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1. Introduction

Nowadays, the subject of fixed point theory is one of the most beautiful and attractive subjects
in science because this subject has many applications in all aspects of science. Many authors have
extracted many fixed point results, and applied their results to give a set of conditions for such integral
equations, and ordinary differential equations to guarantee existence solutions to such equations,
see [1–4] and the references cited there. Ameer et al. [5] employed the directed graph to introduce
new mappings, called “hybrid Ćirić type graphic Υ,Λ-contraction mappings”, and then applied their
new results to study some applications to electric circuit and fractional differential equations.

The thought of metric spaces has been extended in many directions, such as G-metric spaces, cone
metric spaces and b-metric spaces in order to expand Banach’s contraction [6] to more beneficial
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forms. Recently, Kamran et al. [7] expanded the thought of b-metric spaces in the sense introduced
by Baktain [8] and Czerwik [9] into a new concept called “extended b-metric spaces”. The benefit
of extending metric spaces to new spaces is to enrich the sciences with new findings relevant to fixed
points for mappings that satisfy a set of suitable conditions to ensure the existence of fixed points for
some findings in b-metric and extended b-spaces, see [10–17].

Abdeljawad et al. [18] extended some results in fixed points to partial b-metric spaces.
Shatanawi et al. [19] utilized the ordered relation to present a new extension of Banach’s contraction
theorem. Roshan et al. [20] presented some common fixed points in ordered b-metric spaces for
functions that satisfy contraction condition based on two different functions. Recently, Mlaiki et al. [21]
launched a new space, called “controlled metric type space”, and they gave a new version of the
Banach contraction theorem. Then, some authors obtained good results on this new topic, see [22–25].
Farhan et al. [26] studied some results of Reich-type and (α, F)-contractions in partially ordered,
double-controlled metric-type spaces. Then, they applied their results to obtain some applications
to non-linear fractional differential equations.

Henceforth, Q stands for a non-empty set.

Definition 1.1. [7] For a set Q, let θ : Q × Q→ [1,∞) be a function. Then, the function ν : Q × Q
→ [0,∞) is called an extended b-metric, if ∀ ζ, φ, ϱ ∈ Q, we have

(1) ν(ζ, φ) = 0 ⇐⇒ ζ = φ,
(2) ν(ζ, φ) =ν(φ, ζ),
(3) ν(ζ, φ) ≤ θ(ζ, φ)[ν(ζ, ϱ)+ν(ϱ, φ)].

The pair (Q, ν) is referred to as an extended b-metric space.

Some examples for (Q, ν) are stated here:

Example 1.1. For Q = [0,∞), set θ : Q×Q→ [1,∞) and ν : Q×Q→ [1,∞) via θ(ζ1, ζ2) = 1+ ζ1+ ζ2,
∀ζ1, ζ2 ∈ Q, and

ν(ζ1, ζ2) =
{
ζ1 + ζ2, for all ζ1, ζ2 ∈ Q; ζ1 , ζ2,

0, ζ1 = ζ2.

Example 1.2. For Q = [0,∞), set θ : Q × Q→ [1,∞) and ν : Q × Q→ [0,∞) via θ(ζ, v) = 3+ζ+v
2 , for

all ζ, v ∈ Q, and

(1) ν(ζ, v) = 0, for all ζ, v ∈ Q, ζ = v,
(2) ν(ζ, v) = ν(v, ζ) = 5, for all ζ, v ∈ Q − {0}, ζ , v,
(3) ν(ζ, 0) = ν(0, ζ) = 2, for all ζ ∈ Q − {0}.

In this paper, we take advantage of the notion of extended b-metric to present new contraction
conditions, and we make use of our new contractions to formulate new results related to a fixed point
of a mapping that satisfies a set of conditions. More precisely, we will prove six new fixed point
theorems in the context of extended b-metric spaces. Also, we construct two examples to show the
validity and usefulness of our findings. Furthermore, we add an application to an integral equation to
support our results.
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2. Mains results

From now on, FP stands for a fixed point.

Theorem 2.1. Suppose (Q, ν) is complete. Assume there exist r ∈ (0, 1] and h ∈ [0, 1), such that
T : Q→ Q satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v) + hν(v,Tv), (2.1)

for all s, v ∈ Q. Assume that for any m ∈ N,

lim sup
i→∞

θ(si, sm)θ(si, si+1) exists and less than
1 − h

r
, (2.2)

where si = T is0 for s0 ∈ Q. Also, suppose that for any v, s ∈ Q, we have

lim sup
i→+∞

θ(v,T is) exists and is finite.

Then, T has a FP in Q.

Proof. Let s0 ∈ Q. Then, set up a sequence (st) in Q by putting st = Qts0. For t ∈ N, condition (2.1)
gives

ν(st, st+1) = ν(Qst−1,Qst) ≤ rθ(st−1, st)ν(st−1, st) + hν(st, st+1). (2.3)

Simplifying inequality (2.3) to have

ν(st, st+1) ≤
r

1 − h
θ(st−1, st)ν(st−1, st). (2.4)

For t ∈ N, inequality (2.4) yields

ν(st, st+1) ≤
( r
1 − h

)t t∏
s=1

θ(ss−1, ss)ν(s0, s1). (2.5)

For t,m ∈ N with m > t, we choose k ∈ N with m = t + k. The triangular inequality of the definition ν
produces

ν(st, st+k) ≤ θ(st, st+k)ν(st, st+1) + θ(st, st+k)ν(st+1, st+k)
≤ θ(st, st+k)ν(st, st+1) + θ(st, st+k)θ(st+1, st+k)ν(st+1, st+2)
+ θ(st, st+k)θ(st+1, st+k)ν(st+2, st+k)
≤ θ(st, st+k)ν(st, st+1) + θ(st, st+k)θ(st+1, st+k)ν(st+1, st+2)
+ θ(st, st+k)θ(st+1, st+k)θ(st+2, st+k)ν(st+2, st+3)
+ θ(st, st+k)θ(st+1, st+k)θ(st+2, st+k)ν(st+3, st+k)
≤ ...

≤ θ(st, st+k)ν(st, st+1) + θ(st, st+k)θ(st+1, st+k)ν(st+1, st+2)
+ θ(st, st+k)θ(st+1, st+k)θ(st+2, st+k)ν(st+2, st+3)
+

...

+ θ(st, st+k)θ(st+1, st+k) . . . θ(st+k−2, st+k−1)ν(st+k−2, st+k−1)
+ θ(st, st+k)θ(st+1, st+k) . . . θ(st+k−2, st+k−1)ν(st+k−1, st+k).
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In light of the values of θ greater than or equal to 1, the above inequalities imply

ν(st, st+k) ≤ θ(st, st+k)ν(st, st+1) + θ(st, st+k)θ(st+1, st+k)ν(st+1, st+2)
+θ(st, st+k)θ(st+1, st+k)θ(st+2, st+k)ν(st+2, st+3)
+
...

+θ(st, st+k)θ(st+1, st+k) . . . θ(st+k−2, st+k−1)ν(st+k−2, st+k−1)
+θ(st, st+k)θ(st+1, st+k) . . . θ(st+k−2, st+k−1)θ(st+k−1, st+k)ν(st+k−1, st+k)

=

t+k−1∑
j=t

j∏
i=t

θ(si, st+k)ν(s j, s j+1). (2.6)

By using inequalities (2.5) and (2.6), it becomes

ν(st, sm) ≤
t+k−1∑

j=t

j∏
i=t

θ(si, st+k)
( r
1 − h

) j j∏
y=1

θ(sy−1, sy)ν(s0, s1). (2.7)

Define
j∏

i=t

θ(si, st+k)
( r
1 − h

) j j∏
y=1

θ(sy−1, sy)ν(s0, s1) := I j. (2.8)

Then,

lim
j→+∞

I j+1

I j
= lim

j→+∞
θ(s j+1, st+k)θ(s j, s j+1)

r
1 − h

< 1.

The ratio test makes certain( t+k−1∑
i=t

j∏
i=t

θ(si, st+k)
( r
1 − h

) j j∏
y=1

θ(sy−1, sy)ν(s0, s1)
)

is Cauchy, accordingly the sequence (st) is Cauchy in (Q, ν). So, ∃ s′ ∈ Q as an output of the
completeness of (Q, ν), such that

lim
t→∞

ν(st, s′) = 0. (2.9)

Our mission is to verify T s′ = s′. Before that, we need to verify

lim
t→+∞

ν(st, st+1) = 0. (2.10)

The triangular inequality with addition to inequality (2.2) emphasize

lim sup
t→+∞

ν(st, st+1) ≤
1 − h

r
lim

t→+∞

(
ν(st, s′) + ν(s′, st+1)

)
= 0. (2.11)

Thus, (2.10) has been achieved. Again, the triangular inequality and (2.1) yield

ν(s′,T s′) ≤ θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)ν(T s′, st+1)
≤ θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)

(
rθ(s′, st)ν(s′, st) + hν(st, st+1)

)
.

(2.12)
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On letting t → +∞ in (2.12) and benefiting from (2.9) and (2.10), we arrive at ν(s′,T s′) = 0.
Accordingly, T s′ = s′.

In the following result, we assume that θ is continuous in its variables.

Theorem 2.2. Suppose (Q, ν) is complete. Assume there exist r ∈ (0,∞) and h ∈ [0, 1), such that
T : Q→ Q satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v) + hν(v,Tv),

for all s, v ∈ Q. Assume that for any m ∈ N,

lim sup
i→∞

θ(si, sm)θ(si, si+1) exists and less than
1 − h

r
,

where si = T is0 for s0 ∈ Q. If θ is continuous in its variables, then T has a FP in Q.

Proof. We proceed in the same way as in proof of Theorem 2.1, to generate a sequence (st = T ts0) in
Q, such that st → s′ ∈ Q and

lim
t→+∞

ν(st, st+1) = lim
t→+∞

ν(st, s′) = lim
t→+∞

ν(s, st) = 0.

Also, the continuity of θ in its variables implies that

lim
t→+∞

θ(s′, st) = θ(s′, s′). (2.13)

Now,

ν(s′,T s′) ≤ θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)ν(T s′, st+1)
≤ θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)

(
rθ(s′, st)ν(s′, st) + hν(st, st+1)

)
.

(2.14)

Allow t → +∞ in the above inequalities, and make use of (2.13) and (2.14) to obtain

lim
t→+∞

ν(s′,T s′) ≤ θ(s′,T s′) lim
t→+∞

ν(s′, st+1) + θ(s′,T s′)
(
r lim

t→+∞
θ(s′, st)ν(s′, st) + h lim

t→+∞
ν(st, st+1)

)
= 0.

This means that T s′ = s′. Thus, the desired result is obtained.
The uniqueness of the FP in Theorem 2.1 or Theorem 2.2 can be obtained if an appropriate condition

is added.

Theorem 2.3. Suppose (Q, ν) is complete. Assume there exist r ∈ (0, 1] and h ∈ [0, 1), such that
T : Q→ Q satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v) + hν(v,Tv),

for all s, v ∈ Q. Assume that for any m ∈ N,

lim sup
i→∞

θ(si, sm)θ(si, si+1) exists and less than
1 − h

r
,

where si = T is0 for s0 ∈ Q. Moreover, assume that for any v, s0 ∈ Q,

lim sup
i→+∞

θ(v,T is0) exists and is finite or θ is continuous.
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Also, suppose that ∀v, s ∈ Q, we have

lim sup
i→+∞

θ(T iv,T is) exists and less than
1
r
.

Then, T has only one FP in Q.

Proof. If for any v, s0 ∈ Q, we have lim supi→+∞ θ(v,T
is0) exists and less than 1−h

r , then Theorem 2.1
ensures that ∃ s′ ∈ Q, such that T s′ = s′.

If θ is continuous in its variables, then Theorem 2.2 ensures that ∃ s′ ∈ Q, such that T s′ = s′.
To verify that T achieves only one FP, let v′ ∈ Q, such that Tv′ = v′. Now,

ν(v′, s′) = ν(Tv′,T s′) ≤ rθ(v′, s′)ν(v′, s′) + kν(s′,T s′)
= rθ(T tv′,T ts′)ν(v′, s′) + hν(s′,T s′)
= rθ(T tv′,T ts′)ν(v′, s′).

On taking the limit of supremum as t → +∞ in the above inequality, we reach to

ν(v′, s′) < ν(v′, s′),

a contradiction. Thus, v′ = s′ and we conclude that T has only one FP.

Corollary 2.1. Suppose (Q, ν) is complete. Assume there exists r ∈ (0, 1], such that T : Q → Q
satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v)

for all s, v ∈ Q. For s0 ∈ Q, let sn = T ns0. Assume for any m ∈ N,

lim sup
i→∞

θ(si, sm)θ(si, si+1) exists and less than
1
r
.

Also, suppose that for any v, s ∈ Q, we have

lim sup
i→+∞

θ(v,T is) exists and is finite.

Then, T has a FP in Q.

Proof. By choosing h = 0 in Theorem 2.1, we obtain the result as desired.

Corollary 2.2. Suppose (Q, ν) is complete. Assume there exists r ∈ (0, 1], such that T : Q → Q
satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v)

for all s, v ∈ Q. For s0 ∈ Q, let sn = T ns0. Assume that for any m ∈ N,

lim sup
i→∞

θ(si, si+m)θ(si, si+1) exists and less than
1
r
.

If θ is continuous in its variables, then, T has a FP in Q.
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Proof. By choosing h = 0 in Theorem 2.2, we obtain the result as desired.

Corollary 2.3. Suppose (Q, ν) is complete. Assume there exists r ∈ (0, 1], such that T : Q → Q
satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v),

for all s, v ∈ Q. For s0 ∈ Q, let sn = T ns0. Assume that for any m ∈ N,

lim sup
i→∞

θ(si, sm)θ(si, si+1) exists and less than
1
r
.

Moreover, assume that for any v, s0 ∈ Q,

lim sup
i→+∞

θ(v,T is0) exists and is finite or θ is continuous.

Suppose for any v, s ∈ Q, we have

lim sup
i→+∞

θ(T iv,T is) exists and less than
1
r
.

Then, T has only one FP in Q.

Proof. By taking h = 0 in Theorem 2.3, we get the desired result.

Corollary 2.4. Suppose (Q, ν) is a complete b-metric space with constant b ≥ 1. Assume there exist
r ∈ (0, 1] and h ∈ [0, 1) with b2r + h < 1, such that T : Q→ Q satisfies

ν(T s,Tv) ≤ rbν(s, v) + hν(v,Tv), (2.15)

for all s, v ∈ Q. Then, T has only one FP in Q.

Proof. Define θ : Q × Q→ [0,+∞) via θ(s, p) = b, ∀s, v ∈ Q. Now, for s0 ∈ Q, we have

lim sup
i→∞

θ(si, si+m)θ(si, si+1) = b2 <
1 − h

r
.

Also, from br ≤ b2r + h < 1, we arrive at

lim sup
i→+∞

θ(v,T is0) = b <
1
r
.

So, all conditions of Theorem 2.3 are met. So, the result also follows.

Corollary 2.5. Suppose (Q, ν) is complete. Assume there exists r ∈ (0, 1], such that T : Q → Q
satisfies

ν(T s,Tv) ≤ rν(s, v), (2.16)

for all s, v ∈ Q. Assume that for any m ∈ N,

lim sup
i→∞

θ(si, si+m)θ(si, si+1) exists and less than
1 − h

r
,

where si = T is0 for s0 ∈ Q. Suppose that for all v, s ∈ Q, we have

lim sup
i→+∞

θ(T iv,T is) exists and less than
1
r
.

Then, T has only one FP in Q.
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Proof. Let (st+1 = T st) be a sequence in Q constructed as in the proof of Theorem 2.1. So,

ν(st, st+1) ≤ rtν(s0, s1).

Thus,
lim

t→+∞
ν(st, st+1) = 0

has been obtained. Take m ∈ N, as in the proof of Theorem 2.1, we obtain

lim
t→+∞

ν(st, st+m) = 0,

and, hence, (st) is Cauchy in Q. Then, one can show that T has a FP, say t ∈ Q. Since r < 1, then the
uniqueness of t follows from inequality 2.16.

Theorem 2.4. Suppose (Q, ν) is complete. Assume there exist r ∈ (0, 1] and h ∈ [0, 1), such that
T : Q→ Q satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v) + hν(s,Tv), (2.17)

for all s, v ∈ Q. Also, suppose that for any m ∈ N,

lim sup
j→+∞

θ(s j+1, sm)
(rθ(s j, s j+1) + hθ(s j, s j+2)

1 − hθ(s j, s j+2)

)
< 1, (2.18)

where si = T is0 for s0 ∈ Q. Moreover, assume that for any v ∈ Q, we have lim supi→+∞ ν(v, si) exists
and is finite. Then, T has a FP in Q.

Proof. Presume s0 ∈ Q. Then, set up a sequence (st) in Q, such that st = Qts0 owns condition (2.18).
For t ∈ N, condition (2.17) gives

ν(st, st+1) = ν(T st−1,T st)
≤ rθ(st−1, st)ν(st−1, st) + hν(st−1, st+1)
≤ rθ(st−1, st)ν(st−1, st) + hθ(st−1, st+1)ν(st−1, st) + hθ(st−1, st+1)ν(st, st+1). (2.19)

Simplifying inequality (2.19) to have

ν(st, st+1) ≤
rθ(st−1, st) + hθ(st−1, st+1)

1 − hθ(st−1, st+1)
ν(st−1, st). (2.20)

For n ∈ N, inequality (2.20) yields

ν(st, st+1) ≤
t∏

y=1

rθ(sy−1, sy) + hθ(sy−1, sy+1)
1 − hθ(sy−1, sy+1)

ν(s0, s1). (2.21)

Choose t,m ∈ N in such a way that m > t. Select k ∈ N, such that m = t+ k. By helping with triangular
inequality of the definition ν and imitation of the procedure in the proof of Theorem 2.1, at the end of
the day, we obtain

ν(st, st+k) ≤
t+k−1∑

j=t

j∏
i=t

θ(si, st+k)ν(s j, s j+1). (2.22)
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By employing inequality (2.21), inequality (2.22) can be written as

ν(st, sm) ≤
t+k−1∑

j=t

j∏
i=t

θ(si, st+k)
j∏

y=1

rθ(sy−1, sy) + hθ(sy−1, sy+1)
1 − hθ(sy−1, sy+1)

ν(s0, s1). (2.23)

Define

j∏
i=t

θ(si, st+k)
j∏

y=1

rθ(sy−1, sy) + hθ(sy−1, sy+1)
1 − hθ(sy−1, sy+1)

ν(s0, s1) := I j. (2.24)

Then,

lim
j→+∞

I j+1

I j
= lim

j→+∞
θ(s j+1, st+k)

(rθ(s j, s j+1) + hθ(s j, s j+2)
1 − hθ(s j, s j+2)

)
< 1.

Ratio test implies that ∑+∞
j=1
∏ j

i=t θ(si, st+k)
∏ j

y=1
rθ(sy−1,sy)+hθ(sy−1,sy+1)

1−hθ(sy−1,sy+1) ν(s0, s1)

→ s =
∑+∞

j=1
∏ j

i=t θ(si, st+k)
∏ j

y=1
rθ(sy−1,sy)+hθ(sy−1,sy+1)

1−hθ(sy−1,sy+1) ν(s0, s1).

By moving towards infinity in (2.23), the following will be achieved:

lim
t,m→+∞

ν(st, sm) = 0,

and, hence, (st) is Cauchy in (Q, ν). As an output of the completeness of (Q, ν), we find s′ ∈ Q, such
that st → s′; that is,

lim
t→∞

ν(st, s′) = lim
t→∞

ν(s′, st) = 0. (2.25)

Our task is to verify T s′ = s′. Now, (2.25) and (2.17) lead us to

lim
t→+∞

ν(st+1,T s′) = lim
t→+∞

ν(T s′,T st) ≤ lim
t→+∞

(
rθ(s′, st)ν(s′, st) + hν(s′, st+1)

)
= 0. (2.26)

By using the triangular inequality, and then moving towards infinity to obtain

lim
t→+∞

ν(s′,T s′) ≤ lim
t→+∞

(
θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)ν(st+1,T s′)

)
= 0,

and, hence, ν(s′,T s′) = 0. Accordingly, T s′ = s′.
In our next result, we assume that θ is continuous in its variables.

Theorem 2.5. Suppose (Q, ν) is complete. Assume there exist r ∈ (0, 1] and h ∈ [0, 1), such that
T : Q→ Q satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v) + hν(s,Tv), (2.27)

for all s, v ∈ Q. Also, suppose that for any m ∈ N,

lim sup
j→+∞

θ(s j+1, sm)
(rθ(s j, s j+1) + hθ(s j, s j+2)

1 − hθ(s j, s j+2)

)
< 1, (2.28)

where s j = T js0 for s0 ∈ Q. If T is continuous, then T has a FP in Q.
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Proof. By starting with s0 ∈ Q, we launch a sequence (st) as in the proof of Theorem 2.4, such that
there exists s′ ∈ Q with

lim
t→+∞

ν(st, s′) = lim
t→+∞

ν(s′, st) = lim
t→+∞

ν(st, st+1) = 0.

Now, we show that T s′ = s′. The triangular inequality and inequality 2.27 imply that

ν(s′,T s′) ≤ θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)ν(st+1,T s′)
= θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)ν(T st,T s′)
= θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)ν(T s′,T st)
≤ θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)rθ(s′, st)ν(s′, st) + hθ(s′,T s′)ν(s′,T st)
≤ θ(s′,T s′)ν(s′, st+1) + θ(s′,T s′)rθ(s′, st)ν(s′, st) + hθ(s′,T s′)ν(s′, st+1).

By permitting t → +∞ in the above inequalities, we have ν(s′,T s′) = 0 and, hence, s′ = T s′.
The uniqueness of the FP can be achieved in Theorem 2.4 or Theorem 2.5 if a suitable condition

is added.

Theorem 2.6. Suppose (Q, ν) is complete. Assume there exist r ∈ (0, 1] and h ∈ [0, 1), such that
T : Q→ Q satisfies

ν(T s,Tv) ≤ rθ(s, v)ν(s, v) + hν(s,Tv),

for all s, v ∈ Q. Also, suppose that for any m ∈ N,

lim sup
j→+∞

θ(s j+1, s j+1+m)
(rθ(s j, s j+1) + hθ(s j, s j+2)

1 − hθ(s j, s j+2)

)
< 1,

where s j = T js0 for s0 ∈ Q. Moreover, assume that for any v ∈ Q, we have lim supt→+∞ θ(v, st) exists
and is finite. Also, suppose for any v, s ∈ Q, lim supt→+∞ θ(T

tv,T ts) exists and less than 1−h
r . Then, T

has only one FP in Q.

Proof. Theorem 2.4 ensures that there exists s′ ∈ Q with T s′ = s′. To verify that T achieves only one
fixed point, we suppose there exists v′ ∈ Q with s′ , v′, such that Tv′ = v′. Now,

ν(s′, v′) = ν(T s′,Tv′) ≤ rθ(s′, v′)ν(s′, v′) + hν(s′,Tv′)
= rθ(T ts′,T tv′)ν(s′, v′) + hν(s′, v′).

Rewrite the above inequality in a proper form, then we have

ν(s′, v′) ≤
r

1 − h
θ(s′, v′)ν(s′, v′)

=
r

1 − h
θ(T ts′,T tv′)ν(s′, v′).

By permitting t tends to infinity in the above inequality, we get ν(s′, v′) < ν(s′, v′), a contradiction.
Thus, s′ = v′ and, hence, T has only FP in Q.

Corollary 2.6. Suppose (Q, ν) is a complete b-metric space with constant b ≥ 1. Assume there exist
r ∈ (0, 1] and h ∈ [0, 1) with b2r + h(b2 + b) < 1, such that T : Q→ Q satisfies

ν(T s,Tv) ≤ rbν(s, v) + hν(s,Tv), (2.29)

for all s, v ∈ Q. Then, T has only one FP in Q.
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Proof. Define θ : Q × Q→ [1,+∞) via θ(s, v) = b, ∀s, v ∈ Q. Now, for s0 ∈ Q and m ∈ N, we have

lim sup
j→+∞

θ(s j+1, s j+1+m)
(rθ(s j, s j+1) + hθ(s j, s j+2)

1 − hθ(s j, s j+2)

)
= b
(rb + hb

1 − hb

)
< 1.

Also, from br + h ≤ b2r + h(b2 + b) < 1, we arrive at

lim
t→+∞

θ(v,T ts0) = b <
1 − h

r
.

So, all conditions of Theorem 2.6 are met. So, the result also follows.
Now, we present some examples of our results.

Example 2.1. Let Q = [0,+∞). Define T : Q → Q via Tv = 1
4v and θ : Q × Q → [1,∞) by

θ(v, s) = v + s + 1. Also, define ν : Q × Q→ [0,+∞) via

ν(v, s) =


0, if v = s,

v
1+v , if v , 0, s = 0,

s
1+s , if v = 0, s , 0,
max{v, s}, if 0 , v , s , 0.

Then:

(1) ν is extended b-metric, which is not b-metric.
(2) (Q, ν) is complete.
(3) Let v0 ∈ Q, take vn = T nv0. Then, for m ∈ N, we have

lim sup
i→+∞

θ(vi, vm)θ(vi, vi+1) = 1 < 2 =
1 − h

r
.

(4) For any v, s0 ∈ Q, we have

lim sup
n→+∞

θ(v,T ts0) = v + 1 exists and is finite.

(5) For any v, s ∈ Q, we have

lim sup
t→+∞

θ(T tv,T ts) = 1 ≤ 4 =
1
r
.

(6) For s, v ∈ Q, we have

ν(T s,Tv) ≤
1
4
θ(s, v)ν(s, v) +

1
2
ν(v,T s).

We note that the hypotheses of Theorem 2.3 have been fulfilled for r = 1
4 and h = 1

2 .

Example 2.2. Let Q = {0, 1, 2, 3, . . .}. Define T : Q→ Q via

Tv =

 v
2 , if v is even,
v−1

2 , if v is odd,
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and θ : Q × Q→ [1,∞) by

θ(v, s) =

v + s, if (v, s) , (0, 0),
1, if (v, s) = (0, 0).

Also, define ν : Q × Q→ [0,+∞) via

ν(v, s) =


0, if v = s,

1, if one of v or s is even and the other is odd,
min{v, s}, if both of v and s are even or both are odd, provided that v , s.

Then:

(1) ν is extended b-metric, which is not b-metric.
(2) (Q, ν) is complete.
(3) Let s0 ∈ Q, take (st) = (T ts0). Then, for m ∈ N, we have

lim sup
j→+∞

θ(s j+1, sm)
( 1

4θ(s j, s j+1) + 1
4θ(s j, s j+2)

1 − 1
4θ(s j, s j+2)

)
=

2
3
< 1.

(4) For any v, q ∈ Q, we have

lim sup
n→+∞

θ(v,T nq0) = v or 0 exists and is finite.

(5) For any v, s ∈ Q, we have

lim sup
n→+∞

θ(T nv,T ns) = 1 ≤ 3 =
1 − h

r
.

(6) For v, s ∈ Q, we have

ν(Tv,T s) ≤
1
4
θ(v, s)ν(v, s) +

1
4
ν(v,T s).

We note that the hypotheses of Theorem 2.6 have been fulfilled for r = 1
4 and h = 1

4 .

3. Application

In this section, our goal is to present some applications of our findings.
We start this section by giving a solution to the following integral equation:

f (t) =
∫ 1

0
K(t, f (s))ds. (3.1)

Now, let Q = C([0, 1]) be the set of all continuous functions on [0, 1]. Define ||.||∞ : Q→ [0,+∞) by

|| f ||∞ = sup
t∈[0,1]
| f (t)|.

Also, define ν : Q × Q→ [0,+∞) via

ν( f , g) =

0, if f = g,

max
{
|| f ||∞, ||g||∞

}
, if f , g,
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and θ : Q × Q→ [1,+∞) via

θ( f , g) = max
{
1 + || f ||∞, 1 + ||g||∞

}
.

Then, (Q, ν) is an extended b-metric space.
Now, let

A := { f : f ∈ Q, || f ||∞ ≤ 1}.

Then, one can show that A is a closed subspace of Q. So, (A, ν) is complete.

Theorem 3.1. Suppose the following conditions:

(1) K : [0, 1] × R→ R is continuous, and
(2) There exists r ∈ [0, 1

4 ), such that

sup
t∈[0,1]

∫ 1

0
|K(t, f (s))|ds ≤ r

(
1 + || f ||∞

)
|| f ||∞

for all f ∈ A.

Then, the integral equation (3.1) has a unique solution.

Proof. Define T : A→ A by

(T f )(t) =
∫ 1

0
K(t, f (s))ds, t ∈ [0, 1].

Now, for f ∈ A, we have

||T f ||∞ = sup
t∈[0,1]

∣∣∣(T f )(t)
∣∣∣

= sup
[0,1]

∣∣∣ ∫ 1

0
K(t, f (s))ds

∣∣∣
≤ sup

[0,1]

∫ 1

0

∣∣∣K(t, f (s))
∣∣∣ds

≤ r
(
1 + || f ||∞

)
|| f ||∞

≤
1
2
.

So, we conclude that

||T || ≤
1
2
. (3.2)

For f , g ∈ Q, we have

ν(T f ,Tg) = max
{
||T f ||∞, ||Tg||∞

}
≤ r max

{(
1 + || f ||∞

)
|| f ||∞,

(
1 + ||g||∞

)
||g||∞
}

≤ r max
{
1 + || f ||∞, 1 + ||g||∞

}
max
{
|| f ||∞, ||g||∞

}
= rθ( f , g)ν( f , g).

AIMS Mathematics Volume 8, Issue 5, 10929–10946.



10942

Let f0 ∈ A. Then, for t ∈ [0, 1] and i ∈ N, we have | fi(t)| = |T i( f0)(t)| ≤ ||T ||∞i|| f ||∞|t|. So, || fi||∞ ≤ ||T ||i∞.
Therefore,

lim sup
i→+∞

θ( fi, fi+1)θ( fi, fm) = lim sup
i→+∞

max
{
1 + || fi||∞, 1 + || fi+1||∞

}
max
{
1 + || fi||∞, 1 + || fm||∞

}
≤ lim sup

i→+∞
max
{
1 + ||T ||i∞, 1 + ||T ||

i+1
∞

}
max
{
1 + ||T ||i∞, 1 + ||T ||

m
∞

}
≤ lim sup

i→+∞
max
{

1 +
(1
2
)i
, 1 +
(1
2
)i+1
}

max
{

1 +
(1
2
)i
, 1 +
(1
2
)i+m
}

= 1 ≤ 4 <
1
r
.

Let v, f ∈ Q. Then,

lim sup
i→+∞

θ(v,T i f ) = lim sup
i→+∞

max
{
1 + ||v||∞, 1 + ||T i f ||∞

}
≤ lim sup

i→+∞
max
{
1 + ||v||∞, 1 + ||T ||i∞|| f ||∞

}
≤ 2.

So, lim supi→+∞ θ(v,T
i f ) exists and is finite. So, all conditions of Theorem 2.1 have been achieved.

Accordingly, T has a fixed point in A ⊆ Q. So, the integral equation (3.1) has a solution in Q.
Our second application is to give a solution to equation of the form f (s) = 0, where s ∈ Q = [0,+∞).

Theorem 3.2. For t ≥ 1 and two integers m and k with 4m2 < (1 + t)2 and (1 + t) ≤ k, the equation

(s − 1)(s + t)2m + (k2m + 1)s − k2m = 0

has a unique real solution s′ in [0,+∞).

Proof. Let Q = [0,+∞). Define T : Q→ Q by

T s =
(s + t)2m + k2m

(s + t)2m + k2m + 1
.

Also, define θ : Q × Q→ [1,+∞) by

θ(s, v) =
2m∑
i=1

(s + t)2m−i(v + t)i−1.

On Q × Q, we define the complete extended b-metric ν by

ν(s, v) = |s − v|.

Then:

(1) For s, v ∈ Q, we have

ν(T s,Tv) ≤
1

k4m θ(s, v)ν(s, v).
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Indeed,

ν(T s,Tv) = |T s − Tv|

=

∣∣∣∣∣ (s + t)2m + k2m

(s + t)2m + k2m + 1
−

(v + t)2m + k2m

(v + t)2m + k2m + 1

∣∣∣∣∣
=

∣∣∣∣∣∣ (s + t)2m − (v + t)2m(
(s + t)2m + k2m + 1

)(
(v + t)2m + k2m + 1

) ∣∣∣∣∣∣
≤

1
k4m

∣∣∣∣∣(s + t)2m − (v + t)2m
∣∣∣∣∣

≤
1

k4m

2m∑
i=1

(s + t)2m−i(v + t)i−1
∣∣∣∣∣s − v

∣∣∣∣∣
=

1
k4m θ(v, l)ν(v, l).

(2) For s0 ∈ Q, put si = T is0. Then, one can show that

lim sup
i→∞

θ(si, sm)θ(si, si+1) exists and less than
1
r
= k4m.

(3) θ is continuous in its variables.
(4) For v, s ∈ Q, we have

lim sup
i→+∞

θ(T iv,T is) exists and less than
1
r
= k4m.

So, all the conditions of Corollary 2.3 have been fulfilled. Therefore, T has a unique FP in [0,+∞).

Corollary 3.1. For k ≥ 3, the equation

s3 + (k2 + 2k − 3)s2 + (−4k + 3)s − k2 + 2k − 1 = 0

has a unique real solution s′ in [0,+∞).

Proof. We can show that the equation

s3 + (k2 + 2k − 3)s2 + (−4k + 3)s − k2 + 2k − 1 = 0

is equivalent to
(s − 1)(s + k − 1)2 + (k2 + 1)s − k2 = 0.

The result follows from Theorem 3.2 by taking m = 1, t = k − 1 and noting that 4m2 < (1 + t)2 and
1 + t ≤ k.

Example 3.1. The equation
s3 + 117s2 − 37s − 81 = 0

has a unique real solution s′ in [0,+∞).

Proof. The result follows from Corollary 3.1 by taking k = 10.
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4. Conclusions

In this work, we have taken advantage of the notion of extended b-metric to present new contraction
conditions. Next, we proved several new fixed point theorems in the context of extended b-metric
spaces. Two examples are provided to show the validity and usefulness of our findings. Furthermore,
two applications were added to support our findings.
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