + =       (19) 

According to the balance principle, we obtain 1.m =  Putting 1m =  to Eq (12), then we get 

( ) 0 1 2

'
.

G
U a a

G


 
= +  

 
        (20) 

Here, 
0a  and 

1a  are unknown parameters. By substituting Eq (19) with Eq (13) into Eq (19) and 

summing up all coefficients of same order of ( )2' ,G G  we get the algebraic expressions involving 

0 1,a a  and other parameters as follows: 

3

3 2 2

1 1 1 1 12

2

2

0 12

1

2 2

0 1 1 1 1 1 0 1 1 0 12

0

3 2

0 0 0 02

'
: 2 8 0,

'
: 3 0,

'
: 3 2 8 0,

'
: 0.

G
a c aa a N

G

G
a a c

G

G
a a c aa k a P a w aa a N

G

G
a c aa k a P a w

G

 

   

 
+ − = 

 

 
= 

 

 
− − − + − = 

 

 
− − − = 

 

  (21) 

Solving the system of algebraic equations in (21) with the help of software MATHEMATICA, we 

attain the following solutions: 
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1
0 1

2 4
0,  ,

N a
a a

c

 −
= = 

2

0 1 0 1 2 8 .w ak P a N   = − − + −    (22) 

Now we use Eqs (14)–(16), (20) and (22) into Eq (6) and set to the below cases. If 𝜆0𝜆1<0,then 

( )
( ) ( )
( ) ( )

( )1 0 1 2 0 10 1 0 1 ,1
1

1 1 0 1 2 0 1

sinh cosh2 4
, .

2 cosh sinh

i x t
C CN a

u x t e
c C C

      

    



  +−   = −
  + 

  

 (23) 

If 0 1 0, then    

( )
( ) ( )
( ) ( )

( )1 0 1 2 0 1 ,01
2

1 1 0 1 2 0 1

cos sin2 4
, .

sin cos

i x t
C CN a

u x t e
c C C

   

    



  +−   = 
  − 

  

  (24) 

4.2 Quadratic-Cubic law 

This type of nonlinearity was studied in [42]. In this case, we take 

( ) 1 2 .H U c U c U= +         (25) 

Then Eq (3) becomes: 

( ) ( ) ( )( )
2

2 2 2 2, 2 , 2 , ,

0 , 0 , 1 2 0 , 0 ,2
2 .A A A A

M t M x M x M x

N
i D u a D u c u c u u D u u D u Pu

u u

        
+ + + = − + 

 
 (26) 

Thus; Eq (26) changes to 

( ) ( )2 2 3

1 24 '' 0.a N U w ak P U c U c U− − + + + + =      (27) 

According to the balance principle, we obtain 1.m =  Putting 1m =  into Eq (12), we get Eq (20).By 

putting Eq (20) with Eq (13) into Eq (27) and summing up all coefficients of same order of ( )2' ,G G  

we get the algebraic expressions involving 
0 1,a a  and other parameters as: 

3

3 2 2

1 2 1 1 1 12

2

2 2

1 1 0 1 22

1

2 2

0 1 1 0 1 2 1 1 1 1 0 1 1 0 12

0

2 3 2

0 1 0 2 0 0 02

'
: 2 8 0,

'
: 3 0,

'
: 2 3 2 8 0,

'
: 0.

G
a c aa a N

G

G
a c a a c

G

G
a a c a a c aa k a P a w aa a N

G

G
a c a c aa k a P a w

G

 

   

 
+ − = 

 

 
+ = 

 

 
+ − − − + − = 

 

 
+ − − − = 

 

 (28)  



11487 

AIMS Mathematics  Volume 8, Issue 5, 11480–11497. 

Now with the use of MATHEMATICA, we get the below solution: 

1 11
0 1

2 2 0

,  ,
3 3

icc
a a

c c




= − = 

22 2

1 2 0 11 2 2

2 2 0 1

182 9 9
, .

9 72

c acc ac k c P
w N

c c

 

 

− +− − −
= =    (29) 

Now we use Eqs (14)–(16), (20) and (29) into Eq (6) and set to the below cases. If 𝜆0𝜆1<0, then 

( )
( ) ( )
( ) ( )

( )1 0 1 2 0 10 1 0 1 ,11
1

2 10 1 0 1 2 0 1

sinh cosh
, 1 .

3 2 cosh sinh

i x t
C Cic

u x t e
c C C

      

    



   +
   = −
   +  

   

 (30) 

If 
0 1 0,    then 

( )
( ) ( )
( ) ( )

( )1 0 1 2 0 1 ,1 1
2

2 0 1 0 1 2 0 1

cos sin
, 1 .

3 sin cos

i x t
C Cc i

u x t e
c C C

   

    



    +    = −
    −       

   (31) 

4.3 Parabolic law 

This type of nonlinearity can be found in [43]. In this case, we take 

( ) 2

3 4 .H U c U c U= +          (32) 

Then Eq (3) becomes: 

( ) ( ) ( )( )
2

2 4 2 2 2, 2 , 2 , ,

0 , 0 , 3 2 0 , 0 ,2
2 .A A A A

M t M x M x M x

N
i D u a D u c u c u u D u u D u Pu

u u

        
+ + + = − + 

 
 (33) 

Thus; Eq (33) changes to 

( ) ( )2 3 5

3 44 '' 0.a N U w ak P U c U c U− − + + + + =      (34) 

Substituting 

( ) ( )( )
1

2 .U u =         (35) 

Then Eq (34) converts to 

( ) ( )( ) ( )
22 2 3 4

3 44 4 4 4 ' 2 4 '' 0.w ak P u c u c U a N u a N uu+ + − − + − − − =   (36) 

According to the balance principle, we obtain 1.m =  Putting 1m =  into Eq (12), we get Eq (20). By 

putting Eq (20) with Eq (13) into Eq (36) and summing up all coefficients of same order of ( )2' ,G G  

we get the algebraic expressions involving 
0 1,a a  and other parameters as: 
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4

4 2 2 2 2

1 4 1 1 1 12

3

3 3 2 2

1 3 0 1 4 0 1 1 0 1 12

2

2 2 2 2 2 2 2 2 2

0 1 3 0 1 4 1 1 1 1 0 1 1 0 12

1

2 3

0 1 3 0 12

'
: 4 3 12 0,

'
: 4 16 4 16 0,

'
: 12 24 4 4 4 2 8 0,

'
: 12 16

G
a c aa a N

G

G
a c a a c aa a a a N

G

G
a a c a a c aa k a P a w aa a N

G

G
a a c a a

G

 

 

   

 
− − + = 

 

 
− − − + = 

 

 
− − + + + − + = 

 

 
− − 

 

2

4 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0

3 4 2 2 2 2 2 2 2 2

0 3 0 4 0 0 0 1 1 1 02

8 8 8 4 16 0,

'
: 4 4 4 4 4 4 0.

c aa a k a a P a a w aa a a a N

G
a c a c aa k a P a w aa a N

G

   

 

+ + + − + =

 
− − + + + + − = 

 

 (37) 

Now with the use of MATHEMATICA, we get the below solution: 

3 13
0 1

4 4 0

33
,  ,

8 8

icc
a a

c c




= − = 

2 2 2

3 4 4 3 4 0 1

4 4 0 1

3 16 16 3 16
 , .

16 64

c ac k c P c ac
w N

c c

 

 

− − − − +
= =   (38) 

Now we use Eqs (20), (38) and (14)–(16) into Eq (6) and set to the below cases. If 𝜆0𝜆1<0, then 

( )
( ) ( )
( ) ( )

( )1 0 1 2 0 10 1 0 1 ,13
1

4 10 1 0 1 2 0 1

sinh cosh3
, 1 .

8 2 cosh sinh

i x t
C Cic

u x t e
c C C

      

    



   +
   = −
   +  

   

 (39) 

If 
0 1 0,    then 

( )
( ) ( )
( ) ( )

( )1 0 1 2 0 1 ,3 1
2

4 0 1 0 1 2 0 1

cos sin3
, 1 .

8 sin cos

i x t
C Cc i

u x t e
c C C

   

    



   +
   = −
   −  

   

  (40) 

5. Representation of ( )1 'G - expansion method and its applications 

Here, we will describe the basic steps of ( )1 'G − expansion method [37]. 

Step 1: Consider Eqs (9)–(11). 

Step 2:  Extend the solution of Eq (11)
 
in the following form 

( )
0

1
,

'

im

i

i

U a
G


=

 
=  

 
          (41) 



11489 

AIMS Mathematics  Volume 8, Issue 5, 11480–11497. 

where  and satisfies the following linear ordinary differential equation which is 

( ) ( )'' ' 0,G G   + + =          (42) 

where ( )1,...., ,  and  ia i m  =  are constants to be determined. The positive integer m  can be 

obtained by using the homogenous balance between the highest order derivatives and the nonlinear 

term appearing in Eq. (11).  Additionally, the solution of the differential equation given in Eq (42)
 
is 

( ) 1 2 ,G C e C 




−= − +          (43) 

where 1C  and 2C  are arbitrary integration constants. ( )1 'G  can be expressed as 

( ) ( )1

1
.

' cosh sinhG C



   

 
= 
− + −    

       (44) 

Step 3: Substituting Eq (41) into Eq (11) along with Eq (42)
 
and apply symbolic computations results in 

an algebraic system whose solution leads to optical solitons of the nonlinear partial differential Eq (9). 

5.1 Kerr law 

Consider Eqs (17)–(19). By applying balance principle on Eq (19), we obtain 1.m =  Putting 

1m =  in Eq (41), then we get 

( ) 0 1

1
.

'
U a a

G


 
= +  

 
         (45) 

Here 0a  and 1a  are unknown parameters. By putting Eq (45) with Eq (42) into Eq (19) and summing 

up all the coefficients of same order of ( )1 ' ,G  we get the algebraic expression involving 0 1,a a  and 

other parameters. 

3

3 2 2

1 1 1

2

2

0 1 1 1

1

2 2 2 2

0 1 1 1 1 1 1

0

3 2

0 0 0 0

1
: 2 8 0,

'

1
: 3 3 12 0,

'

1
: 3 4 0,

'

1
: 0.

'

a c aa a N
G

a a c aa a N
G

a a c aa k a P a w aa a N
G

a c a P a w aa k
G

 

 

 

 
+ − = 

 

 
+ − = 

 

 
− − − + − = 

 

 
− − − = 

 

    (46) 

Now with the use of MATHEMATICA Aid, we get: 

0 1

2 4 2 4
,  ,

2

N a N a
a a

c c

 − −
= =

2 2 22 2 4
 .

2

ak P a N
w

 − − − +
=    (47) 

( )G G =
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Following the above solutions, we get the hyperbolic solution:  

( )
( ) ( )

( ),

1

1

2 4 1
, .

2 cosh sinh

i x tN a
u x t e

Cc

 

   


  −
 = + 

  − + −    

   (48) 

5.2 Quadratic-Cubic law 

Consider Eqs (25)–(27). By applying balance principle on Eq (27), we obtain 1.m =  Putting 

1m =  in Eq (41), and then we get Eq (45). By putting Eq (45) with Eq (42) into Eq (27) and summing 

up all the coefficients of same order of ( )1 ' ,G  we get the algebraic expression involving 0 1,a a  and 

other parameters as: 

3

3 2 2

1 2 1 1

2

2 2

1 1 0 1 2 1 1

1

2 2 2 2

0 1 1 0 1 2 1 1 1 1 1

0

2 3 2

0 1 0 2 0 0 0

1
: 2 8 0,

'

1
: 3 3 12 0,

'

1
: 2 3 4 0,

'

1
: 0.

'

a c aa a N
G

a c a a c aa a N
G

a a c a a c aa k a P a w aa a N
G

a c a c a P a w aa k
G

 

 

 

 
+ − = 

 

 
+ + − = 

 

 
+ − − − + − = 

 

 
+ − − − = 

 

 (49) 

Now, with the use of MATHEMATICA Aid, we get the below solution: 

1 1
0 1

2 2

2 2
,  ,

3 3

c c
a a

c c




= − = −

2 2 2

1 2 2 1

2

2 2

2 9 9 21
 , 9 .

9 36

c ac k c P c
w N a

c c 

 − − −
= = + 

 
  (50) 

Following the above solutions, we get the hyperbolic solution: 

( )
( ) ( )

( ),1
1

2 1

2
, 1 .

3 cosh sinh

i x tc
u x t e

c C



   


  
 = − + 

  − + −    

   (51) 

5.3 Parabolic law 

Consider Eqs (32), (33) and (36). By applying the balance principle on Eq (36), we obtain 1.m =  

Putting 1m =  to Eq (41), and then we get Eq (45).By putting Eq (45) with Eq (42) into Eq (36) and 

summing up all the coefficients of same order of ( )1 ' ,G  we get the algebraic expression involving 

0 1,a a  and other parameters as: 



11491 

AIMS Mathematics  Volume 8, Issue 5, 11480–11497. 

4

4 2 2 2 2

1 4 1 1

3

3 3 2 2 2

1 3 0 1 4 1 1 0 1 0 1

2

2 2 2 2 2 2 2 2 2

0 1 3 0 1 4 1 1 1 1

2 2

1 0 1 0 1

1
: 4 3 12 0,

'

1
: 4 16 4 16 4 16 0,

'

1
: 12 24 4 4 4

'

4 6 24 0,

1

'

a c aa a N
G

a c a a c aa a N aa a a a N
G

a a c a a c aa k a P a w aa
G

a N aa a a a N

G

 

   



  

 
− − + = 

 

 
− − − + − + = 

 

 
− − + + + − 

 

+ − + =

 



1

2 3 2 2 2

0 1 3 0 1 4 0 1 0 1 0 1 0 1 0 1

0

3 4 2 2 2 2

0 3 0 4 0 0 0

: 12 16 8 8 8 2 8 0,

1
: 4 4 4 4 4 0.

'

a a c a a c aa a k a a P a a w aa a a a N

a c a c a P a w aa k
G

 − − + + + − + =


 
− − + + + = 

 

 (52) 

Now with the use of MATHEMATICA Aid, we get the below solution: 

3 3
0 1

4 4

3 3
,  ,

4 4

c c
a a

c c




= − = −

2 2 2

3 4 4 3

2

4 4

3 16 16 31
 , 4 .

16 16

c ac k c P c
w N a

c c 

 − − −
= = + 

 
  (53) 

Following the above solutions, we get the hyperbolic solution: 

( )
( ) ( )

( ),3
1

4 1

3
, 1 .

4 cosh sinh

i x tc
u x t e

c C



   


  
 = − + 

  − + −    

   (54) 

6. Results and discussion 

This section deals with a graphical demonstration of the obtained results and provides a brief 

discussion on the effect of fractional parameter .  Figure 1c depicts the physical appearance of the 

multiple soliton solutions of Eq (23) and Figures 1(a,b)demonstrates the effect of fractional parameter 

  and time t  along fixed space parameter. A graphical illustration of the periodic soliton solution 

of Eq (24)can be viewed in Figure 2(c), and its 2D fractional and time parameters effects are depicted 

in Figure 2(a,b). Figures 3(c), 4(c), 5(c), 6(c), 7(c) and 8(c) highlight the physical appearance of the 

bright soliton solution of Eq (31), singular soliton solution of Eq (39), bright-dark soliton solution of 

Eq (40), bright singular soliton solution of Eq (48), smooth antiking soliton solution of Eq (51) and 

steep antiking soliton solution of Eq (54) respectively, and their respective 2D fractional and time  

parameter effects are given in Figues 3(a,b), 4(a,b), 5(a,b), 6(a,b),7(a,b) and 8(a,b). 

https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig1
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig1
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig2
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig2
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig3
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig4
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig5
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig3
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig4
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig6
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig3
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig4
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig5
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig3
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig4
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02973-7#Fig6
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Figure 1. The 2D and 3D profiles of multiple soliton shape of Eq. (23) when 

0 1

1 2

0.5, 0.3, 0.1, 0.2, 1, 0.05, 1, 0.2, 0.05, 1.5, 0.5,

1, 0.2.

k w a N P c

C C

    = = = = = = = = = = = −

= = −
 

 

Figure 2. The 2D and 3D profiles of periodic soliton shape of Eq (24) when 

0 10.5, 0.3, 0.1, 0.2, 1, 0.05, 1, 0.2, 0.05, 1.5, 0.5,k w a N P c    = = = = = = = = = = = −

1 21, 0.2.C C= = −
 

 

Figure 3. The 2D and 3D profiles of bright soliton shape of Eq (31) when 𝛽 = 0.5, 𝜈 =
0.3, 𝑘 = 0.1, 𝑤 = 0.2, 𝜀 = 1, 𝑎 = 0.05, 𝑃 = 0.2, 𝑐1 = 0.3, 𝑐2 = 0.5, 𝜆0 = 1.5, 𝜆1 =
−0.5, 𝐶1 = 0.5, 𝐶2 = 0.8. 
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Figure 4. The 2D and 3D profiles of bright singular soliton shape of Eq (39) when 

0.5, 0.3, = = 3 4 00.1, 0.2, 1, 0.05, 0.2, 0.03, 0.05, 0.02,k w a P c c = = = = = = = = −

1 1 22.5, 0.5, 1.C C = = =
 

 
Figure 5. The 2D and 3D profiles of bright and dark soliton shape of Eq (40) when 

3 4 0 10.5, 0.3, 0.1, 0.2, 1, 0.05, 0.2, 0.03, 0.05, 0.02, 2.5,k w a P c c    = = = = = = = = = = − =

1 20.5, 1.C C= =  

 

Figure 6. The 2D and 3D profiles of bright singular soliton shape of Eq (48) when 

0.5, 0.3, = =
10.1, 0.2, 1, 0.05, 0.2, 0.02, 0.2, 0.5, 0.1.k w a P c C  = = = = = = = = − =  
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Figure 7. The 2D and 3D profiles of smooth antiking shape soliton of Eq (51) when 

1 20.5, 0.3, 0.1, 0.2, 1, 0.05, 0.2, 0.2, 0.5, 0.2, 0.5,k w a P c c    = = = = = = = = = = = −

1 0.2.C =  

 

Figure 8. The 2D and 3D profiles of steep antiking shape soliton of Eq (54) when 
0.5, 0.3, = =

3 4 10.1, 0.2, 1, 0.05, 0.2, 2, 0.5, 0.2, 0.5, 0.2.k w a P c c C  = = = = = = = − = = − =  

7. Conclusions 

In this study, we have used a truncated M-fractional derivative to find the optical solutions of the 

fractional CGLE. We carried out this objective by adopting a specific wave transformation to change 

the fractional CGLE to a nonlinear ODE of second order such that the resultant ODE could be solved 

by employing the modified ( )2'G G  and ( )1 'G  expansion methods. These methods restored the 

bright, multiple and bright-dark solitons for Kerr law, quadratic-cubic law and parabolic law 

nonlinearities. To describe the physical phenomena of the space-time fractional CGLE, some solutions 

are plotted in the form of (3D surface graphs and 2D line plots) by assigning the specific value to the 

parameters under the constrained conditions. Compared with other work [31–34], our solutions have 

not been reported in the former literature. Moreover, these methods are very efficient and powerful in 

finding the soliton solutions for the nonlinear fractional differential equations, and the obtained 

solutions can help us to more deeply explain the nonlinear dynamics of optical soliton propagations. 

Also, these methods can be applied to many NLPDEs in mathematical physics. Finally, our solutions 

have been checked using the software MATHEMATICA by putting them back into the original 

equation. 
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