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Abstract: The results from this paper are related to the geometric function theory. In order to obtain
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one of the newest techniques used in this field, we obtain some differential subordination and
superordination results for multivalent functions defined by differintegral operator with j-derivatives
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1. Introduction

Let H(U) be the class of analytic functions in the open unitdisc U = {z € C : |z] < 1} and let H[a, v]
be the subclass of H(U) including form-specific functions

f@=a+a, +a,a" +... (aeC),

we denote by H = H[1,1].
Also, A(p) should denote the class of multivalent analytic functions in U, with the power series
expansion of the type:

f@Q=2"+ Z a7 (peN={1,2,3,.}). (1.1)

v=p+1
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Upon differentiating j-times for each one of the (1.1) we obtain:

@) = o, 7+ ), sw pagT  zel, (12)
v=p+1
! , :
5(p.j) = —L—  (peN, jeN,=NU0} p= ).
(p =)

Numerous mathematicians, for instance, have looked at higher order derivatives of multivalent
functions (see [1,3,6,9,16,27,28,31)).

For f,# € H, the function f is subordinate to # or the function # is said to be superordinate to f in
U and we write f(z) < fi(z), if there exists a Schwarz function w in U with ©(0) = 0 and |w(z)| < 1,
such that f(z) = Ai(w(z)), z € U. If fiis univalent in U, then f(z) < #(z) iff £(0) = #(0) and f(U) C A(U).
(see [7,21]).

In the concepts and common uses of fractional calculus (see, for example, [14, 15] see also [2]; the
Riemann-Liouville fractional integral operator of order @ € C (R(a) > 0) is one of the most widely
used operators (see [29]) given by:

1 X
U5, N0 = s [ = fede (>0 K@ >0 (13)

applying the well-known (Euler’s) Gamma function I'(e). The Erdélyi-Kober fractional integral
operator of order @ € C (R(a) > 0) is an interesting alternative to the Riemann-Liouville operator
I§, , defined by:

O.x—O'((Y+T])

—m;—ﬁummﬂfﬂmﬂﬂmm (1.4)
(x> 0; R(a) >0),

U3 D) =

which corresponds essentially to (1.3) when oo — 1 = = 0, since

{5410 NX) =x7 g, Hx) (x> 0; R(a) > 0).

Mainly motivated by the special case of the definition (1.4) whenx =0 =1,p=v-landa = p—-v,
here, we take a look at the integral operator J ,(v, p, u) with f € A(p) by (see [11])

I'(p+¢p)
I'v+£€p)l(p

1
3,5 O (2) = — [ s

>0, v,peR; p>v>—€p; peN).
Evaluating (Euler’s) Gamma function by using the Eulerian Beta-function integral as following:

1

[Hr At (minR@. %) > 0)
B(a,p) :=
(@) (B) ,
T@+p) (@,Be C\Zy),
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we readily find that

p o TptpD) s To+v0) o
T Toeph u=%+1 forp @ (P >V)

3,000 f(2) = (1.5)
f(@ (o =v).
It is readily to obtain from (1.5) that
23,0001 () = (g +p)( 8,00+ 1,0, 0)f(2)) - g(ﬁp(v,p;f)f(Z))- (1.6)

The integral operator J,(v, p; £)f(z) should be noted as a generalization of several other integral
operators previously discussed for example,

(1) If we set p = 1, we get 1(v, p; €) f(z) defined by Raina and Sharma ([22] with m = 0);

(i) If we setv = B,p =+ 1 and ¢ = 1, we obtain Sﬁf(z)(ﬁ > —p) it was presented by Saitoh et
al. [24];

(iii) f wesetv=B,p=a+B -6+ 1, £ = 1, we obtain %g:if(z)(ci >0,a>6-1;8> —p)it was
presented by Aouf et al. [4];

v) fweputv =6,p=a+p, £ =1, we get Q"g’pf(z)(a > 0;8 > —p) it was investigated by Liu
and Owa [18];

vy Ifweputp=1,v=6,p=a+p, { =1, we obtain ‘Rgf(z)(a/ > 0; 8 > —1) it was introduced by
Jung et al. [13];

(vijlfweputp =1, v=a-1, p=8-1, € = 1, we obtain L(a,B)f(2)(a,B € C\Zy, Zy =
{0,—-1,-2,...}) which was defined by Carlson and Shaffer [8];

(vi)If weputp=1,v=v—1, p=j, £ =1weobtain I, ;f(z)(v > 0; j > —1) it was investigated
by Choi et al. [10];

(viii) If we put p = 1, v = a,p = 0, £ = 1, we obtain D*f(z)(e¢ > —1) which was defined by
Ruscheweyh [23];

(x)If weputp =1,v=1, p =m, £ = 1, we obtain [,,f(z)(m € Ny) which was introduced by
Noor [21];

(x)Ifwesetp=1,v=8,p=8+1, { =1 we obtain J5f(z) which was studied by Bernadi [5];

xi)Ifwesetp=1,v=1, p=2, £ =1 we get J f(z) which was defined by Libera [17].

2. Key lemmas

We state various definition and lemmas which are essential to obtain our results.

Definition 1. ( [20], Definition 2, p.817) We denote by Q the set of the functions f that are holomorphic
and univalent on U \ E(f), where

E(f)=1¢: £ €U and lim f(z) = oo},

and satisfy f'({) # 0 for { € OU \ E(f).
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Lemma 1. ([12]; see also ( [19], Theorem 3.1.6, p.71)) Assume that h(z) is convex (univalent) function
in U with h(0) = 1, and let ¢(z) € H, is analytic in U. If

@(z) + %zso/(z) <h(z) (zel),

where y # 0 and Re(y) > 0. Then

Z

9(z) < ¥(2) = Zly f ' h(dt < h(z)  (z € U),
0
and Y(2) is the best dominant.

Lemma 2. ( [26]; Lemma 2.2, p.3) Suppose that q is convex function in U and let € C with

x € C* = C\{0} with )
Re(l + qu,((zz))) > max {O; —Reg} , z€ U.

If A(2) is analytic in U, and
YA2) + %z (2) < Yq(2) + x24'(2),
therefore A(z) < q(z), and q is the best dominant .
Lemma 3. ( [20]; Theorem 8, p.822) Assume that q is convex univalent in U and suppose 6 € C, with
Re (6) > 0. If 1 € H[q(0), 1] N Q and A(z) + 6zA'(2) is univalent in U, then
q(2) + 02q'(z) < A2) + 024’ (2),
implies
q(z) < Az) (zeU)
and q is the best subordinant.

For a, 0, c and c(c ¢ Z;) real or complex number the Gaussian hypergeometric function is given by

ag z _ala+Dol+1) 2
Fia,0,c;2)=1+—.—+ .=
:F1(a,0,6:2) ¢ ce+l) 2l
The previous series totally converges for z € U to a function analytical in U (see, for details, ( [30],

Chapter 14)) see also [19].

Lemma 4. For a,p and c (¢ € Z;), real or complex parameters,

1
f A -1 - z0)7Mdr = Wzmm,g; c;2) (Re(c) > Re(o) > 0); 2.1)
C
0
2Fi(a,0;¢;2) = 2F (0, a;c¢;2); (2.2)
2Fi(a,05¢;2) = (1 =2 2F (a,c—o0;c; Z_Ll) ; (2.3)
SR, 152, %y - UFadind +az), 2.4
az + 1 az
SRy, 133y 2 a) (1 _ Ind +“Z)). (2.5)
az + 1 az az
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3. Main results

Throughout the sequel, we assume unless otherwise indicated -1 < D <C<1,6>0,£>0, v,p €
R, v> —€p, p € Nand (p — j) > 0. We shall now prove the subordination results stated below:

Theorem 1. Let0 < j< p,0<r <1 andfor f € A(p) assume that

(3,(v,0; 0 f ()P ¢

Zp_j

0, zeU, 3.1

whenever ¢ € (0, +00)\N. Let define the function ®; by
5-1

Oi(2) = (1 - )

P ZP=J zP=J ’

@A%maﬂdyj:_Ch0+Lm@ﬂ@yTCMﬁg&ﬂ@fj
@ .

such that the powers are all the principal ones, i.e., log1=0. Whether

0 r
p! 1+Cz )
Di(z) < , 3.2
=G (1+Dz G-
then
(D\°
(3,0.0:0f(2))" poT \s
5 <=5 P@- (3.3)
where .
o (S) = SRR (1 + Do) oFy (i, 11 + 222 L2y (D 2 0);
p2) = >0
(=, 6(1/(:;!7); 1+ 6(v;r€€l7); ~C7) (D = 0),
and [(p‘f—!j)!]é p(2) is the best dominant of (3.3). Moreover, there are
(3,000:06@)"\ [ o T
P05 p!
|| e e o
where ( is given by:
(5) = SHELYA = Dy oy, 151 + 22525 2y (D # 0);
= >0
2Fi(=r, 2 1+ 227 C) (D = 0),
then (3.4) is the best possible.
Proof. Let
1Y?
(p— ) (Bp(rp; Of(2)
8(2) = [ s ( — . cew (3.5)
p! Z
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It is observed that the function ¢(z) € H, which is analytic in U and ¢(0) = 1. Differentiating (3.5) with
respect to z, applying the given equation, the hypothesis (3.2), and the knowing that

G+

A3, 0O f(2)

(% + )3, + Lp O f @) — (% + (3,000 £ ()Y
0 < j<p), (3.6)

we get

42 + 2¢ (2) <(1+Cz

o(v+Lp) 1+ DZ
at

) =4q(@) (zel).
We can verify that the above equation g(z) is analytic and convex in U as following

zq (2) 1 1
Re(1+ ) —1+(1—r)%(1+cz)+(l+r)‘R(TDZ)

q'(2)
1—r 1+r
+ + >0 e U).
t+ic " Tap 20 @D

-1

Using Lemma 1, there will be

Z
o(v+L€p) _sorw f sortp_y (14 Ct "
< = al t ol dt.
9@ < P al  © 1+ Dr

0

In order to calculate the integral, we define the integrand in the type

ey 1+Ct’_t(s<v;§p>_1(£)’(1_ C-D )’
1+Dt] D C+CDt)’

using Lemma 4 we obtain

0 =(5) )

On the other hand if D = 0 we have

(—lr),- C-D o(v+{p) Dz XD % 0).

A+ D) F (G, 11 +
.!( C )'( ) 2P 1 o 1+Ds

o(v+{p) 1+ (5(V+€p)._

= Fi(-
p(Z) 2 l( 7, ol ol

Cz),

where the identities (2.1)—(2.3), were used after changing the variable, respectively. This proof the
inequality (3.3).
Now, we’ll verify it

inf{Rp(2) : Iz < 1} = p(-1). (3.7
Indeed, we have
1+Cz\ 1-Co\
R > D).
(1+Dz) _(1—D0') (2 <o <)
Setting
1+ Csz\
= <s<l1:
(s, 2) (1 +Dsz) 0<s<1;zel)
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and
dv(s) = —60/ +p) s%_1

where dv(s) is a positive measure on the closed interval [0,1], we get that

1

p(2) = f (s, 2)dv(s),

0

so that

1
Rp(z) > f(ﬂ) dv(s) = p(-o) (lz <o <1).
1 - Dso
0

Now, taking o — 1~ we get the result (3.7). The inequality (3.4) is the best possible since [( ]),] p(2)
is the best dominant of (3.3). O

If we choose j = 1 and @ = 6 = 1 in Theorem 1, we get:

Corollary 1. LetO <r<1.1If

(3,0 + 1,5 0) _ (1 e )
p

zp-1 1+ Dz

then

7P

I,v,0;,€ ,
%[( PP )f(Z))]>p§1, ze U, (3.8)

where (, is given by:

£ (5) 2 SHE A =Dy oF il 1+ S5 ) (D # 0);
1 =
2F1( r, (v+€p) 1+ (v+€p) C) (D _ O),
then (3.8) is the best possible.
If we choose v = p =0 and ¢ =1 in Theorem 1, we get:

Corollary 2. Let0< j< p,0<r < 1andas f € A(p) assume that

f(]) @)

Zp]

+#0, zeU,
whenever ¢ € (0, +00)\N. Let define the function ®; by

f(J)(Z) 2f9D D\ [ FO(2) J
p—Jj ta pf(])(z) Zp_j ?

D;(z) =[1 —a(l - —)]( 3.9
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such that the powers are all the principal ones, i.e., log1=0. If

U P(1+CzY
D;(z) < P ( < ) ,
(p-pn!' \1+Dz
then | . )
f(f)(z)) p‘
~| <

where . 5
pl(Z) = (%) 1;‘) r)l(c D) (1 +DZ) 2F1(l 1 1+ p’ 1+Dz) (D # 0)
2F1(—7’,%p;1+;;—Cz) (D = 0),

and [(p J).] p1(2) is the best dominant of (3.10). Morover, there are

@\ [t T
%( 7 ) >[<p—j>!] ol

where (, is given by

&=

>

{(g) ¥ (L) (1 = DY, F G 1 1+ 22 (D # 0);
i, 2.1+ 20 (D =0),

then (3.11) is the best possible.
If we puto = 1and r =1 in Corollary 2, we get:

Corollary 3. Let 0 < j < p, and for f € A(p) say it
f(j)(z)

ZP‘]

#0, zeU.

Let define the function ®; by
f(f)(z) f(f”)(z)

Q;(2) = [(1 —a(l -

If
' 1+C
D;(z) < —2— <
(p—-N!'1+Dz
then ’
@) p'
where . c
p2(2) = 5+ (=50 +D)" oF (1, 1; 1+ 2,225 (D #0);
’ 1+ pfaCZ’ (D =0),

and (p‘j—!j)!pz(z) is the best dominant of (3.12). Morover there will be

f(”(Z)) p!
%( 2 (P =)

G, zeU,

(3.10)

(3.11)

(3.12)

(3.13)
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where (5 is given by:

1--£C, (D =0),

pra

. :{ S+ (1-5)1-D)"F (1L 131+ 212 (D #0);

then (3.13) is the best possible.
For C =1,D = -1 and j = 1 Corollary 3, leads to the next example:

Example 1. (i) For f € A(p) suppose that

f @ #0, zeU.
P!
Let define the function ®; by
_ a f@  f  l+z
() =[1~(a~ ;)] e BaL & gt
then
f@  1+z
o Py
and

%(f (Z)) >ply, z€U,

P!

where {4 is given by:

+a 1
4=-1+ 0,272,
a 2
then (3.15) is the best possible.
(ii) For p = a = 1, (i) leads to:
For f € A suppose that
f(@#0, zeU.
Let define the function ®; by
’ ’” 1 + Z
Oi(z)=f@+zf (2) < I——Z’

then
R(f()>-1+2n2, zeUl.

So the estimate is best possible.

Theorem 2. Let 0 < j < p,0<r < 1asfor f e A(p). Assume that F, is defined by

Falz) = a(; +p)B,(v+ L Of@) + (1 —a - a(;))(ﬁp(v,P; 0f(2).

(3.14)

(3.15)

(3.16)

AIMS Mathematics Volume 8, Issue 5, 11440-11459.
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If
T(ij)(;) <(-a+ap) p!. (1+CZ )r
P~ (p—PD'\1+Dz
then .
(8,,<v,p;f)f(z))(” p!
2 S - J)'p(Z)

where

o _{ (g)zo CO(CDYi(] 4 Doy 5 Fy (G 1 1+ 290 Dey (D 2 (),

B Y R R 9 (D = 0),

and (pf—']), p(2) is the best dominant of (3.18). Moreover, there will be

% [(5 pp; O f (z))(j)] p!

Zp_j

> —1, z€ U,
(p—n!

where 1 is given by:

) (g); D(CDY(] 4 DY F (i 15 1+ SR Dy (D 2 0);
2Py (=1, SR 1 4 S C) (D =0),

then (3.19) is the best possible.
Proof. By using the definition (3.16) and the inequality (3.6), we have
Fo (@) = az(3,0, s O F @)V + (1 = @ + a )T, (v, 050 f@),

for 0 < j < p. Putting

%)
_ (3,00 f(2)
() = (Pp!J) ( P ‘ ) el

zP=J

we have that ¢ € H. Differentiating (3.21), and using (3.17), (3.20), we get

20 (2) . (1 +Cz Y

¢(2) + T+ Dz ) (ze ).

(1-a+ap)
a

Following the techniques of Theorem 1, we can obtain the remaining part of the proof.

If we choose j =1 and r = 1 in Theorem 2, we get:

Corollary 4. For f € A(p) let the function F, define by 3.16. If

T“(Z) <p(l—a+ap); L+ Ce

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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then

’

% {(Sp(v,p;{’)f(z))

- >pn, z€U, (3.22)
zP71

where 1, is given by:

a > D-1

| - Leere (D = 0),

1+ap

. _{ C+(1-501-D)"HF (1, 1;1+ 2292 Dy (D #0);
=

then (3.22) is the best possible.
Example 2. If we choose p = C = a =1 and D = —1 in Corollary 4, we obtain:

For
F(2) = (% + DO+ 1,0, 0f() - (g)(ﬁ(v,p;f)f(z)).
I
F(z) < ﬂ,
1-z2
then

‘R((ﬁ(v,p;f)f(z))/) >—-1+2In2, z€U,
the result is the best possible.

Theorem 3. Let0< j<p,0<r<1asfor8>—passume that J,y : A(p) — A(p) defined by

9 Z
hah)@ = P22 [ 7 fwar, zeu. (3.23)
0
If
(3,0:0:07@)”  p (14czY
. < — ( ) , (3.24)
I (p-N'"\1+Dz
then _
(S » (V05 f)J,,,e(f)(z))(j) p! @ (325)
. < , )
7 »- "
where .
o (5) = SHERYU + D)7 oF 1 151+ 0+ p; 125) (D #0);
p2) = >0 '
2Fi(=r,0+p;1+60+ p;Cz) (D =0),
and # p(2) is the best dominant of (3.25). Moreover, there will be
@)
3,(v, 050 p6(f)(2) !
R (% i ) s 5 ceu (3.26)
zP (p-N

AIMS Mathematics Volume 8, Issue 5, 11440-11459.
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where (8 is given by:
[ (5) BRI+ DTSRG T+ 0+ pig) (D #0)
2Fi(=r,0+p;1+60+p;-C) (D =0),

then (3.26) is the best possible.

Proof. Suppose

(p - ! (3,020 01,0(F)”
0=+

we have that ¢ € H. Differentiating the above definition, by using (3.24) and

, (ze ),

Zp_j

G+

2(3,0.0: OJ,0(H)(2)) 0+ p)(3 05 Of @)
—(0+ N3, p:0Jp6(NENY (O < j<p),

we get

’ 1+Cz Y
¢(Z)+z¢(z)<( al Z).
0+p 1+ Dz
Now, we obtain (3.25) and the inequality (3.26) follow by using the same techniques in Theorem 1. O

If weset j =1 and r = 1 in Theorem 3, we get:

Corollary 5. For 6§ > —p, let the operator J, 4 : A(p) — A(p) defined by (3.25). If

(3,0,0:0f@) 14z
-1 = 1+Dz7’°

then

77!

I,0,p0,0J ,
%[( S0 )p,e<f><z>)}>pﬂl, eu. (327)

where 3, is given by:

5 = %+(19_%)(1_D)_1 2F1(1,1;1+9+p;%) (D +# 0);
! 1-—LC (D=0,

1+6+p

then (3.27) is the best possible.
Example 3. If we choose p = C =0 =1and D = —1 in Corollary 5, we get:

If

(S0rp: () < i—fi

then

R ((30.0: 0J11(H@) ) > =1 +4(1 — In2),
the result is the best possible.
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Theorem 4. Let q is univalent function in U, such that q satisfies

Re(l + zq“(z)) > max {0; —M} ze U
q(2) afl

Let0< j<p,0<r<1andfor f € A(p) assume that

(3,00 O f @)V

ZPJ

#0, zeU,

whenever 6 € (0, +00)\N. Let the function ®; defined by (3.1), and assume that it satisfies:

! £ ,
[@fW®@<mHz%5mm

Then,

pY ZP—j

(M\®
— I, O f(2)
[eopimmonel’f

and q(z) is the best dominant of (3.30).
Proof. Let ¢(z) is defined by (3.5), from Theorem 1 we get

al
P]ﬂ®oww+ 5.
p! o(v +{€p)
Combining (3.29) and (3.31) we find that
at at ,
() + 50+ )Z¢ (2) < q(z) + mw (2).

The proof of Theorem 4 follows by using Lemma 2 and (3.32).

Taking g(z) = (}:g;)r in Theorem 4, we obtain:

Corollary 6. Suppose that

1-Dz (r—1)(C - D)z '_(5(v+€p)
Re(1+Dz+(1+Dz)(1+Cz))>max{O’ Tl }, z€ U.

Let0 < j< p,0<r<1andfor f € A(p) satisfies

(3,0,0; O f )V

P~ J

+#0, zeU,

whenever 6 € (0, +00)\N. Let the function ®; defined by (3.1), satisfies:

-7 1+Cz Y\ af  (1+Cz\  HC-D)
[ Y ](D'(Z)<(1+Dz)+5(v+£p)(1+Dz)

(1+D2)(1+C2)’

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

AIMS Mathematics Volume 8, Issue 5, 11440-11459.
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Then,

(3.33)

A0
- (300:070)" ) (14czy
p! ZP=J <(1+Dz) ’

SO (“Cz )r is the best dominant of (3.33).

1+Dz

1+Cz
1+Dz

Taking g(z) = in Theorem 4, we get:

Corollary 7. Suppose that

1-D
Re £ > max O;—M , z€U.
1+ Dz af

Let0 < j<p,0<r<1andfor f € A(p) satisfies
I,(v,0;,¢ )]
(3,(r,0; O)f(2)) 20

- , z€eU,
ZP—J

whenever 6 € (0, +00)\N. Let the function ®; defined by (3.1), satisfies:

p-H7T 1+Cz al  (C-D)
[ I ]®ﬁ9<1+Dz+5W+aﬂu+D@T

Then,

: < , 3.34
P~ 1+ Dz ( )

)
[@_ﬁwm@mwifj 1+Cz
p|

50 }:gﬁ is the best dominant of (3.34).

If weputv =p =0and ¢ =1 in Theorem 4, we get:
Corollary 8. Let g is univalent function in U, such that q satisfies

" 6
Re(l + X (Z)) > max {0; ——p}, z€ U.
q' () @

For f € A(p) satisfies _
f(/)(z)

ZP‘]

Let the function ®@; defined by (3.9), satisfies:

[(p—j)!

p!

#0, zeU.

0
] D;(z) < q(2) + %zq'(z)- (3.35)

Then,

— D))
((PP!J).pr_(j)) < 4@, (3.36)

50 q(z) is the best dominant of (3.36).
Taking C = 1 and D = —1 in Corollaries 6 and 7 we get:
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Example 4. (i) For f € A(p) assume that

(3,(np3 O f(2))"” .

ZP—j

0, zeU.

Let the function ®; defined by (3.1), and assume that it satisfies:

- 1+2z) e (1+z\ 2
22)) ®(2) < tz), @ +z re_
p! -z Sv+etp)\1-z) 1-22

Then,

> — — (3.37)

N6
Fp—pﬂﬁﬁwﬂfﬁﬁﬂw]<(l+ﬂr

SO (}—fi)r is the best dominant of (3.37).

(ii) For f € A(p) say it

(3,703 O f(2)) 2

: 0, zeU.
ZP_J

Let the function @ ; defined by (3.1), and assume that it satisfies:

- ez ot 2
-z o6(v+ep)l -2

Then,

(3.38)

p! zP 1-2

.6
[(p_j)!(Sp(v,p;f)f(Z))(J)] . 1+z2

SO }—fi is the best dominant of (3.38).
Ifweputp=C=a=06=1, D=-1and j=0in Corollary 8 we get:

Example S. For f € A suppose that
9,

Z

f,(Z)<(1+Z) +(1+z) 2rz

1-z2 1-z) 1-22

, z€U,

and

Then,
@ (ﬂ) , (3.39)

Z 1-z

and (ﬁ)r is the best dominant of (3.39).

1-z

Remark 1. For v=p =0, { = p =r =1and j =0 in Theorem 4, we get the results investigated by
Shanmugam et al. ( [25], Theorem 3.1).
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Theorem 5. Let 0 < j < p, and for f € A(p) assume that

(3,00 O f )V

7P J

#0, zeU,

whenever ¢ € (0, +00)\N. Suppose that

N6
[(p - ! (Sp(v,p;t’)f(z))(j)] cHOO

p' Zp_j

110
such that [(p;—()‘] ®;(z) is univalent in U, where the function ®; is defined by (3.1). If q is convex
(univalent) function in U, and

(p—)!

m@+—iﬁ—ﬂ4@<[

o(v+{p) ] ;)

then

(3.40)

p! P

MO\
— (3,00 f(2)
ﬁ@<[@ 1 (3n0np fZ)]’

5o q(z) is the best subordinate of (3.40).

Proof. Let ¢ is defined by (3.5), from (3.31) we get

at
q(z) + mzq (2) <

The proof of Theorem 5 followes by an application of Lemma 3. O

[@]W®@ 60+ —"L 5.
p! o(v + tp)

Taking g(z) = (}Igﬁ )r in Theorem 5, we get:

Corollary 9. Let 0 < j < p,0 <r < 1and for f € A(p) assume that

(3, p0; 0 f ()

Zp]

#0, zeU.

Suppose that

p' Zp_j

N
_w(3,v,p;¢
[(p ])!( pv.p )f(Z)) ]EHOQ

such that [(p J)! ] ®(2) is univalent in U, where the function ®@; is defined by (3.1). If

1+Cz\" et (1+Cz\  r(C-Dx <(p—j)!6q)‘()
1+Dz) s+ ep\1+Dz) 1+ D2)(1+C2) ! s
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then s
)
1+Cz\ (= (300 0f@)
< : , (3.41)
1+ Dz p! ZP=J
50 (}LC); )r is the best dominant of (3.41).
Taking ¢(z) = 1£5° and r = 1 in Theorem 5, we get:
Corollary 10. Let 0 < j < p, and for f € A(p) assume that
I (v.p:l 0
(I, p )f(Z)) 40, zcU.
zP=J
whenever 6 € (0, +0)\N. Assume that
(Dy°
~ H(Iprp Of(2)
[(p (3 . ) cHNO
p! P
such that [(’Jp;()!]é ®(2) is univalent in U, where the function ®@; is defined by (3.1). If
1+C al (C-D -
z, ( )z2 (p—J)) ,(2),
1+Dz  6(v+E€p)(1+ Dz) p!
then s
)]
14¢cz {(p=j!(30m0:0f)
< : , (3.42)
1+ Dz p! zPJ

50 %:gﬁ is the best dominant of (3.42).

Combining results of Theorems 4 and 5, we have
Theorem 6. Let 0 < j < p, and for f € A(p) assume that
(3,0, 05 O f ()" 2

: 0, zeU.
ZP_J

Suppose that
5

)
[(p i (gp(v, p;f)f(z)) € H[g(0),11n Q

p! b

NER
such that [%] ®;(z) is univalent in U, where the function ®@; is defined by (3.1). Let q; is convex
(univalent) function in U, and assume that g, is convex in U, that g, satisfies (3.28). If

(r-n!

¢ , 0 ,
q1(2) + a—qu(z) < [T] D;(z) < q2(2) + 3 29,(2),

af
o(v+{p) v+ ¢€p)
then

(p— ) (Sp(v,p;f)f(z))(j) 6
q1(2) < o prmy < q2(2)

and q,(z) and q,(2) are respectively the best subordinate and best dominant of the above subordination.
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4. Conclusions

We used the application of higher order derivatives to obtained a number of interesting results
concerning differential subordination and superordination relations for the operator 3 ,(v, p; £) f(z) of
multivalent functions analytic in U, the differential subordination outcomes are followed by some
special cases and counters examples. Differential sandwich-type results have been obtained. Our
results we obtained are new and could help the mathematicians in the field of Geometric Function
Theory to solve other special results in this field.

Acknowledgments

This research has been funded by Deputy for Research & innovation, Ministry of Education through
initiative of institutional funding at university of Ha’il, Saudi Arabia through project number IFP-
22155.

Conflict of interest

The authors declare no conflict of interest.

References

1. R. M. Ali, A. O. Badghaish, V. Ravichandran, Subordination for higher-order derivatives of
multivalent functions, J. Inequal. Appl., 2008 (2008), 1-12. https://doi.org/10.1155/2008/830138

2. E. E. Ali, H. M. Srivastava, R. M. El-Ashwah, A. M. Albalahi, Differential subordination and
differential superordination for classes of admissible multivalent functions associated with a linear
operator, Mathematics, 10 (2022), 4690. https://doi.org/10.3390/math 10244690

3. M. K. Aouf, R. M. El-Ashwah, E. E. Ali, On Sandwich theorems for higher-order derivatives of
p-valent analytic functions, Se. Asian B. Math., 37 (2013), 7-14.

4. M. K. Aouf, R. M. El-Ashwah, A. M. Abd-Eltawab, Some inclusion relationships of certain
subclasses of p-valent functions associated with a family of integral operators, ISRN Math. Anal.,
2013 (2013), 1-8. https://doi.org/10.1155/2013/384170

5. S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969),
429-446.

6. N. Breaz, R. M. El-Ashwah, Quasi-Hadamard product of some uniformly analytic and p-valent
functions with negative coefficients, Carpathian J. Math., 30 (2014), 39—45. Available from:
https://www.jstor.org/stable/43999556.

7. T. Bulboaca, Differential subordinations and superordinations, recent results, Hous of Scientific
Book Publ., Cluj-Napoca, 2005.

8. B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math.
Anal., 15 (1984), 737-745. https://doi.org/10.1137/0515057

AIMS Mathematics Volume 8, Issue 5, 11440-11459.


http://dx.doi.org/https://doi.org/10.1155/2008/830138
http://dx.doi.org/https://doi.org/10.3390/math10244690
http://dx.doi.org/https://doi.org/10.1155/2013/384170
https://www.jstor.org/stable/43999556.
http://dx.doi.org/https://doi.org/10.1137/0515057

11458

0.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.
22.

23.
24.

25.

26.

27.

M. P. Chen, H. Irmak, H. M. Srivastava, Some multivalent functions with negative coefficients
defined by using a differential operator, Pan Amer. Math. J., 6 (1996), 55—-64. Available from:
http://hdl.handle.net/1828/1655.

J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of
integral operators, J. Math. Anal. Appl., 276 (2002), 432-445. https://doi.org/10.1016/S0022-
247X(02)00500-0

R. M. El-Ashwah, M. E. Drbuk, Subordination properties of p-valent functions defined by linear
operators, Biritish J. Math. Comput. Sci., 4 (2014), 3000-3013.

D. Z. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52
(1975), 191-195.

I. B. Jung, Y. C. Kim, H. M. Srivastava, The hardy space of analytic functions associated with
certain parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
https://doi.org/10.1006/jmaa.1993.1204

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 204
(2000).

V. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in
Mathematics, Longman Scientic and Technical, Harlow (Essex), 301 (1993).

A. Y. Lashin, F. Z. El-Emam, On certain classes of multivalent analytic functions defined with
higher-order derivatives, Mathematics, 11 (2023), 83. https://doi.org/10.3390/math11010083

R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755—
758. http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2

J. L. Liu, S. Owa, Properties of certain integral operator, Int. J. Math. Sci., 3 (2004), 45-51.

S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, CRC Press, Boca
Raton, 2000.

S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var., 48
(2003), 815-826.

K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16 (1999), 71-80.

R. K. Raina, P. Sharma, Subordination preserving properties associated with a class of operators,
Le Mat., 68 (2013), 217-228. http://dx.doi.org/10.4418/2013.68.1.16

S. Ruscheweyh, New criteria for univalent functions, P. Am. Math. Soc., 49 (1975), 109-115.

H. Saitoh, S. Owa, T. Sekine, M. Nunokawa, R. Yamakawa, An application of a certain integral
operator, Appl. Math. Lett., 5 (1992), 21-24. http://dx.doi.org/10.1016/0893-9659(92)90104-H

T. N. Shanmugam, S. Sivasubramanian, M. Darus, C. Ramachandran, Subordination and
superordination results for subclasses of analytic functions, Int. J. Math. Forum, 2007, 1039-1052.

T. N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential sandwich theorems for
subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3 (2006), 1-11.

H. Silverman, Higher order derivatives, Chinese J. Math., 23 (1995), 189—191. Available from:
https://www. jstor.org/stable/43836593.

AIMS Mathematics Volume 8, Issue 5, 11440-11459.


http://hdl.handle.net/1828/1655.
http://dx.doi.org/https://doi.org/10.1016/S0022-247X(02)00500-0
http://dx.doi.org/https://doi.org/10.1016/S0022-247X(02)00500-0
http://dx.doi.org/https://doi.org/10.1006/jmaa.1993.1204
http://dx.doi.org/https://doi.org/10.3390/math11010083
http://dx.doi.org/http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2
http://dx.doi.org/http://dx.doi.org/10.4418/2013.68.1.16
http://dx.doi.org/http://dx.doi.org/10.1016/0893-9659(92)90104-H
https://www.jstor.org/stable/43836593.

11459

28. H. M. Srivastava, R. M. El-Ashwah, N. Breaz, A certain subclass of multivalent functions involving
higher-order derivatives, Filomat, 30 (2016), 113—-124. Available from:
https://www. jstor.org/stable/24898417.

29. H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-
Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135-166.
http://dx.doi.org/10.55579/jaec.202153.340

30. E. T. Whittaker, G. N. Watson, A course on modern analysis: An introduction to the
general theory of infinite processes and of analytic functions; with an account of the
principal transcendental functions, 4 Eds., Cambridge University Press, Cambridge, 1927.
https://doi.org/10.1002/zamm.19630430916

31. T. Yaguchi, The radii of starlikeness and convexity for certain multivalent functions, Current Topics
in Analytic Function Theory, World Scientific, River Edge, NJ, USA, 1992, 375-386.

@ AIMS Press

AIMS Mathematics

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 8, Issue 5, 11440-11459.


https://www.jstor.org/stable/24898417.
http://dx.doi.org/http://dx.doi.org/10.55579/jaec.202153.340
http://dx.doi.org/https://doi.org/10.1002/zamm.19630430916
http://creativecommons.org/licenses/by/4.0

	Introduction
	Key lemmas
	Main results
	Conclusions

